雷鈞杰,張永強,張宏芝,賽力汗·賽,薛麗華,喬 旭,于建新,馮 賓,梁玉超,王 成,陳興武
(1.新疆農(nóng)業(yè)科學院糧食作物研究所,烏魯木齊 830091;2.農(nóng)業(yè)部荒漠綠洲作物生理生態(tài)與耕作重點實驗室,烏魯木齊 830091;3.新疆農(nóng)業(yè)科學院核技術生物技術研究所,烏魯木齊 830091;4.奇臺縣農(nóng)業(yè)技術推廣中心,新疆奇臺 831800)5.新疆農(nóng)業(yè)大學農(nóng)學院,烏魯木齊 830052);
?
不同滴灌量對冬小麥干物質(zhì)積累、轉(zhuǎn)運及產(chǎn)量的影響
雷鈞杰1,2,張永強1,2,張宏芝2,3,賽力汗·賽1,2,薛麗華1,2,喬 旭1,2,于建新4,馮 賓4,梁玉超5,王 成5,陳興武1,2
(1.新疆農(nóng)業(yè)科學院糧食作物研究所,烏魯木齊830091;2.農(nóng)業(yè)部荒漠綠洲作物生理生態(tài)與耕作重點實驗室,烏魯木齊830091;3.新疆農(nóng)業(yè)科學院核技術生物技術研究所,烏魯木齊830091;4.奇臺縣農(nóng)業(yè)技術推廣中心,新疆奇臺831800)5.新疆農(nóng)業(yè)大學農(nóng)學院,烏魯木齊830052);
【目的】研究滴灌量對冬小麥干物質(zhì)積累和轉(zhuǎn)運特征的影響?!痉椒ā吭诖筇锏喂鄺l件下,設置3 150(W1)、3 900(W2)、4 650(W3)和5 400 m3/hm2(W4),對照滴灌量為0(CK)共5種不同處理,研究不同滴灌量對冬小麥葉面積指數(shù)(LAI)、干物質(zhì)積累、轉(zhuǎn)運及產(chǎn)量的影響?!窘Y果】隨著滴灌量的增加,各處理冬小麥的LAI和干物質(zhì)均呈W3>W4>W2>W1>CK的變化規(guī)律;干物質(zhì)快增期出現(xiàn)在拔節(jié)后4~55 d,快增期持續(xù)時間(△t)為35~50 d,最大積累速率(Vm)為0.043~0.075 mg/(株·d);花前同化物轉(zhuǎn)運量呈“先增后降”的趨勢,花后同化物轉(zhuǎn)運量呈增加趨勢,但花前、花后同化物轉(zhuǎn)運總量以W3最大為1.574 g/株。產(chǎn)量最高為8 602.41 kg/hm2(W3處理),分別較W1、W2、W4和CK增產(chǎn)12.41%、2.77%、1.07%和33.00%?!窘Y論】冬小麥全生育期適宜的滴灌量為4 650 m3/hm2。
滴灌量;冬小麥;干物質(zhì)積累和轉(zhuǎn)運;產(chǎn)量
【研究意義】新疆地處亞歐大陸腹地,氣候干燥,降雨稀少,蒸發(fā)強烈,水資源匱乏,是我國典型的綠洲灌溉農(nóng)業(yè)區(qū),92.4%的耕地為灌溉農(nóng)業(yè),沒有水就沒有新疆的農(nóng)業(yè)[1]。因此,節(jié)水灌溉是新疆發(fā)展農(nóng)業(yè)的必然選擇,而滴灌作為一種先進的節(jié)水灌溉技術,可根據(jù)作物需水規(guī)律,將灌溉水源直接輸送到作物根部,以點滴狀緩慢而均勻地滴入作物根區(qū)土壤中,被根系充分吸收利用,最大限度地降低土壤水分滲漏和農(nóng)業(yè)用水浪費,可有效緩解水資源不足與農(nóng)業(yè)用水利用率較低的矛盾[2]。近年來隨著滴灌技術在密植作物小麥上的應用與研究,滴灌小麥栽培面積不斷擴大。【前人研究進展】對滴灌水麥研究主要集中在不同滴灌帶配置方式[1,3-4],及同一滴灌帶配置方式下小麥產(chǎn)量性狀均呈現(xiàn)行間差異[5,6]、滴灌量對春小麥生長發(fā)育[7]、葉綠素含量和光合特性[8]、根系分布[9]、水分利用效率及產(chǎn)量的影響方面[10-11]?!颈狙芯壳腥朦c】目前研究大部分集中在對春小麥的研究上,對滴灌冬小麥的研究較少,雖有一些報道,但對不同的試驗條件下得出的結論不盡相同,研究在大田滴灌條件下,設置5種不同滴灌量處理,研究不同處理下冬小麥干物質(zhì)積累特征及產(chǎn)量構成特點,探究滴灌量對冬小麥干物質(zhì)積累、轉(zhuǎn)運及產(chǎn)量形成的機理。【擬解決的關鍵問題】在大田滴灌條件下,研究不同滴灌量對冬小麥干物質(zhì)積累動態(tài)變化及其轉(zhuǎn)運、Logistic生長函數(shù)特征和產(chǎn)量的影響,確定滴灌冬小麥適宜的滴灌量,為其高產(chǎn)、高效、節(jié)水、優(yōu)質(zhì)栽培提供理論依據(jù)與技術支撐。
1.1材 料
試驗于2013~2014年在新疆奇臺縣西地鎮(zhèn)西地村進行,試驗區(qū)位于E89°13′,N43°25′,年均日照時數(shù)2 280~3 230 h,年均氣溫4.7℃,年均降雨量176 mm,蒸發(fā)量2 141 mm。極端最高氣溫39℃,極端最低氣溫-37.3℃。全年無霜期156 d。試驗地土壤為灌溉灰漠土,播前0~40 cm土壤有機質(zhì)含量2.84%,堿解氮含量52.22 mg/kg,速效磷含量20.20 mg/kg,速效鉀含量237 mg/kg。
1.2方 法
1.2.1試驗設計
采用單因素隨機區(qū)組試驗設計,在大田滴灌條件下設置3 150(W1)、3 900(W2)、4 650(W3)和5 400 m3/hm2(W4),對照處理滴灌量為0(CK)共5種不同的滴灌量處理,小區(qū)面積36 m2(3.6 m×10 m),重復3次,為防止水分漏滲,小區(qū)之間空1.5 m寬隔離帶,各小區(qū)均用水表控制進水量。供試品種為新冬22號,于2013年9月26日播種,行距15 cm。滴灌帶采用1管4行的布置方式,毛管間距60 cm。播前結合整地深施磷酸二銨300 kg/hm2、尿素58.5 kg/hm2作為基肥,在冬小麥拔節(jié)期、孕穗期、開花期分別追施尿素228.75、76.2和76.2 kg/hm2,在小麥灌漿期滴施KH2PO4(純度98%),每次滴施22.5 kg/hm2。表1
表1不同滴灌量及滴灌時期(m3/hm2)
Table 1The amount of drip irrigation distribution in different stage under different treatments
處理Treatments越冬前Pre-winter起身期Recoverystage拔節(jié)期Jointingstage孕穗期Bootingstage抽穗期Headingstage開花期Floweringstage灌漿前期Earlystageoffilling灌漿中期Middlestageoffilling總量TotalW1900225450562.5225337.52252253150W29003006007503004503003003900W3900375750937.5375562.53753754650W490045090011254506754504505400CK000000000
1.2.2測定項目1.2.2.1小麥群體動態(tài)調(diào)查
基本苗、冬前總莖數(shù)、返青總莖數(shù)、起身期總莖數(shù)(春季最大總莖數(shù))、收獲穗數(shù)。
1.2.2.2葉面積和葉面積指數(shù)
于冬小麥拔節(jié)期、孕穗期、開花期,花后12 d、花后24 d,每處理每重復連續(xù)選取10個單莖,測定每個單莖的綠色葉片的長和寬,并根據(jù)以下公式計算出葉面積指數(shù)(LAI)。
單莖葉面積=長×寬×0.83.
LAI=單莖葉面積×1 hm2莖數(shù)/10000.
1.2.2.3干物質(zhì)
于冬小麥拔節(jié)期、孕穗期、開花期,花后12 d、花后24 d、成熟期,每處理每重復取20株小麥鮮樣,剪去根,將植株分為葉片、莖鞘、穎殼和穗軸、籽粒部分,放入105℃烘箱中殺青15 min,80℃烘24 h至恒重后稱干重,分別測定各部分的干物質(zhì)重。采用Logistic方程擬合滴灌冬小麥干物質(zhì)積累變化:
y=k/[1+e(a-bt)].
式中:y為冬小麥拔節(jié)t天單株干物質(zhì)積累量(g/株);t為冬小麥拔節(jié)后的天數(shù)(d);k表示冬小麥單株干物質(zhì)理論最大積累量(g/株);a、b為待定系數(shù)。
根據(jù)方程推導得到的幾個特征值:
最快生長時間段的起始時間t1=[ln(ea)-1.317] /b,終止時間t2=[ln(ea)+1.317] /b;
最大相對生長速率Vm=-bk/ 4,最大相對生長速率出現(xiàn)時間tm=-a/b.
快速增長期持續(xù)的時間△t=t2-t1.
干物質(zhì)積累與轉(zhuǎn)運量的計算方法如下[13]:
花前同化物轉(zhuǎn)運量(g)=開花期干物重(g)-成熟期營養(yǎng)器官干重(g)。
花后同化物轉(zhuǎn)運量(g)=成熟期籽粒干重(g)-花前同化物轉(zhuǎn)運量(g)。
花前同化物轉(zhuǎn)運率(%)=花前同化物轉(zhuǎn)運量(g)/開花期營養(yǎng)器官干重(g)×100%。
花后同化物轉(zhuǎn)運率(%)=花后同化物轉(zhuǎn)運量(g)/[收獲時全株干重(g)-開花時全株干重(g)] ×100%。
花前同化物對籽粒的貢獻率(%)=花前同化物轉(zhuǎn)運量(g)/成熟期籽粒干重(g) ×100%。
花后同化物對籽粒的貢獻率(%)=花后同化物轉(zhuǎn)運量(g)/成熟期籽粒干重(g)×100%。
1.2.2.4產(chǎn)量及產(chǎn)量結構
成熟期從各小區(qū)選取4 m2(2 m×2 m)樣點,單獨人工收割,脫粒后風干稱重,并折算產(chǎn)量,籽粒含水量為13%。另從每小區(qū)取1 m雙行樣段,調(diào)查有效穗數(shù)、穗粒數(shù)和千粒重。
1.3數(shù)據(jù)統(tǒng)計
采用Microsoft Excel 2003作圖,用DPS7.05軟件統(tǒng)計分析數(shù)據(jù)。
2.1不同滴灌量對冬小麥葉面積指數(shù)的影響
葉面積指數(shù)(LAI)是反映植物群體生長狀況的一個重要指標,其大小直接與最終產(chǎn)量高低密切相關。研究表明,不同處理滴灌冬小麥LAI的總體變化趨勢基本一致,均呈“先增加后緩慢下降”的單峰變化趨勢,且各處理均在孕穗期達到峰值,最大為5.68(W3處理),分別較同期W1、W2、W4和CK高出3.51%、0.80%、3.66%和14.72%,其與W1、W2和W4處理差異不顯著,但與CK處理的差異達極顯著水平(P<0.01)。進一步分析可知,在孕穗期以前,W1、W2、W3和W4處理間的差異不大,孕穗期之后處理間差異逐漸增大,但整個生育期各處理均顯著高于對照CK。圖1
圖1不同滴灌量冬小麥葉面積指數(shù)動態(tài)變化
Fig.1 The dynamic change of leaf area index of winter wheat under different drip irrigation amount
2.2不同滴灌量冬小麥干物質(zhì)積累特征的影響
研究表明,各處理干物質(zhì)積累過程的總趨勢基本一致,即隨著生育進程的推進冬小麥單株干物質(zhì)積累量逐漸增加。其中孕穗期以前積累緩慢,從孕穗期到花后24 d增長迅速,花后24 d以后冬小麥干物質(zhì)基本保持穩(wěn)定,但整個生育進程中,滴灌冬小麥地上部分干物質(zhì)基本呈W3>W4>W2>W1>CK的變化規(guī)律,尤其是小麥開花之后其它處理明顯高于不灌水的對照CK。用Logistic方程對不同滴灌量處理冬小麥的干物質(zhì)積累量進行擬合,其曲線擬合度的R2值均超過了0.97,達極顯著水平。表2,圖2
圖2不同滴灌量冬小麥干物質(zhì)積累動態(tài)
Fig.2 The dynamic change of dry matter of winter wheat under different drip irrigation amount
研究表明,滴灌冬小麥地上部分干物質(zhì)量積累最快的時期出現(xiàn)在拔節(jié)后的4~55 d(5月13日至7月2日),干物質(zhì)積累最大速率(Vm)出現(xiàn)在拔節(jié)后的26~29 d,快速積累期(△t)為35~50 d。進一步分析可知,隨著滴灌量的增加冬小麥單株干物質(zhì)總量和Vm均呈“先上升后下降”的變化規(guī)律,且均在W3處理達到最大值,其與W1、W2、W4和CK相比,干物質(zhì)理論最大積累量分別增加8.31%、10.24%、0.19%和25.93%;Vm分別增加了0.017、0.006、0.004、0.032 g/(株·d)?!鱰與Vm的變化規(guī)律基本呈相反的趨勢,具體為:CK>W1>W4>W3>W2。干物質(zhì)的積累由干物質(zhì)積累速率與其持續(xù)時間共同決定的,只有二者相互統(tǒng)一,才能獲得較高的干物質(zhì)積累量,為獲得高產(chǎn)打下基礎。表2
表2不同滴灌量冬小麥地上部分干物質(zhì)積累的Logistic模擬及其特征值
Table 2Logistic and their eigenvalues of dry matter accumulation of aboveground parts of winter wheat under different treatments
處理TreatmentsLogistic方程EquationVmg/(株·d)持續(xù)時間Duration(d)tmt1t2△tR2W1y=3.7688/[1+e(1.0719-0.0615t)]0.05829.448.0150.8842.870.9847**W2y=3.7030/[1+e(1.0755-0.0739t)]0.06926.558.7344.3735.640.9883**W3y=4.0821/[1+e(1.1192-0.0730t)]0.07527.349.2945.3936.100.9904**W4y=4.0742/[1+e(1.0307-0.0689t)]0.07126.977.8446.1038.260.9924**CKy=3.2415/[1+e(0.9128-0.0530t)]0.04329.234.3754.0949.720.9741**
注:t冬小麥拔節(jié)后的天數(shù);y冬小麥干物質(zhì)積累量;Vm干物質(zhì)最大增長速率;tm干物質(zhì)積累最大速率出現(xiàn)的時間;t1和t2分別為Logistic生長函數(shù)的兩個拐點;△t干物質(zhì)快速積累持續(xù)天數(shù);**P<0.01
Note:t:The days after jointing stage of winter wheat;y:The dry matter accumulation of winter wheatVm:The maximum increase rate of dry matter;tm:The days of the maximum dry matter accumulation rate occurred;t1andt2are two inflexions of the Logistic equations, respectively;△t:The continued days of dry matter rapid accumulation(d);**P<0.01
2.3不同滴灌量對冬小麥干物質(zhì)轉(zhuǎn)運特征的影響
研究表明,不同滴灌量處理對冬小麥花前、花后同化物轉(zhuǎn)運量、轉(zhuǎn)運率和對籽粒產(chǎn)量的貢獻率均有顯著的影響。隨著滴灌量的增加,冬小麥花前同化物轉(zhuǎn)運量呈“先增后降”的變化趨勢,在W2處理達到最大,為0.585 g/株,比W1、W3、W4和CK分別增加了33.98%、11.69%、37.97%和81.63%,達極顯著差異水平(P<0.01);花后同化物轉(zhuǎn)運量呈增加趨勢,最大值為1.128 g/株(W4處理)比W1、W2、W3和CK分別增加了74.38%、26.66%、7.40%和65.44%,其中與W1、W2和CK達極顯著差異水平(P<0.01),與W3達顯著差異水平(P<0.05)。累積滴灌冬小麥花前、花后同化物轉(zhuǎn)運量可得出W3處理最大為1.574g/株,比W1、W2、W4和CK的同化物多轉(zhuǎn)運了0.491、0.098、0.022和0.685 g/株,表明適宜的滴灌量能夠促進冬小麥同化物向籽粒轉(zhuǎn)運,有利于達到小麥高產(chǎn)。表3
表3不同滴灌量冬小麥花前和花后同化物轉(zhuǎn)運
Table 3Effects of different drip irrigation amount on assimilation transportation after and before anthesis of winter wheat
處理Treatments花前同化物Assimilationbeforeanthesis花后同化物Assimilationafteranthesis轉(zhuǎn)運量Transportation(g/株)轉(zhuǎn)運率Transportatingrate(%)對籽粒貢獻率Contributionrate(%)轉(zhuǎn)運量Transportation(g/株)轉(zhuǎn)運率Transportatingrate(%)對籽粒貢獻率Contributionrate(%)W10.437cC23.72bB40.32aA0.647eC41.81dC59.68dCW20.585aA26.88aA39.66aA0.890cB67.11bA60.34dCW30.524bB22.89bB33.29bB1.050bA68.25bA66.71cBW40.424cC18.91cC27.34cC1.128aA72.29aA72.66bBCK0.208dD12.07dD23.36dD0.682dC60.91cB76.64aA
注:大小寫字母分別表示差異達到0.01和0.05顯著水平,下同
Note:The capital lowercase letters indicate significant difference at 0.01 and 0.05 level,respectively,the same as below
2.4不同滴灌量對冬小麥產(chǎn)量及產(chǎn)量構成影響
研究表明,不同處理對滴灌冬小麥有效穗數(shù)的影響不大,最高為535.56×104穗/hm2(W2處理),但與其它處理間差異不顯著。穗粒數(shù)和千粒重隨著滴灌量的增加呈“先增后降”的變化趨勢,且均在W3處理達到最高,分別為31.73粒和48.49 g,其中穗粒數(shù)W3處理與W2、W4處理達顯著性差異(P<0.05),與W1、CK達極顯著差異(P<0.01);千粒重W3處理與W1、W2、W4處理之間差異不顯著,但均顯著高于CK。表明滴灌條件下適當增加灌水量可以增加冬小麥的穗粒數(shù)和千粒重,為獲得高產(chǎn)奠定了基礎。籽粒產(chǎn)量隨著滴灌量的增加呈現(xiàn)W3>W4>W2>W1>CK的變化規(guī)律,W3處理產(chǎn)量最高為8 602.41 kg/hm2,分別較W1、W2、W4和CK增產(chǎn)12.41%、2.77%、1.07%和33.00%,其與W1、CK差異達極顯著水平(P<0.01),與W2、W4差異不顯著。滴灌處理下冬小麥地上部分的生物量呈“先降后增”變化規(guī)律,其與籽粒產(chǎn)量變化趨勢恰恰相反,呈W3 表4不同滴灌量下冬小麥產(chǎn)量、產(chǎn)量構成因素及收獲指數(shù)變化 處理Treatments穗數(shù)Spikenumber(104spilks/hm2)穗粒數(shù)Grainsperspike千粒重1000-grainweight(g)產(chǎn)量Yield(kg/hm2)生物量Totalbiomass(kg/hm2)收獲指數(shù)HarvestnumberW1522.22aA25.97cB47.96aA7652.23bB28240.14aA0.27cCDW2535.56aA28.93bA48.08aA8370.17aAB28394.36aA0.29bBCW3531.11aA31.73aA48.49aA8602.41aA26958.13aA0.32aAW4523.34aA29.73bA48.14aA8511.61aA27365.69aA0.31aABCK524.45aA25.13cB45.64bA6468.14bC24449.90bB0.26cD 植物生長所需要的水分主要是由根系從土壤中汲取,而滴灌量大小直接影響著土壤含水量的高低,從而影響植物的生長。研究表明,土壤水分狀況對小麥干物質(zhì)積累與分配有顯著影響[14]。拔節(jié)期后田間持水量為65%的處理小麥干物質(zhì)積累量和籽粒產(chǎn)量均顯著高于80%的處理[15],小麥開花后漬水和干旱均會顯著降低植株干物質(zhì)積累量和產(chǎn)量[16-17];也有學者研究認為,小麥在某些生育時期水分虧缺反而有利于同化物向籽粒轉(zhuǎn)運,提高收獲指數(shù)[18],此結論在研究中進一步得到了證實。研究結果表明,隨著滴灌量的增加冬小麥干物質(zhì)積累量呈“先增后降”的變化趨勢,在W3處理達到最高,由于新疆屬于灌溉農(nóng)業(yè),降雨較少,滴灌條件下各處理的干物質(zhì)均顯著高于對照CK;適宜增加滴灌量不僅可以提高干物質(zhì)的積累速率和干物質(zhì)的積累量,還能有效促進干物質(zhì)向籽粒轉(zhuǎn)運,而滴灌量較高的處理卻對干物質(zhì)轉(zhuǎn)運總量有所制約。較高的干物質(zhì)積累和轉(zhuǎn)運量有利于小麥獲得較高的籽粒產(chǎn)量。 小麥籽粒中的干物質(zhì)大部分來源于其花后的光合作用產(chǎn)物和花前貯藏于營養(yǎng)器官的光合產(chǎn)物的轉(zhuǎn)運、分配[19]。Sun等[20]研究表明,節(jié)水灌溉農(nóng)業(yè)應尋求產(chǎn)量和水分利用效率的最佳結合,灌水量過多會顯著降低光合產(chǎn)物向籽粒轉(zhuǎn)運,造成減產(chǎn)[21];而土壤水分虧缺會導致植株葉片提前進入衰老期,降低光合速率和灌漿速率,同樣也會造成減產(chǎn)[22]。研究表明,適當增加滴灌量增產(chǎn)效果明顯,各處理產(chǎn)量最高為8 602.41 kg/hm2(W3處理),分別較W1、W2、W4和CK增產(chǎn)12.41%、2.77%、1.07%和33.00%,其與W1、CK差異達極顯著水平(P<0.01),與W2、W4差異不顯著。 通過不同滴灌量對冬小麥干物質(zhì)積累、轉(zhuǎn)運及產(chǎn)量的影響研究發(fā)現(xiàn),適宜增加滴灌量能有效提高冬小麥LAI和干物質(zhì)積累,有利于光合產(chǎn)物向籽粒轉(zhuǎn)運,提高籽粒產(chǎn)量。試驗條件下,冬小麥全生育期適宜的滴灌量為4 650 m3/hm2時,干物質(zhì)積累量和花前、花后干物質(zhì)轉(zhuǎn)運總量最大,產(chǎn)量最高,可供當?shù)卮筇锷a(chǎn)參考。此灌水量與當?shù)芈嘞啾?,雖然達到了節(jié)水和高產(chǎn)的目的,但距離精量灌溉和水分的高效利用仍有一定的距離,還要進一步縮減灌溉梯度和滴灌量,以確定滴灌冬小麥最佳的滴灌制度。 References) [1]張娜,張永強,唐江華,等.滴灌帶配置方式對冬小麥生長及產(chǎn)量的影響[J].麥類作物學報,2013,33(6):1 197-1 201. ZHANG Na, ZHANG Yong-qiang, TANG Jiang-hua, et al. (2013). Effect of drip irrigation layout on growth and yield of winter wheat [J].JournalofTriticeaeCrops, 33(6):1,197-1,201. (in Chinese) [2] Wood, M. L., & Finger, L. (2006). Influence of irrigation method on water use and production of perennial pastures in northern Victoria.AnimalProductionScience, 46(12): 1,605-1,614. [3]萬剛.滴灌帶不同配置方式對小麥生長發(fā)育及產(chǎn)量的影響[J].安徽農(nóng)學通報,2011,16(9):25-29. WAN Gang. (2011). Effect of Different drip irrigation layout on growth and yield of wheat [J].AnhuiAgri.Sci.Bull, 16(19):25-29, 100. (in Chinese) [4]王振華,鄭旭榮,龔婷婷,等.北疆滴灌春小麥毛管適宜布置模式[J].中國農(nóng)學通報,2014,30(11):150-155. WANG Zheng-hua, ZHENG Xun-rong, GONG Ting-ting, et al. (2014). The sui [5]魏建軍,楊相昆,張占琴,等.滴灌條件下不同冬麥行間產(chǎn)量性狀的差異[J].西北農(nóng)業(yè)學報,2013,22(4):44-48. WEI Jian-jun,YANG Xiang-kun, ZHANG Zhan-qin, et al. (2013). Variation of yield traits between different rows of drip-irrigated winter wheat [J].ActaAgriculturaeBareali-occidentalisSinica, 22(4):44-48. (in Chinese) [6]薛麗華,段麗娜,謝小青,等.滴灌量對新冬18號行間產(chǎn)量差異的影響機理分析[J].新疆農(nóng)業(yè)科學,2015,52(4):614-620. XUN Li-hua, DUAN Li-na, XIE Xiao-qing, et al. (2015). Analysis of mechanism of drip irrigation effect on xindong 18 interline difference differences in yield [J].XinjiangAgriculturalScience, 52(4):614-620. (in Chinese) [7]蔣桂英,魏建軍,劉萍,等.滴灌春小麥生長發(fā)育與水分利用效率的研究[J].干旱地區(qū)農(nóng)業(yè)研究,2012,30(6):50-54,73. JIANG Gui-ying, WEI Jian-jun, LIU Ping, et al. (2012). Spring wheat growth and water use efficiency under drip irrigation [J].AgriculturalResearchintheAridAreas, 30(6): 50-54, 73. (in Chinese) [8]王冀川,高山,徐雅麗,等.不同滴灌量對南疆春小麥光合特征和產(chǎn)量的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2012,30(4):42-48. WANG Ji-chuan, GAO Shan, XU Ya-li et al.(2012). Effect of drip irrigation on photosynthetic characteristics and yield of spring wheat in south Xinjiang [J].AgriculturalResearchintheAridAreas, 30(4):42-48. (in Chinese) [9]王冀川,徐雅麗,高山, 等.滴灌條件下根區(qū)水分對春小麥根系分布特征及產(chǎn)量的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2011,(2):21-26. WANG Ji-cuan, XU Ya-li, GAO Shan, et al. (2011). Effects of soil moisture of root zone on root growth and yield of spring wheat under drip irrigation [J].AgriculturalResearchintheAridAreas, 29(2):21-26. (in Chinese) [10]程裕偉,馬富裕,王光全,等.不同水分處理對滴灌春小麥水分利用效率及產(chǎn)量的影響[J].新疆農(nóng)業(yè)大學學報,2013,(4):322-328. CHENG Yu-wei, MA Fu-yu, WANG Guang-quan, et al. (2013). Effects of Different Irrigation Intensity on Water Use Efficiency and Yield and Yield of Drip Irrigated Spring Wheat [J].JournalofXinjiangAgriculturalUniversity, (4): 322-328. (in Chinese) [11]聶紫瑾,陳源泉,張建省,等.黑龍港流域不同滴灌制度下的冬小麥產(chǎn)量和水分利用效率[J].作物學報,2013,(9):1 687-1 692. NIE Zi-jin, CHEN Yuan-quan, ZHANG Jian-sheng, et al. (2013). Effects of Drip Irrigation Patterns on Wheat Yield and Water Use Efficiency in Heilonggang Region [J].ActaAgronSin, (9):1,687-1,692. (in Chinese) [12]商健,劉義國,姜雯,等.滴灌模式對冬小麥花后光合特性與產(chǎn)量的影響[J].麥類作物學報,2013,(3):483-488. SHANG Jian, LIU Yi-guo, JIANG Wen, et al.(2013). Effects of drip irrigation on patterns on photosynthetic characteristic after anthesis and yield of winter wheat [J].JournalofTriticeaeCrops, 33(3): 483-488. (in Chinese) [13] Jiang, D., Xie, Z. J., Cao, W. X., Dai, T. B., & Jing, Q. (2004). Effects of post-anthesis drought and waterlogging on photosynthetic characteristics, assimilates transportation in winter wheat.ActaAgronomicaSinica, 30(2): 175-182. [14] Ziaei, A. N., & Sepaskhah, A. R. (2003). Model for simulation of winter wheat yield under dryland and irrigated conditions.AgriculturalWaterManagement, 58(1): 1-17. [15]任巍,姚克敏,于強,等.水分調(diào)控對冬小麥同化物分配與水分利用效率的影響研究[J].中國生態(tài)農(nóng)業(yè)學報,2003,11(4):97-99. REN Wei, YAO Ke-min,YU Qiang, et al. (2003). Effect of water control in combination of depth and amount on dry matter partition and water use efficiency of winter wheat [J].ChinJEco-Agric, 11(4): 97-99. (in Chinese) [16]姜東,謝祝捷,曹衛(wèi)星,等.花后干旱和漬水對冬小麥光合特性和物質(zhì)運轉(zhuǎn)的影響[J].作物學報,2004,(2):175-182. JIANG Dong, XIE Zhu-jian, CAO Wei-xing, et al. (2004). Effects of post-anthesis drought and water-logging on photosynthetic characteristics, assimilates transportation in winter wheat [J].ActaAgronSin, 30(2): 175-182. (in Chinese) [17] Tambussi, E. A., Nogués, S., & Araus, J. L. (2005). Ear of durum wheat under water stress: water relations and photosynthetic metabolism.Planta, 221(3):446-458. [18] Kang, S., Zhang, L., Liang, Y., Hu, X., Cai, H., & Gu, B. (2002). Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China.AgriculturalWaterManagement, 55(3):203-216. [19]張娜,張永強,李大平,等.滴灌量對冬小麥光合特性及干物質(zhì)積累過程的影響[J].麥類作物學報,2014,34 (6):795-801. ZHANG Na, ZHANG Yong-qiang, LI Da-ping, et al. (2014). Effect of drip irrigation amount on photosnthesis characteristics and dry matter accumulation of winter wheat [J].JournalofTriticeaeCrops, 34(6):795-801. (in Chinese) [20] Sun, H. Y., Liu, C. M., Zhang, X. Y., Shen, Y. J., & Zhang, Y. Q. (2006). Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain.AgriculturalWaterManagement, 85(1):211-218. [21]鄭成巖,于振文,馬興華,等.高產(chǎn)小麥耗水特性及干物質(zhì)的積累與分配[J].作物學報,2008,34(8):1 450-1 458. ZHENG Cheng-yan,YU Zhen-wen, MA Xing-hua,et al. (2008). Water consumption characteristic and dry matter accumulation and distribution in high-yielding wheat [J].ActaAgronomicaSinica, 34(8):1,450-1,458. (in Chinese) [22]婁成后,王學臣.作物生理產(chǎn)量[M].北京:中國農(nóng)業(yè)出版社,2001:52-63. LOU Cheng-hou, WANG Xue-chen.(2001).PhysiologyofCropYield[M]. Beijing: China Agriculture Press:52-63. (in Chinese) Fund project:Supported by Training Program for Youth Science and Technology Innovation Talents of Xinjiang Uygur Autonomous Region "Research into Accumulation and Translocation Characteristics of Dry Matter in Wheat Canopy under Drip Irrigation by Different Water and Nitrogen Regulations (2013721029); Open Subject of Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Region, Ministry of Agriculture "The Effects of the Amount of Nitrogen Fertilizer Application on the Regulation System of Quality Formation of Winter Wheat under Drip Irrigation", The Science and Technology Support Program of Xinjiang Uygur Autonomous Region " Research into the Key Technology for the Production of High Yield and Efficiency Wheat under Drip Irrigation" (201231103), the Special Fund for the Modern Agricultural Technology System Construction "The Comprehensive Experimental Station in Xinjiang of the National Wheat Industry Technology System" (CARS-3-65) and the special project of Xinjiang water conservancy "integrated demonstration of drip irrigation and fertilizer for wheat in Xinjiang" (2015T25) Effect of Drip Irrigation Amount on Dry Matter Accumulation,Translocation and Yield in Winter Wheat LEI Jun-jie1,2, ZHANG Yong-qiang1,2, ZHANG Hong-zhi2,3, Sailihan Han1,2, XUE Li-hua1,2,QIAO Xu1,2, YU Jian-xin4, FENG Bin4, LIANG Yu-chao5, WANG Cheng5, CHEN Xing-wu1,2 (1.ResearchInstituteofGrainCrops,XinjiangAcademyofAgriculturalSciences,Urumqi830091,China;2.KeyLaboratoryofCropEcophysiologyandFarmingSysteminDesertOasisRegion,MinistryofAgriculture,Urumqi830091,China; 3.ResearchInstituteofNuclearandBiotechnologies,XinjiangAcademyofAgriculturalSciences,Urumqi830091,China;4.CenterofAgriculturalTechniquesExtensionofQitaiArea,QitaiXinjiang831800,China); 5.CollegeofAgronomy,XinjiangAgriculturalUniversity,Urumqi830052,China 【Objective】 In order to reveal the effect of drip irrigation amount on dry matter accumulation, translocation and yield of winter wheat in Xinjiang.【Method】The pot experiment with five different treatments of 3,150 m3/hm2(W1),3,900 m3/hm2(W2), 4,650 m3/hm2(W3), 5,400 m3/hm2(W4) and 0 (CK) was carried out to study the effects of drip irrigation amount on winter-wheat leaf area index (LAI), dry matter accumulation, transportation and yield.【Result】The results showed that with the increasing of drip irrigation amount, the amount of population dry matter accumulation and LAI all presented a trend of W3>W4>W2>W1>CK in the whole growing process; The fastest accumulation rate of total dry matter of winter wheat was from 4 to 55 days after the jointing,and the rapid growth period of total dry matter accumulation was from 33 to 35 days,the maximum accumulation rate was from 0.043-0.075 g/(plant·d). The assimilative translocation amount was "first rise and then drop" trend before flowering stage, after flowering assimilation transport volume showed an increasing trend, but before flowering, after flowering, total assimilation transport amount was at maximum of 1.574 g / strains under W3. The highest yield of 8,602.41 kg/hm2was under W3, which was 12.41%,2.77%,1.07% and 33.00% higher than W1,W2,W4and CK,respectively.【Conclusion】Therefore, 4,650 m3/hm2could be the sui drip irrigation quantities;winter wheat;dry matter accumulation;dry matter translocation;yield 10.6048/j.issn.1001-4330.2016.04.002 2015-11-17 自治區(qū)青年科技創(chuàng)新人才培養(yǎng)工程項目“不同水氮調(diào)控下滴灌小麥冠層干物質(zhì)積累與運轉(zhuǎn)特征研究”(2013721029);農(nóng)業(yè)部荒漠綠洲作物生理生態(tài)與耕作重點實驗室開放課題“施氮量對滴灌冬小麥品質(zhì)形成的調(diào)控機制” ;自治區(qū)科技支撐項目“新疆小麥滴灌高產(chǎn)高效關鍵技術研究”(201231103);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系建設專項資金“國家小麥產(chǎn)業(yè)技術體系新疆綜合試驗站”(CARS-3-65);新疆水利專項“小麥滴灌水肥一體化集成示范(2015T25)”。 雷鈞杰(1972-),男,甘肅古浪人,研究員,研究方向為作物高產(chǎn)栽培,(E-mail)leijunjie@sohu.com 陳興武(1960-),男,陜西山陽人,研究員,研究方向為作物高產(chǎn)栽培,(E-mail)cxw0723@sina.com S512 A 1001-4330(2016)04-0596-08
Table 4Effects of components and harvest winter wheat different drip irrigation amount3 討 論
4 結 論
Table drip irrigation capillary arrangement mode of spring wheat in north Xinjaing [J].ChineseAgriculturalScienceBulletin, 30(11): 150-155. (in Chinese)
Table drip irrigation amount for whole growing process of winter in the local natural conditions.