• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Faster Approximation for Rectilinear Bottleneck Steiner Tree Problem

    2016-11-01 01:20:58,
    關鍵詞:近似算法斯坦納無線通訊

    ,

    ( College of Computer Science, South-Central University for Nationalities, Wuhan 430074, China )

    ?

    Faster Approximation for Rectilinear Bottleneck Steiner Tree Problem

    LiZimao,LiXiaodan

    ( College of Computer Science, South-Central University for Nationalities, Wuhan 430074, China )

    Bottleneck Steiner tree problem asks to find a Steiner tree fornterminals with at mostkSteiner points such that the length of the longest edge in the tree is minimized. The problem has applications in VLSI routing, wireless communication networks and phylogenetic tree reconstruction. Du and Wang showed that the rectilinear bottleneck Steiner problem is NP-hard and cannot be approximated within performance ratio 2 in polynomial time, and provided a 2-approximation algorithm running in actual time O(nlog2n+kn+k2). In this paper we improve the algorithm′s time complexity to O(nlog2n+klog2n) and armotized O(nlog2n+klog2n), by introducing the binary heap and Fibonacci heap respectively. The improvement can be directly applied to their Euclidean bottleneck Steiner tree problem′s 2-approximation algorithm.

    bottleneck Steiner tree; approximation algorithm; performance ratio; wireless communication networks

    1 Introduction

    In the 1990s, along with the conquest of a series of famous conjectures, the traditional Steiner tree problem[1]attracted the scientists′ considerable attention and interests from both theoretical point of view and its applicability and once occupied a central place in the emerging theory of approximation algorithms.

    Given a weighted graphG=(V,E;W) and a subsetS?Vof required vertices, the traditional Steiner tree problem asks a least weight tree spanningS. The tree may use additional points(called Steiner points) inV-S. We call such a tree a Steiner tree. The problem is MAX-SNP hard even when the edge weights are only 1 or 2[2]. For the Steiner tree problem in Euclidean plane, it is still NP-hard and there is a polynomial-time approximation scheme (PTAS) for Euclidean Steiner trees[3].

    New applications of Steiner tree problem in VLSI routing[4], wireless communications[5]and phylogenetic tree reconstruction in biology[6]have been found and studied deeply. These applications triggered the study of variations of the traditional Steiner tree problem. Algorithms for the two variations, the bottleneck Steiner tree problem[7-12]and the Steiner tree problem with minimum number of Steiner points and bounded edge-length[9, 13-15], have been studied widely and deeply.

    In this paper, we consider the bottleneck Steiner tree problem, which is defined as follows: given a setP={p1,p2,…,pn} ofnterminals and a positive integerk, we want to find a Steiner tree with at mostkSteiner points such that the length of the longest edges in the tree is minimized.

    In this paper we consider the rectilinear bottleneck Steiner tree problem. D.-Z Du and L. Wang proved that the problem could not be approximated within ratio 2 in polynomial time and provided a 2-approximation algorithm which runs in O(nlog2n+kn+k2) time but not they mentioned O(nlog2n+klog2n)[7]. The performance ratio is best possible and any improvement of the ratio will lead to P=NP. By introducing two advanced data structures, the binary heap and the Fibonacci heap, we can implement their algorithm′s time complexity to O(nlog2n+klog2n) and amortized O(nlog2n+klog2n), respectively.

    2  2-Approximation algorithm

    D.-Z Du and L. Wang proved the existence of performance ratio 2 by constructing a steinerized spanning tree under the triangle inequality property in rectilinear plane. Their algorithm first construct a minimum spanning tree for the set ofnterminals inP, then they repeatedly add degree-2 Steiner point to long edges in the minimum spanning tree. We call such a tree a steinerized spanning tree. Their approximation algorithm was derived from the following two lemmas.

    Lemma 1[7]: Given a set ofnterminalsPin the rectilinear plane, letTbe an optimal tree for the rectilinear bottleneck Steiner tree problem. Then there exists a steinerized spanning treeT′ forPwith the same number of Steiner points asTsuch that the length of the longest edges inT′ is at most twice that ofT.

    It follows immediately from Lemma 1 and 2 that when we use the same number of Steiner points to steinerize a spanning tree and a minimum spanning tree, the result from the latter has a longest edge of length not exceeding that from the former. That is, an optimal steinerized spanning tree can be found among steinerized minimum spanning trees. Since only degree-2 Steiner points are possibly adjacent, we only need to addkSteiner points to a minimum spanning tree in order to obtain an optimal steinerized spanning tree.

    The idea is explained as follows: for each edgeei= (u,v) in the minimum spanning tree, if we addlidegree-2 Steiner points to it, then the length of the longest edge in the resulting path fromutovhas the minimum valuec(ei)/(li+1), wherec(ei) is the original length of edgeei. This minimum value is achieved when theliSteiner points divideeievenly. Denotel(ei) =c(ei)/(li+1).

    At the beginning of the algorithm,l(ei)=c(ei). Each time a degree-2 Steiner point is added to the edgeeiwith the largestl(·) value. Aftereireceives one more degree-2 Steiner point,liis updated byli=li+1 andl(ei) is updated byc(ei)/(li+1) and the position of all the degree-2 Steiner points in the edgeeiis re-organized by dividingeievenly, Note thateiis defined in the rectilinear plane. The process is repeated untilkdegree-2 Steiner points are added.

    Fig.1 shows D.-Z Du and L. Wang′s approximation algorithm with performance ratio 2[7].

    Fig.1Du and Wang′s 2-approximation Algorithm for Rectilinear Bottleneck Steiner Tree Problem

    圖1Du和Wang的2-近似性能比網(wǎng)格空間瓶頸斯坦納樹算法

    The algorithm′s time complexity is analyzed as below:

    The first step can be implemented in O(nlog2n) time[18,19].

    Step 2 uses linear time. Sorting in Step 3 takes O(nlog2n) time.

    In each loop of Step 4-7, Step 4 and 5 use constant time to find the longest edge and updatel(·), Step 6 uses time linear to the number of Steiner points on that edge, and the step 7 of resettingei′s position needsO(n) time in the worst case.

    As Step 4-7 only loopsktimes, the algorithm′s time complexity is O(nlog2n+kn+k2).

    3 The faster algorithms

    The most time consuming steps in the loop of the Du and Wang′s algorithm is Step 6 and 7, either linear to number of Steiner points or to the number of terminals in the worst case. First we find that moving step 6 in Fig.1 out of the loop as the final step can decrease the time of organization of Steiner points fromO(k2) toO(k) Then the step to find an edge with the largestl(·) and step to updatel(·) are frequently executed, together with Step 5 and 7 combined as a single step, which inspires us to use a priority queue to maintain all the edges associated with priorityl(·). The priority queue should support two operations efficiently: finding an edge with the largest priority and update an edge′s priority.

    According to our case, a binary max-heap[20]is suitable to implement the priority queue. A binary max-heap is a heap data structure created using a binary tree with two additional constraints: (1) shape property, the tree is a complete binary tree; that is, all levels of the tree, except possibly the last one are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right; (2) heap property, the key at each node is greater than or equal to that of its children.

    A max-heap supports the operations of a priority queue efficiently. We can construct a heap in linear time, and a max-heap returns a node with the largest key inO(1) time, and updates a node key in O(log2n) time. In fact, the introduce of max-heap also decreases the Step 7′s implementation time fromO(n) to O(log2n).

    Now we can formulate our improved algorithms as below (See Fig.2).

    It is easy to check that the time complexity of the above algorithm is O(nlog2n+klog2n). Obviously Step 2 only uses time linear ton. Constructing a max-heap in bottom-up fashion need onlyO(n) time. Step 4 runs in constant time because root of the heap indicating the edge with the largestl(·), while Step 5 uses O(log2n) to update an edge′s key, consider that the two steps loops forktimes, so Step 4 and Step 5 run in O(klog2n) in total. Step 7 can be implemented inO(n+k) time locating the position of added Steiner points.

    Fig.2Faster algorithm for Rectilinear Bottleneck Steiner Tree Problem

    圖2網(wǎng)格空間瓶頸斯坦納樹快速算法

    Remember that the first step runs in O(nlog2n), the improved algorithm′s time complexity is O(nlog2n+klog2n).

    Theorem 1: There is an O(nlog2n+klog2n) time approximation algorithm with performance ratio 2 for the bottleneck Steiner tree problem in the rectilinear plane.

    If we use a Fibonacci heap[20]to implement the priority queue, the algorithm can be implemented in amortized time O(nlog2n+klog2n). This is because heap construction takes onlyO(n) amortized time, while determining the edge with largest key and decreasing an edge′s key uses onlyO(1) and O(log2n) amortized time.

    Simulation on the proposed algorithms shows that the advantages of our algorithm become more and more clear with the increasing number of Steiner points, and the Fibonacci heap-based implementation performs better than the binary heap-based when the number of terminals and Steiner points is big enough(See Fig.3~5).

    Fig.3 Comparison of Implementation Time with Steiner Points the 50圖3 斯坦納點數(shù)目為50的實驗結(jié)果比較

    Fig.4 Comparison of Implementation Time with Steiner Points the 500圖4 斯坦納點數(shù)目為500的實驗結(jié)果比較

    Fig.5 Comparison of Implementation Time with Steiner Points the 3000圖5 斯坦納點數(shù)目為3000的實驗結(jié)果比較

    4 Conclusion

    We mainly considered the rectilinear bottleneck Steiner tree problem. The problem asks to find a Steiner tree withnfixed terminal nodes in the rectilinear plane and up tokSteiner nodes such that the length of the longest edge in the tree is minimized. We first introduced D.-Z Du and L. Wang′s approximation algorithm with performance ratio 2. Then by introducing binary heap and Fibonacci heap, together with a slightly adjustment of their algorithm, we improve their algorithm′s time complexity to O(nlog2n+klog2n) and amortized O(nlog2n+klog2n), respectively. Simulations are conducted to indicate the effectiveness and efficiency of our improved implementation and the Fibonacci-heap-based algorithm′s complexity makes such an improvement primarily of theoretical value.

    An observation is that our improvements can be directly applied to Du and Wang′s polynomial approximation algorithm with performance ratio 2 for the Euclidean bottleneck Steiner tree problem.

    As an application, the algorithm can be used to improve the lifetime of wireless networks by minimizing the length of the longest edge in the interconnecting tree by deploying additional relay nodes at specific locations.

    [1]Garey M R, Graham R L, Johnson D S. The Complexity of Computing Steiner Minimal Trees[J]. SIAM Journal on Applied Mathematics, 1977, 32(4): 835-859.

    [2]Bern M, Plassmann P. The Steiner Problem with Edge Lengths 1 and 2[J]. Information Processing Letters, 1989, 32(4): 171-176.

    [3]Arora S. Polynomial Time Approximation Scheme for Euclidean TSP and Other Geometric Problems[C]//Anonymous. Proceedings of the 37th Annual Symposium on Foundations of Computer Science. Burlington: CA, 1996: 2-11.

    [4]Kahng A,Robins G. On Optimal Interconnections for VLSI[M]. Springer: Springer Science & Business Media, 1995.

    [5]Caldwell A, Kahng A, Mantik S, et al. On Wirelength Estimations for Row-based Placement[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1999, 18(9): 1265-1278.

    [6]Hwang F K, Richards D S, Winter P. The Steiner Tree Problem[M]. North-Holland:Elsevier, 1992.

    [7]Wang L, Du D-Z. Approximations for a Bottleneck Steiner Tree Problem[J]. Algorithmica, 2002, 32(4): 554-561.

    [8]Wang L, Li Z. An Approximation Algorithm for a Bottleneck k-Steiner Tree Problem in the Euclidean Plane[J]. Information Processing Letters, 2002, 81(3): 151-156.

    [9]Du D-Z, Wang L, Xu B. The Euclidean Bottleneck Steiner Tree and Steiner Tree with Minimum Number of Steiner Points[J]. Lecture Notes in Computer Science, 2001, 2108: 509-518.

    [10]Li Z, Zhu D, Ma S. Approximation Algorithm for Bottleneck Steiner Tree Problem in the Euclidean Plane[J]. Journal of Computer Science and Technology, 2004, 19(6): 791-794.

    [11]Bae S, Lee C, Choi S. On Exact Solutions to the Euclidean Bottleneck Steiner Tree Problem[J]. Information Processing Letters, 2010, 110(16): 672-678.

    [12]Li M, Ma B, Wang L. On the Closest String and Substring Problems[J]. Journal of the ACM (JACM), 2002, 49(2): 157-171.

    [13]Sarrafzadeh M, Wong C K. Bottleneck Steiner Trees in the Plane[J]. IEEE Transactions on Computers, 1992, 41(3): 370-374.

    [14]Lin G, Xue G. Steiner Tree Problem with Minimal Number of Steiner Points and Bounded Edge-length[J]. Information Processing Letters, 1999, 69(2): 53-57.

    [15]Cardei I, Cardei M, Wang L, et al. Optimal relay location for resource-limited energy-efficient wireless communication[J]. Journal of Global Optimization, 2006, 36(3): 391-399.

    [16]Li Z, Xiao W. Nearly Optimal Solution for Restricted Euclidean Bottleneck Steiner Tree Problem[J]. Journal of Networks, 2014, 9(4): 1000-1004.

    [17]Li Z, Xiao W. Determining Sensor Locations in wireless sensor Networks[J]. International Journal of Distributed Sensor Networks, 2015, 2015:1-6.

    [18]Zhou H, Shenoy N, Nicholls W. Efficient Minimum Spanning Tree Construction without Delaunay Triangulation[J]. Information Processing Letters, 2002, 81(5): 271-276.

    [19]Guibas L, Stolfi J. On Computing all North-east Nearest Neighbors in the L1 Metric[J]. Information Processing Letters, 1983, 17(4): 219-223.

    [20]Coemen T H, Leiserson C, Rivest R, et al. Introduction to Algorithms[M].3rd Edition. Boston: MIT Press and McGraw-Hill, 2009.

    2016-03-22

    李子茂(1974-),男, 副教授, 博士, 研究方向: 算法設計與分析、計算復雜性, E-mail:3030207@mail.scuec.edu.cn

    國家自然科學基金資助項目(61103248;61379059)

    TP312

    A

    1672-4321(2016)03-0097-05

    網(wǎng)格空間瓶頸斯坦納樹問題快速近似

    李子茂,李曉丹

    ( 中南民族大學 計算機科學學院,武漢430074)

    指出了瓶頸斯坦納樹問題要求尋找一棵用至多k個斯坦納點將n個點連接起來使得此斯坦納樹之最長邊最短的斯坦納樹,該問題在VLSI、無線通訊網(wǎng)絡和生命演化樹重建等領域都有應用.Du和Wang證明網(wǎng)格空間瓶頸斯坦納樹問題是NP-Hard,不存在近似性能比低于2的多項式時間解決方案,并且提出一個近似性能比為2的多項式時間近似算法,算法的實際時間復雜度為O(nlog2n+kn+k2).通過引入二叉堆和斐波那契堆使算法的時間復雜度分別改進到了O(nlog2n+klog2n)和攤還時間O(nlog2n+klog2n).該改進可直接應用于歐幾里得平面的瓶頸斯坦納樹2-近似算法.

    瓶頸斯坦納樹;近似算法;性能比;無線通訊網(wǎng)絡

    猜你喜歡
    近似算法斯坦納無線通訊
    歐拉線的逆斯坦納點性質(zhì)初探
    你知道血型是如何被發(fā)現(xiàn)的嗎
    奇聞怪事(2020年6期)2020-07-18 16:24:48
    基于無線通訊的遠程無線切割分離裝置控制系統(tǒng)
    電子制作(2019年20期)2019-12-04 03:51:14
    斯坦納定理的證明及應用
    基于NRF無線通訊技術的自組網(wǎng)互助教學系統(tǒng)研究與開發(fā)
    電子制作(2017年7期)2017-06-05 09:36:13
    應用自適應交叉近似算法快速計算導體RCS
    求投影深度最深點的近似算法
    考試周刊(2016年88期)2016-11-24 13:32:14
    無壓流六圓弧蛋形斷面臨界水深近似算法
    成焊機組與飛焊車之間串行無線通訊研究與應用
    對超寬帶無線通訊技術的分析探討
    河南科技(2014年12期)2014-02-27 14:18:43
    大又大粗又爽又黄少妇毛片口| 女的被弄到高潮叫床怎么办| 亚洲精品久久午夜乱码| 少妇丰满av| 日本色播在线视频| 91久久精品电影网| 国产一区二区三区综合在线观看 | 婷婷色麻豆天堂久久| h日本视频在线播放| 在线精品无人区一区二区三| a级一级毛片免费在线观看| 久久久久久久国产电影| 欧美丝袜亚洲另类| 日韩 亚洲 欧美在线| 一本一本综合久久| 欧美 亚洲 国产 日韩一| 大片免费播放器 马上看| 国产综合精华液| 欧美另类一区| 色哟哟·www| 国产成人精品婷婷| 一级毛片 在线播放| 亚洲av国产av综合av卡| 九草在线视频观看| 久久毛片免费看一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲欧美中文字幕日韩二区| 亚洲欧美日韩卡通动漫| 欧美另类一区| 有码 亚洲区| 精品午夜福利在线看| 亚洲美女视频黄频| 精品久久久久久久久亚洲| 如日韩欧美国产精品一区二区三区 | 最近中文字幕2019免费版| 国产毛片在线视频| 午夜免费男女啪啪视频观看| 精品亚洲成a人片在线观看| 欧美成人午夜免费资源| 丰满饥渴人妻一区二区三| 久久久久网色| 亚洲,一卡二卡三卡| 黄色怎么调成土黄色| 一级二级三级毛片免费看| 女人精品久久久久毛片| 久久久久久久久大av| 人人妻人人澡人人看| 国产精品偷伦视频观看了| 国产男人的电影天堂91| 亚洲一区二区三区欧美精品| 亚洲av日韩在线播放| 亚洲精品aⅴ在线观看| 欧美日韩综合久久久久久| 久久久久国产网址| 高清视频免费观看一区二区| 久久狼人影院| 久久国产精品男人的天堂亚洲 | 免费大片黄手机在线观看| 久久国产精品男人的天堂亚洲 | 26uuu在线亚洲综合色| 少妇人妻一区二区三区视频| 国产真实伦视频高清在线观看| 国产精品成人在线| 亚洲精品aⅴ在线观看| 全区人妻精品视频| 五月开心婷婷网| 国产毛片在线视频| 国产探花极品一区二区| 夫妻性生交免费视频一级片| 99国产精品免费福利视频| 国产在线男女| 午夜视频国产福利| 99久久精品一区二区三区| 国产色婷婷99| av在线app专区| 黑人巨大精品欧美一区二区蜜桃 | 成人毛片60女人毛片免费| 最近中文字幕2019免费版| 久久人妻熟女aⅴ| 制服丝袜香蕉在线| 黄色一级大片看看| 精品人妻熟女毛片av久久网站| 国产又色又爽无遮挡免| 黄色欧美视频在线观看| 国产爽快片一区二区三区| 免费黄网站久久成人精品| 久久精品国产a三级三级三级| 极品教师在线视频| 97精品久久久久久久久久精品| 免费黄色在线免费观看| 老司机亚洲免费影院| 国产精品久久久久成人av| 国产精品久久久久久精品电影小说| 老司机亚洲免费影院| 日本欧美国产在线视频| 午夜老司机福利剧场| 丰满少妇做爰视频| 精品少妇内射三级| 国产免费视频播放在线视频| 综合色丁香网| 高清不卡的av网站| 久久99热这里只频精品6学生| 青春草亚洲视频在线观看| 国产精品一区二区在线不卡| 青青草视频在线视频观看| av天堂久久9| 黑人猛操日本美女一级片| 亚洲精品国产成人久久av| 国国产精品蜜臀av免费| 黑人猛操日本美女一级片| 国产亚洲欧美精品永久| 亚州av有码| 亚洲国产精品专区欧美| 桃花免费在线播放| av又黄又爽大尺度在线免费看| 日本猛色少妇xxxxx猛交久久| 男女国产视频网站| 激情五月婷婷亚洲| 国产黄片视频在线免费观看| 能在线免费看毛片的网站| 亚洲av免费高清在线观看| 麻豆乱淫一区二区| 国产无遮挡羞羞视频在线观看| 亚洲图色成人| 中文在线观看免费www的网站| 中文字幕人妻熟人妻熟丝袜美| 国产精品麻豆人妻色哟哟久久| av黄色大香蕉| 午夜影院在线不卡| 国产精品国产av在线观看| 午夜福利,免费看| 免费看光身美女| 女性生殖器流出的白浆| 国产高清不卡午夜福利| av.在线天堂| 欧美精品人与动牲交sv欧美| 日韩欧美 国产精品| av在线观看视频网站免费| 婷婷色综合大香蕉| 欧美bdsm另类| 亚洲综合色惰| 中国三级夫妇交换| 欧美精品国产亚洲| 一级二级三级毛片免费看| 极品人妻少妇av视频| 国内揄拍国产精品人妻在线| 26uuu在线亚洲综合色| 日韩不卡一区二区三区视频在线| 亚洲欧美成人综合另类久久久| 国产成人免费观看mmmm| 国产精品人妻久久久影院| 国产国拍精品亚洲av在线观看| 夫妻午夜视频| 亚洲色图综合在线观看| 91精品国产国语对白视频| 亚洲精品国产av成人精品| 国产视频内射| 丝瓜视频免费看黄片| av在线老鸭窝| 成年女人在线观看亚洲视频| 国产精品国产av在线观看| 国产一区二区三区综合在线观看 | 91久久精品国产一区二区三区| 久久影院123| 18禁在线无遮挡免费观看视频| 中文乱码字字幕精品一区二区三区| 18禁动态无遮挡网站| 精品亚洲成a人片在线观看| 99热这里只有是精品50| 国产在线男女| 免费看光身美女| 在线天堂最新版资源| 免费人妻精品一区二区三区视频| 成人国产麻豆网| 亚州av有码| 狂野欧美激情性xxxx在线观看| 毛片一级片免费看久久久久| 美女福利国产在线| 色婷婷久久久亚洲欧美| 国产精品久久久久久精品古装| 老女人水多毛片| 国产在线男女| 国产精品.久久久| 国产高清不卡午夜福利| 亚洲精品日韩在线中文字幕| 极品人妻少妇av视频| 亚洲内射少妇av| 校园人妻丝袜中文字幕| 国产精品嫩草影院av在线观看| 色视频www国产| 极品少妇高潮喷水抽搐| 欧美+日韩+精品| 免费观看av网站的网址| 蜜臀久久99精品久久宅男| www.色视频.com| 噜噜噜噜噜久久久久久91| 精品少妇内射三级| 秋霞在线观看毛片| 亚洲精品乱码久久久v下载方式| 国产又色又爽无遮挡免| 久久久国产精品麻豆| 男女边摸边吃奶| 亚洲综合色惰| 一级二级三级毛片免费看| 插阴视频在线观看视频| 欧美 日韩 精品 国产| 男女无遮挡免费网站观看| 久久女婷五月综合色啪小说| 亚洲精品自拍成人| 久久精品国产自在天天线| 亚州av有码| 久久99热这里只频精品6学生| 欧美 亚洲 国产 日韩一| 国产精品蜜桃在线观看| 久久国产精品男人的天堂亚洲 | 五月伊人婷婷丁香| 一区二区av电影网| 免费av中文字幕在线| 久久午夜福利片| 另类精品久久| 男人添女人高潮全过程视频| 久久女婷五月综合色啪小说| 国产午夜精品久久久久久一区二区三区| 色吧在线观看| 天堂8中文在线网| 日韩欧美精品免费久久| 欧美日韩av久久| 自线自在国产av| 亚洲久久久国产精品| 99视频精品全部免费 在线| av福利片在线| 免费大片18禁| 国产淫片久久久久久久久| 久久久久精品性色| 搡老乐熟女国产| 国产免费一级a男人的天堂| 国产av国产精品国产| av女优亚洲男人天堂| 久久人妻熟女aⅴ| 久久久国产精品麻豆| 天天躁夜夜躁狠狠久久av| 免费不卡的大黄色大毛片视频在线观看| 国产黄片视频在线免费观看| 亚洲精品第二区| 极品少妇高潮喷水抽搐| 国产成人精品福利久久| 国产亚洲5aaaaa淫片| 又粗又硬又长又爽又黄的视频| 美女福利国产在线| 啦啦啦视频在线资源免费观看| 国模一区二区三区四区视频| 亚洲欧美日韩另类电影网站| 国产色爽女视频免费观看| 欧美最新免费一区二区三区| 91aial.com中文字幕在线观看| 国产精品欧美亚洲77777| 一本久久精品| 亚洲图色成人| 久久鲁丝午夜福利片| 国产精品国产三级专区第一集| 丰满人妻一区二区三区视频av| 91久久精品国产一区二区成人| 下体分泌物呈黄色| 丝瓜视频免费看黄片| 日日摸夜夜添夜夜添av毛片| 成人毛片60女人毛片免费| 国产成人免费观看mmmm| 大片免费播放器 马上看| 国产亚洲一区二区精品| 亚洲精品一二三| 亚洲精品aⅴ在线观看| 桃花免费在线播放| 久久午夜福利片| 久久精品国产亚洲av天美| 亚洲国产日韩一区二区| 精品久久久久久久久亚洲| 中国国产av一级| 建设人人有责人人尽责人人享有的| a级一级毛片免费在线观看| 亚洲久久久国产精品| 亚洲电影在线观看av| 色婷婷av一区二区三区视频| 91精品伊人久久大香线蕉| 91精品国产九色| 99国产精品免费福利视频| freevideosex欧美| 国产视频首页在线观看| 少妇人妻精品综合一区二区| 欧美一级a爱片免费观看看| 欧美日韩一区二区视频在线观看视频在线| 精品国产乱码久久久久久小说| 国国产精品蜜臀av免费| 春色校园在线视频观看| 精品亚洲乱码少妇综合久久| 久久久国产精品麻豆| av免费观看日本| 免费观看性生交大片5| 国产精品国产三级国产专区5o| 青春草视频在线免费观看| 全区人妻精品视频| 精华霜和精华液先用哪个| 欧美日韩视频高清一区二区三区二| 亚洲欧美一区二区三区国产| 精品久久久噜噜| 人妻夜夜爽99麻豆av| 一级片'在线观看视频| 男男h啪啪无遮挡| 建设人人有责人人尽责人人享有的| 国产伦精品一区二区三区四那| 亚洲av日韩在线播放| 777米奇影视久久| 亚洲色图综合在线观看| 国产精品一二三区在线看| 免费看不卡的av| 亚洲精品自拍成人| 免费久久久久久久精品成人欧美视频 | 日日啪夜夜撸| 黑人高潮一二区| 热99国产精品久久久久久7| 黑人巨大精品欧美一区二区蜜桃 | 青春草亚洲视频在线观看| a 毛片基地| 国产伦精品一区二区三区四那| 两个人的视频大全免费| 国产一区亚洲一区在线观看| 热99国产精品久久久久久7| 日本欧美视频一区| 人妻夜夜爽99麻豆av| √禁漫天堂资源中文www| 曰老女人黄片| 99热这里只有是精品50| 你懂的网址亚洲精品在线观看| 女人精品久久久久毛片| 精品久久久精品久久久| 三上悠亚av全集在线观看 | 九色成人免费人妻av| 国语对白做爰xxxⅹ性视频网站| 新久久久久国产一级毛片| 插逼视频在线观看| 日韩中文字幕视频在线看片| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线播| 国产欧美亚洲国产| 久久国产乱子免费精品| 色视频在线一区二区三区| 在线免费观看不下载黄p国产| 男女无遮挡免费网站观看| 99精国产麻豆久久婷婷| 成人国产av品久久久| 国产av国产精品国产| 欧美3d第一页| 欧美日本中文国产一区发布| av播播在线观看一区| 亚洲欧洲日产国产| 我要看黄色一级片免费的| 九九爱精品视频在线观看| 国产成人freesex在线| av网站免费在线观看视频| 免费久久久久久久精品成人欧美视频 | 一级二级三级毛片免费看| 国产精品一二三区在线看| 在线精品无人区一区二区三| 国产极品粉嫩免费观看在线 | av视频免费观看在线观看| 大话2 男鬼变身卡| 日韩中文字幕视频在线看片| 日韩免费高清中文字幕av| 欧美精品高潮呻吟av久久| 女性生殖器流出的白浆| 亚洲精品日韩av片在线观看| 偷拍熟女少妇极品色| 麻豆乱淫一区二区| 中国美白少妇内射xxxbb| 一区在线观看完整版| 久久国产亚洲av麻豆专区| 老熟女久久久| 久久久久久久久久久免费av| 亚洲av男天堂| 狂野欧美白嫩少妇大欣赏| 国产日韩欧美在线精品| 天天躁夜夜躁狠狠久久av| av又黄又爽大尺度在线免费看| 国产亚洲精品久久久com| 免费少妇av软件| 国产精品国产三级专区第一集| 少妇裸体淫交视频免费看高清| 内地一区二区视频在线| 岛国毛片在线播放| 最新中文字幕久久久久| 免费观看无遮挡的男女| av黄色大香蕉| 久久女婷五月综合色啪小说| xxx大片免费视频| 性色avwww在线观看| 久久久a久久爽久久v久久| 九九在线视频观看精品| 一级a做视频免费观看| 免费在线观看成人毛片| av专区在线播放| 纵有疾风起免费观看全集完整版| 久久人人爽人人爽人人片va| 亚洲国产精品成人久久小说| 另类亚洲欧美激情| 免费人妻精品一区二区三区视频| 成人18禁高潮啪啪吃奶动态图 | 伦理电影免费视频| 国产美女午夜福利| 欧美激情国产日韩精品一区| 亚洲av男天堂| 久久久久精品性色| 日本黄色日本黄色录像| 国产一区亚洲一区在线观看| 黄色视频在线播放观看不卡| 97超碰精品成人国产| 日本色播在线视频| 欧美 亚洲 国产 日韩一| 久久这里有精品视频免费| 成人黄色视频免费在线看| 午夜老司机福利剧场| 日韩视频在线欧美| 中文欧美无线码| 国语对白做爰xxxⅹ性视频网站| 另类亚洲欧美激情| 亚洲欧美成人综合另类久久久| 熟女人妻精品中文字幕| 成人免费观看视频高清| 777米奇影视久久| 亚洲精品中文字幕在线视频 | 最新的欧美精品一区二区| 国产在视频线精品| 国产午夜精品一二区理论片| 国产欧美日韩综合在线一区二区 | 久久精品国产亚洲av天美| av网站免费在线观看视频| 观看美女的网站| 久久久久久久亚洲中文字幕| 精华霜和精华液先用哪个| 国产亚洲精品久久久com| 99re6热这里在线精品视频| 夫妻午夜视频| 亚洲国产精品国产精品| 国产片特级美女逼逼视频| 国产免费一区二区三区四区乱码| 日韩视频在线欧美| 99久久精品热视频| 麻豆精品久久久久久蜜桃| 99视频精品全部免费 在线| 欧美性感艳星| 久久久久久久亚洲中文字幕| 欧美日韩视频精品一区| 少妇 在线观看| 肉色欧美久久久久久久蜜桃| 久久久久久久精品精品| 日韩一区二区视频免费看| 久久久久久伊人网av| 日本黄色片子视频| 中文天堂在线官网| 久久午夜福利片| 在线精品无人区一区二区三| 亚洲国产欧美在线一区| 狠狠精品人妻久久久久久综合| 日本-黄色视频高清免费观看| 国产av国产精品国产| 少妇被粗大的猛进出69影院 | 亚洲欧美日韩另类电影网站| 三级经典国产精品| 国产高清国产精品国产三级| 亚洲国产毛片av蜜桃av| 免费观看a级毛片全部| 韩国av在线不卡| 天堂中文最新版在线下载| 啦啦啦视频在线资源免费观看| 97超碰精品成人国产| 亚州av有码| 三上悠亚av全集在线观看 | 国产美女午夜福利| 美女脱内裤让男人舔精品视频| 日本午夜av视频| 亚洲精品日本国产第一区| 久久久国产精品麻豆| 观看美女的网站| av视频免费观看在线观看| 国产一区亚洲一区在线观看| 免费黄网站久久成人精品| 免费人妻精品一区二区三区视频| 在现免费观看毛片| 精品国产露脸久久av麻豆| 久久精品久久精品一区二区三区| 亚洲精华国产精华液的使用体验| 国产成人精品婷婷| 丝袜喷水一区| av福利片在线| 天堂俺去俺来也www色官网| 亚洲精品aⅴ在线观看| 丰满少妇做爰视频| 大香蕉久久网| 视频中文字幕在线观看| 久久这里有精品视频免费| 国产精品国产三级国产av玫瑰| 国产欧美日韩一区二区三区在线 | 中文欧美无线码| 亚洲欧美日韩另类电影网站| 国产免费一级a男人的天堂| 精品久久久精品久久久| 性高湖久久久久久久久免费观看| 色视频在线一区二区三区| 久久久欧美国产精品| 久久久国产一区二区| 涩涩av久久男人的天堂| 国产欧美日韩综合在线一区二区 | 欧美+日韩+精品| 男女边吃奶边做爰视频| 国产成人精品一,二区| 亚洲怡红院男人天堂| 香蕉精品网在线| 少妇人妻一区二区三区视频| 乱系列少妇在线播放| 欧美xxⅹ黑人| 国产免费视频播放在线视频| 亚洲国产日韩一区二区| 人人妻人人添人人爽欧美一区卜| a级一级毛片免费在线观看| 国产成人精品婷婷| 观看免费一级毛片| 美女国产视频在线观看| 高清毛片免费看| 免费播放大片免费观看视频在线观看| 男人狂女人下面高潮的视频| av在线观看视频网站免费| 一级黄片播放器| 蜜臀久久99精品久久宅男| 亚洲精品第二区| 伊人亚洲综合成人网| 曰老女人黄片| 边亲边吃奶的免费视频| 日韩亚洲欧美综合| 国产av码专区亚洲av| 丰满少妇做爰视频| 美女脱内裤让男人舔精品视频| 男男h啪啪无遮挡| h日本视频在线播放| 91精品伊人久久大香线蕉| 伦理电影大哥的女人| 黄色毛片三级朝国网站 | 免费大片18禁| 久久av网站| 观看美女的网站| 国产探花极品一区二区| 校园人妻丝袜中文字幕| 欧美日本中文国产一区发布| 久久精品久久精品一区二区三区| 免费大片黄手机在线观看| 91久久精品国产一区二区成人| 国产精品一区二区在线观看99| av国产久精品久网站免费入址| 国产黄片美女视频| 国产av国产精品国产| 女人久久www免费人成看片| 国产成人免费无遮挡视频| 亚洲中文av在线| 成人无遮挡网站| 夜夜看夜夜爽夜夜摸| 亚洲va在线va天堂va国产| 久久人妻熟女aⅴ| 色婷婷久久久亚洲欧美| 纵有疾风起免费观看全集完整版| 国产成人aa在线观看| 男女边摸边吃奶| 国产精品伦人一区二区| 欧美日韩精品成人综合77777| 蜜桃久久精品国产亚洲av| 欧美日韩在线观看h| 九九爱精品视频在线观看| 色吧在线观看| 亚洲三级黄色毛片| 91久久精品国产一区二区三区| 久久av网站| 国产高清有码在线观看视频| h日本视频在线播放| 亚洲精品国产av成人精品| 成人毛片60女人毛片免费| 少妇 在线观看| 国产午夜精品久久久久久一区二区三区| 嘟嘟电影网在线观看| 草草在线视频免费看| 久久久a久久爽久久v久久| 久久人人爽人人爽人人片va| 赤兔流量卡办理| 观看美女的网站| 黄色日韩在线| 一本大道久久a久久精品| 男女免费视频国产| 亚洲人与动物交配视频| 国产精品福利在线免费观看| 国产精品蜜桃在线观看| 精品国产一区二区久久| 国产日韩欧美亚洲二区| 欧美精品国产亚洲| 在线观看免费视频网站a站| 噜噜噜噜噜久久久久久91| 国产成人一区二区在线| 中文字幕av电影在线播放| 久久久久国产网址| 王馨瑶露胸无遮挡在线观看| 全区人妻精品视频| 国产片特级美女逼逼视频| 亚洲精品视频女| 热re99久久精品国产66热6| 69精品国产乱码久久久| 熟妇人妻不卡中文字幕| 各种免费的搞黄视频| 日韩精品免费视频一区二区三区 | 97精品久久久久久久久久精品| 国产精品福利在线免费观看| 中文字幕制服av|