單天雷 洪彥濤 杜麗璞 徐惠君 魏學寧 張增艷
中國農(nóng)業(yè)科學院作物科學研究所 / 農(nóng)作物基因資源與基因改良國家重大科學工程 / 農(nóng)業(yè)部麥類生物學與遺傳育種重點實驗室, 北京 100081
抗根腐病的TaMYB86過表達轉(zhuǎn)基因小麥的創(chuàng)制與分子功能鑒定
單天雷 洪彥濤 杜麗璞 徐惠君 魏學寧 張增艷*
中國農(nóng)業(yè)科學院作物科學研究所 / 農(nóng)作物基因資源與基因改良國家重大科學工程 / 農(nóng)業(yè)部麥類生物學與遺傳育種重點實驗室, 北京 100081
小麥根腐病是一種難以防治的小麥土傳病害。TaMYB86是一個小麥中受根腐病菌誘導表達的MYB編碼基因。本文構建了TaMYB86的過表達轉(zhuǎn)基因載體pUbi:MYC-TaMYB86, 利用基因槍介導法將其轉(zhuǎn)入推廣小麥品種揚麥16。對轉(zhuǎn)TaMYB86基因小麥T0-T3代植株進行分子特征分析和抗病鑒定。PCR檢測結果表明, 外源TaMYB86已轉(zhuǎn)入3個轉(zhuǎn)基因小麥株系中; qRT-PCR結果顯示, TaMYB86在3個轉(zhuǎn)基因小麥株系中的表達量顯著高于在未轉(zhuǎn)基因揚麥16中的表達量, 約為未轉(zhuǎn)基因揚麥16中的5~6倍, 表明TaMYB86可在轉(zhuǎn)基因小麥中過量轉(zhuǎn)錄; Western雜交結果表明,引入的TaMYB86可在上述3個轉(zhuǎn)基因小麥株系中翻譯表達。對轉(zhuǎn)TaMYB86基因小麥與未轉(zhuǎn)基因揚麥16進行根腐病菌接種與抗病鑒定表明, 3個轉(zhuǎn) TaMYB86基因小麥株系在 T1~T3代的根腐病病情指數(shù)分別為 31.75、50.00、45.00;37.75、37.50、38.50; 41.75、31.25、37.50; 在3次鑒定中未轉(zhuǎn)基因揚麥16的根腐病病情指數(shù)分別為75.04、54.17、65.38, 轉(zhuǎn)TaMYB86基因小麥T1~T3代的根腐病抗性均顯著高于未轉(zhuǎn)基因揚麥16 (P < 0.01)。與未轉(zhuǎn)基因揚麥16相比,轉(zhuǎn)TaMYB86基因小麥中3個下游防衛(wèi)基因(PR10、PR17c和Chit1)的轉(zhuǎn)錄水平也顯著上調(diào)。以上結果說明, TaMYB86過表達可顯著增強轉(zhuǎn)基因小麥的根腐病抗性, 在小麥防御根腐病過程中起正向調(diào)控作用。
小麥; MYB轉(zhuǎn)錄因子; 防御反應; 小麥根腐病; 轉(zhuǎn)基因
小麥根腐病是一種世界性的、難以防治的小麥土傳病害[1], 其病原菌為平臍蠕孢菌Bipolaris sorokiniana (有性態(tài)為禾旋孢腔菌Cochliobolus sativus)。據(jù)2015年全國農(nóng)技推廣中心報道, 我國華北、黃淮和東北麥區(qū)均發(fā)現(xiàn)小麥根腐病, 在黃淮麥區(qū)和華北南部麥區(qū)危害呈上升態(tài)勢。小麥根腐病是全生育期典型的多階段性病害, 從苗期到抽穗結實期都能發(fā)生, 小麥種子、幼芽、幼苗、成株根系、葉片、莖和穗都可受害, 一般可造成產(chǎn)量損失10%~30%,嚴重地塊減產(chǎn)超過50%[2-3]。目前, 生產(chǎn)上大面積推廣品種和育種材料對根腐病的抗性普遍較差, 常規(guī)抗病育種進展緩慢, 主要原因是抗性鑒定和單株選擇困難, 缺乏高抗根腐病材料, 加之抗性遺傳機制復雜[3]。因此, 發(fā)掘、克隆抗根腐病基因?qū)ωS富小麥抗病資源有重要的意義, 同時開展相關基因的功能研究, 開發(fā)可用于輔助育種的分子標記, 對抗根腐病小麥育種具有指導作用。
植物MYB轉(zhuǎn)錄因子是一個大家族。MYB轉(zhuǎn)錄因子含有高度保守的MYB結構域, 具有結合靶標基因啟動子的作用。一個MYB結構域含有50~52個氨基酸殘基, 能形成3個α螺旋, 并且最終能形成螺旋-轉(zhuǎn)角-螺旋(helix-turn-helix, HTH)的高級結構。每個MYB結構域重復的第2和第3個α螺旋能直接與目標DNA結合, 被稱為“識別螺旋”[4]。根據(jù)結構域重復單位的數(shù)目和位置可將MYB分為1R-MYB (MYB-related)、2R-MYB (R2R3-MYB)、3R-MYB和4R-MYB 共4個亞族, 以R2R3-MYB的數(shù)量最多[4]。MYB轉(zhuǎn)錄因子參與許多植物生長發(fā)育的過程[5-8]及非生物逆境防御反應[9-12]。一些MYB轉(zhuǎn)錄因子也參與植物抗病反應, 例如擬南芥R2R3-MYB轉(zhuǎn)錄因子BOTRYTIS SUSCEPTIBLE1 (BOS1)參與寄主對灰葡萄孢菌(Botrytis cinerea)和甘藍鏈格孢菌(Alternaria brassicicola)等病原菌的防御反應, 該基因突變體bos1對這些病原菌的敏感性增加[13]。過表達擬南芥R2R3-MYB轉(zhuǎn)錄因子基因AtMYB96能增強寄主的耐旱能力[14]和對假單胞桿菌(Pseudomonas syringae)的抗性[15]。大麥MYB轉(zhuǎn)錄因子基因HvMYB6參與大麥抗白粉病反應, 該基因沉默后使大麥對白粉病菌(Blumeria graminis)的敏感性增加, 而該基因過表達則增強轉(zhuǎn)基因大麥的抗病性[16]。本實驗室克隆了中間偃麥草(Thinopyrum intermedium)的R2R3-MYB基因TiMYB2R-1, 該基因超強表達后顯著提高了轉(zhuǎn)基因小麥對全蝕病菌(Gaeumannomyces graminis var.tritici)的抗性[17]。Al-Attala等[18]通過沉默TaMYB4基因(小麥MYB轉(zhuǎn)錄因子基因), 降低了小麥植株對條銹病的抗性, 證實TaMYB4是抗條銹病反應的正向調(diào)控因子。Zhang等[19]通過VIGS (virus-induced gene silencing)沉默川農(nóng)19中的TaLHY基因, 使該小麥品種對條銹病的抗性降低, 而且還無法完成抽穗, 表明TaLHY不僅控制小麥抽穗, 而且參與對條銹病的防御反應。
本實驗室通過基因芯片分析, 發(fā)現(xiàn)一個響應紋枯病菌和根腐病菌侵染的MYB基因TaMYB86 (Gen-Bank登錄號為KM066946)。為解析TaMYB86的抗病功能, 我們構建了TaMYB86過表達的轉(zhuǎn)基因載體pUbi:MYC-TaMYB86, 用基因槍介導法將其轉(zhuǎn)入小麥商業(yè)品種揚麥16中, 創(chuàng)制了TaMYB86過表達的轉(zhuǎn)基因小麥, 并對其T1至T3代進行分子檢測與抗病性鑒定, 獲得了抗根腐病的轉(zhuǎn)基因小麥新種質(zhì)。
1.1 材料
轉(zhuǎn)基因受體品種揚麥16由江蘇里下河農(nóng)業(yè)科學院研究所程順和課題組提供, 小麥根腐病菌ACC30209由中國農(nóng)業(yè)科學院作物科學研究所李洪杰研究員提供, 含有c-MYC標簽的轉(zhuǎn)基因載體質(zhì)粒pAHC25-MYC由本實驗室對轉(zhuǎn)基因載體質(zhì)粒pAHC25改造和保存[20-21]。
1.2 pUbi:MYC-TaMYB86轉(zhuǎn)基因表達載體的構建
根據(jù)TaMYB86 (GenBank登錄號為KM066946)的ORF序列, 設計1對特異引物(TaMYB86-P25-F: (5′-ATACTAGTATGGGACGTCCGTCGTCC-3′, 下畫線標示Spe I識別位點; TaMYB86-P25-R: 5′-TCAGAA GTATGGTTCCAATT-3′), 利用PrimeSTAR HS DNA Polymerase和PCR擴增法, 在ORF完整序列上游引入Spe I 酶切位點, 然后用Spe I酶切擴增產(chǎn)物, 回收目的片段; 再用Spe I、Eco I CRI (與Sac I識別酶切序列一致, 為同裂酶, 但Eco I CRI酶切后產(chǎn)生平末端)酶切單子葉植物表達載體pAHC25-MYC, 回收載體骨架, 并連接, 構建成TaMYB86過表達轉(zhuǎn)化載體pUbi:MYC-TaMYB86 (圖1)。通過測序分析確定構建的基因表達載體的正確性。在轉(zhuǎn)化載體中, TaMYB86基因上游與6個MYC標簽序列相連, 轉(zhuǎn)錄由玉米泛素(ubiquitin, Ubi)啟動子驅(qū)動, 被農(nóng)桿菌胭脂堿合酶終止子(Agrobacterium tumefaciens nopaline synthase,Tnos)終止, 該載體還含有1個Bar基因表達盒, 可為后續(xù)選擇利用 Bialaphos篩選轉(zhuǎn)化再生植株提供抗性篩選標記。
圖1 表達載體pUbi:MYC-TaMYB86的構建Fig.1 Construction of expression vector pUbi:MYC-TaMYB86
1.3 轉(zhuǎn)TaMYB86基因小麥植株的獲得
采用徐惠君等[22]報道的基因槍介導法, 將構建好的pUbi:MYC-TaMYB86載體DNA與適量金粉混合, 轉(zhuǎn)化小麥揚麥16幼胚愈傷組織, 經(jīng)過分化、Bialaphos篩選、再生、移栽, 獲得轉(zhuǎn)基因小麥T0代植株。收獲成活株中經(jīng)PCR檢測為陽性植株的種子, 單株播種, 獲得T1代植株, 單株播種T1代轉(zhuǎn)基因植株,依此類推。
1.4 轉(zhuǎn)基因小麥的PCR檢測
在小麥四葉期, 從每個成活植株取1片葉, 采用CTAB法[23]提取基因組DNA。將該基因組DNA作為模板, 利用TaMYB86基因ORF的2條特異序列(TaMYB86-ZJF1: 5′-TCCGAGAACCTGGGCTAC-3′;TaMYB86-ZJF2: 5′-TTTTGATTTCAACTTGGAATT GG-3′)分別作為上游引物, 以表達載體Tnos特異序列(Tnos-R: 5′-AAAACCCATCTCATAAATAACG-3′)作為下游引物, 對轉(zhuǎn)TaMYB86基因T0~T3代植株進行巢式PCR檢測。以轉(zhuǎn)基因質(zhì)粒pUbi:MYC-TaMYB86為陽性對照, 以未轉(zhuǎn)基因揚麥16的基因組DNA為陰性對照, 預期擴增產(chǎn)物片段為281 bp。第1輪擴增體系含2×EcoTaq PCR SuperMix (全式金公司) 12.5 μL、上游引物TaMYB86-ZJF1 (10 μmol L-1)、下游引物Tnos-R (10 μmol L-1)各1 μL、模板DNA 100 ng、補ddH2O至25 μL。擴增程序為94℃ 5 min; 30×(94 ℃ 45 s, 61℃ 30 s, 72℃ 30 s), 72℃ 5 min, 16℃保存。然后, 利用引物對TaMYB86-ZJF2/Tnos-R進行第2輪擴增, 反應體系成分和濃度與第1輪擴增基本相同, 僅將上游引物換成TaMYB86-ZJF2, 模板變?yōu)榈?輪PCR產(chǎn)物的50倍稀釋液1.0 μL。擴增程序為94℃ 5 min; 30×(94℃ 45 s, 48℃ 30 s, 72℃ 30 s), 72℃5 min, 16℃保存。擴增產(chǎn)物用1.5%瓊脂糖凝膠電泳進行檢測, 紫外照相, 記錄結果。
1.5 轉(zhuǎn)基因小麥株系中 TaMYB86及防衛(wèi)基因的轉(zhuǎn)錄水平
用TRIZOL試劑盒(Invitrogen)提取轉(zhuǎn)TaMYB86基因小麥植株接種基部莖部總RNA。用DNase I (大連寶生物)去除基因組DNA。利用FastQuant cDNA第一鏈合成試劑盒(天根生化)合成第1鏈cDNA。
以合成的cDNA為模板, 用SuperReal 熒光定量預混試劑增強版(天根生化)在ABI PRISMR 7500實時熒光定量PCR儀(ABI, 美國)上進行qRT-PCR分析。反應體系含2×SuperReal PreMix Plus 12.5 μL、上游引物(10 μmol L-1)、下游引物(10 μmol L-1)各0.75 μL、cDNA模板5.0 μL、50×ROX Reference Dye 0.50 μL, 補RNase-free ddH2O至25 μL。擴增條件為95℃預變性15 min; 95℃變性10 s, 56℃退火20 s, 72℃延伸32 s, 40個循環(huán)。以小麥肌動蛋白基因TaActin (TaAct-A: 5′-CACTGGAATGGTCAAGGCTG-3′; TaAct-B: 5′-CTCCATGTCATCCCAGTTG-3′)為內(nèi)參基因。TaMYB86定量擴增的上游引物為TaMYB86-QF (5′-TCCGAGAACCTGGGCTACG-3′), 下游引物為TaMYB86-QR (5′-CGAGGAGGCTCTGTTCTTGG-3′)。用2-ΔΔCt法[24]計算目標基因的相對表達量,ΔCT= CTTaMYB86- CTTaActin, ΔΔCT= ΔCT試驗樣品- ΔCT基準樣品。每個反應均有3次獨立的重復實驗。
轉(zhuǎn)錄因子TaMYB86的3個下游防衛(wèi)基因為PR10 (CA613496)、PR17c (TA65181)和Chit1 (CA665185),其上、下游引物對依次是PR10-Q-F (5′-CGTGGAG GTAAACGATGAG-3′) / PR10-Q-R (5′-GCTAAGTG TCCGGGGTAAT-3′)、PR17c-Q-F (5′-ACGACATCAC GGCGAGGT-3′) / PR17c-Q-R (5′-CACGGGGAAAG AGAGGATGA-3′)和Chit1-Q-F (5′-ATGCTCTGGGA CCGATACTT-3′) / Chit1-Q-R (5′-AGCCTCACTTTG TTCTCGTTTG-3′)。利用上述qRT-PCR方法, 分析TaMYB86過表達轉(zhuǎn)基因小麥株系中這3個防衛(wèi)基因的轉(zhuǎn)錄水平。
1.6 轉(zhuǎn)TaMYB86基因株系的Western雜交分析
以3個轉(zhuǎn)基因株系中抗根腐病的T3代植株接種基部莖稈為材料, 提取總蛋白, 在液氮中充分研磨,加入蛋白質(zhì)提取液混勻。提取液含62.5 mmol L-1Tris-HCl (pH 7.4)、10%甘油、0.1% SDS、2 mmol L-1Na2EDTA、1 mmol L-1PMSF (phenyl methane sulfonyl fluoride)和5% β-巰基乙醇。將上述混合液置于冰上10 min后, 4℃下13 400 ×g離心20 min, 取含總蛋白的上清液進行SDS-PAGE, 經(jīng)濕轉(zhuǎn)法轉(zhuǎn)至PVDF膜上, 與稀釋900倍的anti-c-MYC 抗體(一抗, 北京全式金生物技術有限公司)雜交, 用TBST將雜交膜洗干凈后, 與稀釋1000倍的ProteinFind Goat Anti-Mouse IgG(H+L)抗體(二抗, 北京全式金生物技術有限公司)第二次雜交, 化學發(fā)光后曝光顯影,檢測c-MYC-TaMYB86融合蛋白的表達。
1.7 小麥抗根腐病鑒定
在煮熟的麥粒上培養(yǎng)平臍蠕孢菌, 麥粒表面長滿菌絲后待用。在小麥分蘗盛期, 用消毒鑷子夾取長滿菌絲的麥粒, 放入麥苗根基部, 每株放4~5粒,保濕3~5 d[25]。
收獲時按單株鑒定根腐病嚴重程度, 按5級標準[25]劃分小麥根腐病的病級(infection type, IT), 其中,0級為全株無??; 1級為葉鞘有少量病斑, 葉鞘病斑面積小于總面積的1/4; 2級為病菌侵入莖稈, 莖桿病斑面積介于1/4~1/2之間; 3級為莖桿病斑面積介于1/2~3/4之間; 4級為莖桿病斑面積大于3/4, 莖稈已軟腐。式中, DI為病情指數(shù)(disease index), Xi為第i病級的株數(shù)。
2.1 轉(zhuǎn)TaMYB86基因小麥的獲得與PCR檢測
由圖1和測序結果可知, 載體 pUbi:MYCTaMYB86構建成功, TaMYB86的插入位置和方向均正確。
用基因槍介導法將構建好的pUbi:MYCTaMYB86載體DNA與適量金粉混合轟擊小麥揚麥16的幼胚愈傷組織1200塊, 經(jīng)過分化、Bialaphos篩選、再生、移栽, 獲得轉(zhuǎn)基因小麥28株T0代植株。利用特異引物的PCR檢測表明, 有5株陽性植株, 轉(zhuǎn)化率0.42%。以種子數(shù)量足夠多的3個抗根腐病的轉(zhuǎn)基因小麥株系(MO86-7、MO86-14和MO86-28) T0~T3代植株葉片基因組DNA作為模板, 利用轉(zhuǎn)基因特異的引物對轉(zhuǎn)基因小麥T0至T3代植株PCR檢測表明, 3個轉(zhuǎn)基因株系(MO86-7、MO86-14和MO86-28)中均能檢測到外源TaMYB86 (圖2), 說明導入的TaMYB86在這3個轉(zhuǎn)基因小麥株系中能穩(wěn)定遺傳。
圖2 轉(zhuǎn)基因小麥T0~T3植株外源TaMYB86的PCR檢測Fig.2 PCR patterns of TaMYB86 in T0-T3plants of TaMYB86 transgenic wheat lines
2.2 轉(zhuǎn)基因小麥中TaMYB86的轉(zhuǎn)錄水平分析
qRT-PCR分析結果表明, TaMYB86在3個抗根腐病的轉(zhuǎn)基因小麥株系中的表達量均顯著高于未轉(zhuǎn)基因揚麥16, 約為未轉(zhuǎn)基因揚麥16的5~6倍(圖3), 說明這3個抗根腐病的轉(zhuǎn)基因小麥株系中TaMYB86基因能夠超量表達。
圖3 過表達株系中TaMYB86的轉(zhuǎn)錄水平分析Fig.3 qRT-PCR analysis of TaMYB86 transcriptional levels in transgenic wheat lines
2.3 TaMYB86受根腐菌的誘導表達分析
利用qRT-PCR方法, 分析接種根腐菌后不同時間點未轉(zhuǎn)基因揚麥16與轉(zhuǎn)基因株系中TaMYB86基因的表達水平。結果表明, 在未轉(zhuǎn)基因揚麥16和過表達轉(zhuǎn)基因小麥中, TaMYB86的轉(zhuǎn)錄水平均受根腐菌侵染的誘導; 與未轉(zhuǎn)基因揚麥16相比, 轉(zhuǎn)基因小麥中TaMYB86的轉(zhuǎn)錄水平更高, 并且更快達到峰值,說明過表達的TaMYB86能更快、更強地響應根腐菌的侵染, 從而增強小麥對根腐菌的防御(圖4)。
圖4 根腐病菌接種后TaMYB86的表達模式Fig.4 Transcriptional patterns of TaMYB86 in B.sorokiniana-inoculated wheat
2.4 轉(zhuǎn)TaMYB86基因小麥中c-MYC-TaMYB86融合蛋白的Western雜交分析
在轉(zhuǎn)基因載體pUbi:MYC-TaMYB86中TaMYB86上游與c-MYC標簽序列相連, 便于對轉(zhuǎn)基因植株中翻譯表達的c-MYC-TaMYB86融合蛋白進行Western雜交分析。結果顯示, 3個轉(zhuǎn)TaMYB86基因小麥株系中蛋白可與anti-c-MYC抗體產(chǎn)生雜交條帶, 而未轉(zhuǎn)基因揚麥16 (WT)不能雜交出條帶, 表明c-MYCTaMYB86基因可在3個轉(zhuǎn)基因陽性株系(MO86-7、MO86-14、MO86-28)中翻譯表達(圖5)。
2.5 TaMYB86的過表達增強了轉(zhuǎn)基因小麥對根腐病的抗性
根腐病抗性鑒定結果(表1)顯示, 與未轉(zhuǎn)基因揚麥16 (WT)相比, 3個過表達TaMYB86的轉(zhuǎn)基因小麥株系(MO86-7、MO86-14和MO86-28)的病級極顯著降低(t-test; P < 0.01)。T1代過表達株系的平均病級分別為1.27、2.00和1.80, 而未轉(zhuǎn)基因揚麥16平均病級為3.00;T2代過表達株系的平均病級為1.51、1.50和1.54, 而未轉(zhuǎn)基因揚麥16病級為2.17; T3代3個過表達株系的平均病級分別為1.67、1.25和1.50, 而未轉(zhuǎn)基因揚麥16病級為2.62。轉(zhuǎn)TaMYB86基因的過表達株系各代間的病級有所不同, 但每代轉(zhuǎn)基因植株的抗性均極顯著高于未轉(zhuǎn)基因揚麥16 (WT), 說明TaMYB86過表達顯著增強了轉(zhuǎn)基因小麥對根腐病的抗性。
2.6 TaMYB86正向調(diào)控小麥下游防衛(wèi)基因的轉(zhuǎn)錄水平
為了解析TaMYB86在小麥防御根腐病菌侵染的機制, 用qRT-PCR方法分析了接種根腐病菌47 d的TaMYB86過表達株系中3個下游防衛(wèi)基因(PR10、PR17c和Chit1)的轉(zhuǎn)錄水平。這3個基因是PR10、PR17c和Chit1。正如圖6所示, 與未轉(zhuǎn)基因揚麥16相比, 3個下游防衛(wèi)基因在TaMYB86過表達株系中的轉(zhuǎn)錄水平顯著升高, 且下游基因的表達模式TaMYB86相同。以上結果證明, TaMYB86可以正向調(diào)控小麥中下游防衛(wèi)基因的表達。
圖5 轉(zhuǎn)TaMYB86基因過表達株系和未轉(zhuǎn)基因揚麥16的Western雜交分析Fig.5 Western blot pattern of TaMYB86-overexpressed transgenic lines and non-transformed Yangmai 16 using an anti-MYC antibody
表1 轉(zhuǎn)TaMYB86基因過表達株系與未轉(zhuǎn)基因揚麥16的根腐病抗性鑒定Table1 Common root rot response of TaMYB86-overexpressed transgenic lines and non-transformed wheat Yangmai 16
植物MYB轉(zhuǎn)錄因子在發(fā)育及抵抗生物或非生物逆境方面發(fā)揮重要作用, 一些植物MYB轉(zhuǎn)錄因子受病原物誘導表達, 從而激活下游基因來參與抗病反應。擬南芥AtMYB30受黃單胞菌(Xanthomonas campestris pv.campestris)和假單胞桿菌(Pseudomonas syringae pv.tomato)誘導表達[26], 并參與過敏性反應(hypersensitive response, HR), 過表達AtMYB30增強了寄主的HR表型及對假單胞桿菌的抗性[27]。擬南芥BOS1 (AtMYB108)受灰葡萄孢菌和甘藍鏈格孢菌誘導表達, bos1突變體對這些病原菌和滲透脅迫的敏感性增加[13]。本研究中TaMYB86是受根腐病菌誘導表達的R2R3-MYB轉(zhuǎn)錄因子基因。
為了解析TaMYB86的防御功能, 本研究構建了該基因的過表達載體pUbi:MYC-TaMYB86, 并將其成功轉(zhuǎn)入小麥商業(yè)品種揚麥16中, 獲得5個轉(zhuǎn)基因小麥株系。選取其中種子數(shù)量多的 3個株系進行分子檢測和抗病鑒定。結果說明, TaMYB86基因成功轉(zhuǎn)入 3個轉(zhuǎn)基因小麥株系中, 并可穩(wěn)定轉(zhuǎn)錄、過量表達, TaMYB86過表達的轉(zhuǎn)基因小麥植株對根腐病抗性顯著提高, 說明 TaMYB86在小麥防御根腐病過程中起正向調(diào)控作用。但是TaMYB86是否是小麥防御根腐病反應所必需的基因, 以及是否有基因冗余現(xiàn)象, 還有待進一步驗證。在植物中, 轉(zhuǎn)錄因子通過調(diào)控下游防衛(wèi)基因表達來調(diào)節(jié)抗病防御反應[28-32]。一些防衛(wèi)基因過表達可以顯著提高轉(zhuǎn)基因植物的抗病性。例如, 過表達大麥幾丁質(zhì)酶基因、蘿卜防御素基因 RsAFP2或者小麥脂轉(zhuǎn)運蛋白均可增強轉(zhuǎn)基因植物對病原菌的防御[33-35]。本研究對防衛(wèi)基因表達的初步分析表明, 與未轉(zhuǎn)基因揚麥16 (受體)相比,抗根腐病的TaMYB86過表達轉(zhuǎn)基因小麥中3個防衛(wèi)基因的表達量顯著提高, 說明TaMYB86可能通過調(diào)控其下游防衛(wèi)基因的表達來增強根腐病抗性, 但TaMYB86作用的深入機制還有待進一步闡明。
圖6 TaMYB86過表達株系中TaMYB86和下游防衛(wèi)基因的qRT-PCR分析Fig.6 qRT-PCR analysis of the relative transcript level of TaMYB86 and three defense genes in TaMYB86-overexpressing transgenic lines
通過基因槍轉(zhuǎn)化、分子檢測和抗根腐病鑒定,創(chuàng)制、篩選出抗根腐病的TaMYB86過表達轉(zhuǎn)基因小麥新種質(zhì)3份, 證明TaMYB86在小麥防御根腐病過程中起正向調(diào)控作用。
References
[1] Kumar J, Sch?fer P, Heckelhoven R, Langen G, Baltruschat H,Stein E, Nagarajan S, Kogel K H.Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control.Mol Plant Pathol, 2002, 3(4):185-195
[2] 賈廷祥, 吳桂本, 劉傳德.我國小麥根腐性病害研究現(xiàn)狀及防治對策.中國農(nóng)業(yè)科學, 1995, 28: 41-48 Jia Y X, Wu G B, Liu C D.The present research situation and control countermeasure of root rots in wheat.Sci Agric Sin, 1995,28: 41-48 (in Chinese with English abstract)
[3] Li H J, Conner R L, Chen Q, Li H Y, Laroche A, Graf R J, Kuzyk A D.The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat.Genome, 2004, 47:215-223
[4] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C,Lepiniec L.MYB transcription factors in Arabidopsis.Trends Plant Sci, 2010, 15: 573-581
[5] Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T,Suzuki K, Müller I, Voss U, Jürgens G.Ito M.R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana.Development,2007, 134: 1101-1110
[6] Zhou J, Lee C, Zhong R, Ye Z H.MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis.Plant Cell, 2009, 21: 248-266
[7] Millar A A, Gubler F.The Arabidopsis GAMYB-like genes,MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development.Plant Cell, 2005, 17:705-721
[8] Muller D, Schmitz G, Theres K.Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis.Plant Cell, 2006, 18: 586-597
[9] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB)function as transcriptional activators in abscisic acid signaling.Plant Cell, 2003, 15: 63-78
[10] Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J J.Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis.Plant Physiol, 2008, 146: 623-635
[11] Dai X Y, Xu Y Y, Ma Q B, Xu W Y, Wang T, Xue Y B, Chong K.Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis.Plant Physiol, 2007, 143: 1739-1751
[12] Su C F, Wang Y C, Hsieh T H, Lu C A, Tseng T H, Yu S M.A novel MYBS3-dependent pathway confers cold tolerance in rice.Plant Physiol, 2010, 153: 145-158
[13] Mengiste T, Chen X, Salmeron J, Dietrich R.The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis.Plant Cell, 2003, 15: 2551-2565
[14] Seo P J, Xiang F, Qiao M, Park J Y, Lee Y N, Kim S G, Lee Y H, Park W J, Park C M.The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis.Plant Physiol, 2009, 151: 275-289
[15] Seo P J, Park C M.MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis.New Phytol, 2010, 186:471-483
[16] Chang C, Yu D, Jiao J, Jing S, Schulze-Lefert P, Shen Q H.Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling.Plant Cell, 2013, 25: 1158-1173
[17] Liu X, Yang L H, Zhou X Y, Zhou M P, Lu Y, Ma L J, Zhang Z Y.Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease.J Exp Bot, 2013, 64: 2243-2253
[18] Al-Attala M N, Wang X, Abou-Attia M A, Duan X, Kang Z.A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f.sp.tritici and abiotic stresses.Plant Mol Biol, 2014, 84: 589-603
[19] Zhang Z J, Chen J M, Su Y Y, Liu H M, Chen Y E, Luo P G,Du X G, Wang D, Zhang H Y.TaLHY, a 1R-MYB transcription factor, plays an important role in disease resistance against stripe rust fungus and ear heading in wheat.PLoS One, 2015, 10, doi: 10.1371/journal.pone.0127723
[20] Christensen A H, Quail P H.Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants.Transgenic Res, 1996, 5: 213-218
[21] Zhu X L, Yang K, Wei X N, Zhang Q F, Rong W, Du L P, Ye X G,Qi L, Zhang Z Y.The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis.J Exp Bot, 2015, 66: 6591-6603
[22] 徐惠君, 龐俊蘭, 葉興國, 杜麗璞, 李連城, 辛志勇, 馬有志, 陳劍平, 陳炯, 程順和, 吳宏亞.基因槍介導法向小麥導入黃花葉病毒復制酶基因的研究.作物學報, 2001, 27:688-693 Xu H J, Pang J L, Ye X G, Du L P, Li L C, Xin Z Y, Ma Y Z,Chen J P, Chen J, Cheng S H, Wu H Y.Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment.Acta Agron Sin, 2001, 27:688-694 (in Chinese with English abstract)
[23] Sharp P J, Kreis M, Shewry P R, Gale M D.Location of β-amylase sequences in wheat and its relatives.Theor Appl Genet, 1988, 75: 286-290
[24] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtmethod.Methods, 2001, 25: 402-408
[25] Dong N, Liu X, Lu Y, Du L P, Xu H J, Liu H X, Xin Z Y, Zhang Z Y.Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana.Funct Integr Genomic, 2010, 10: 215-226
[26] Daniel X, Lacomme C, Morel J B, Roby D.A novel myb oncogene homologue in Arabidopsis thaliana related to hypersensitive cell death.Plant J, 1999, 20: 57-66
[27] Vailleau F, Daniel X, Tronchet M, Montillet J L, Triantaphylides C, Roby D.A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack.Proc Natl Acad Sci USA, 2002, 99: 10179-10184
[28] Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang X C, Huang R.Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum.Plant Mol Biol, 2004, 55: 825-834
[29] Chen L, Zhang Z Y, Liang H X, Liu H X, Du L P, Xu H J, Xin Z Y.Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat.J Exp Bot, 2008, 59: 4195-4204
[30] Zhang Z Y, Liu X, Wang X D, Zhou M P, Zhou X Y, Ye X G,Wei X N.An R2R3 MYB transcription factor in wheat,TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes.New Phytol, 2012, 196: 1155-1170
[31] Liu X, Yang L H, Zhou X Y, Zhou M P, Lu Y, Ma L J, Ma H X,Zhang Z Y.Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease.J Exp Bot, 2013, 64:2243-2253
[32] Zhu X L, Qi L, Liu X, Cai S B, Xu H J, Huang R F, Li J R,Wei X N, Zhang Z Y.The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses.Plant Physiol, 2014, 164:1499-1514
[33] Shin S, Mackintosh C A, Lewis J, Heinen S J, Radmer L,Dill-Macky R, Baldridge G D, Zeyen R J, Muehlbauer G J.Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum.J Exp Bot, 2008, 59: 2371-2378
[34] Li Z, Zhou M P, Zhang Z Y, Ren L J, Du L P, Zhang B Q, Xu H J, Xin Z Y.Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis.Funct Integr Genomics, 2011, 11:63-70
[35] Zhu X L, Li Z, Xu H J, Zhou M P, Du L P, Zhang Z Y.Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.Funct Integr Genomics,2012, 12: 481-488
Development and Characterization of TaMYB86-Overexpressing Transgenic Wheat Lines with Resistance to Common Root Rot
SHAN Tian-Lei, HONG Yan-Tao, DU Li-Pu, XU Hui-Jun, WEI Xue-Ning, and ZHANG Zeng-Yan*
National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops,Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Wheat common root rot, mainly caused by Bipolaris sorokiniana, is a difficultly prevent soil-borne disease of wheat (Triticum aestivum L.) worldwide.TaMYB86, a B.sorokiniana-induced wheat MYB gene, encodes a MYB transcription factor.We constructed the TaMYB86 overexpression vector pUbi:MYC-TaMYB86 and introduced TaMYB86 into Yangmai 16 via the particle bombardment.The TaMYB86 transgenic wheat lines on generations of T0-T3were underwent by molecular characteristics analysis and disease resistance evaluation.The PCR and quantitative RT-PCR results showed that the alien TaMYB86 was introduced into three transgenic wheat lines, and the relative transcriptional level of TaMYB86 was apparently higher in transgenic wheat lines than in non-transformed Yangmai 16.As Western blot results presented, the introduced MYC-TaMYB86 gene was translated into the MYC-TaMYB86 protein in the three overexpressing transgenic lines, but not in non-transformed Yangmai 16.The infection types and disease indexes of three TaMYB86 transgenic wheat lines were significantly lower than those of non-transformation Yangmai 16 (t-test, P < 0.01).The transcript levels of 3 wheat defense genes (PR10, PR17c, and Chit1) were significantly elevated in three transgenic wheat lines than in the non-transformed Yangmai 16.These results indicate that overexpression of TaMYB86 enhances significantly resistance to B.sorokiniana in transgenic wheat lines and TaMYB86 plays a positive role in defense response to B.sorokiniana.
Triticum aestivum; MYB transcription factor; Defense response; Common root rot; Transgene
10.3724/SP.J.1006.2016.01429
本研究由國家轉(zhuǎn)基因生物新品種培育重大專項(2016ZX08002-001-004)和國家自然科學基金項目(31471494)資助。
The study was supported by the National Major Project for Developing New GM Crops (2016ZX08002-001-004) and the National Natural Science Foundation of China (31471494).
(Corresponding author): 張增艷, E-mail: zhangzengyan@caas.cn, Tel: 010-82108781
聯(lián)系方式: E-mail: tlshan8023@163.com; Tel: 15600642564
Received(): 2016-03-10; Accepted(接受日期): 2016-07-11; Published online(網(wǎng)絡出版日期): 2016-08-01.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20160801.1037.006.html