林東海,裴明鶴
(北華大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,吉林 吉林 132013)
?
兩類非線性三階四點(diǎn)邊值問題解的存在性
林東海,裴明鶴
(北華大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,吉林 吉林132013)
利用Leray-Schauder度理論,得到了非線性三階微分方程x?=f(t,x,x′,x″),t∈[0,1]分別滿足下列四點(diǎn)邊界條件x(0)=0,x′(0)=αx′(ξ),x′(1)=βx′(η)和x′(0)=αx′(ξ),x(1)=0,x′(1)=βx′(η)的兩類邊值問題解的存在性,并且作為應(yīng)用給出了一個(gè)例子.
Leray-Schauder度理論;Nagumo條件;四點(diǎn)邊值問題;存在性
【引用格式】林東海,裴明鶴.兩類非線性三階四點(diǎn)邊值問題解的存在性[J].北華大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,17(5):572-576.
本文考慮兩類非線性三階四點(diǎn)邊值問題,即非線性三階微分方程
x?=f(t,x,x′,x″), t∈[0,1],
(1)
逐一滿足下列四點(diǎn)邊界條件
x(0)=0, x′(0)=αx′(ξ), x′(1)=βx′(η),
(2)
x′(0)=αx′(ξ), x(1)=0, x′(1)=βx′(η)
(3)
的邊值問題解的存在性,這里f(t,x0,x1,x2)在[0,1]×3上連續(xù),ξ,η∈(0,1),0<α≤1,0<β≤1,并且α+β≠2.
三階微分方程出現(xiàn)于應(yīng)用數(shù)學(xué)和物理學(xué)的許多領(lǐng)域,例如撓度具有常數(shù)或橫斷面發(fā)生變化的彎曲梁,三層梁以及電磁波或重力驅(qū)動(dòng)流等[1-2].因此,三階邊值問題受到微分方程學(xué)者的廣泛關(guān)注[1,3-17].而上述提到的成果大多是關(guān)于兩點(diǎn)或三點(diǎn)邊界條件的,而關(guān)于四點(diǎn)及其以上邊界條件的成果較少見到[1,7,12-13].本文的目的是利用Leray-Schauder度理論,建立非線性三階四點(diǎn)邊值問題(1)-(2)和(1)-(3)的解的存在性結(jié)果.
首先利用Leray-Schauder度理論建立非線性三階四點(diǎn)邊值問題(1)-(2)的解的存在性定理.
定理1假設(shè)
(ⅰ)f(t,x0,x1,x2)∈C([0,1]×3),并且對(duì)每一個(gè)固定的(t,x1,x2)∈[0,1]×2,f關(guān)于x0單調(diào)遞減;
xf(t,x,x,0)>0;
(ⅲ)f(t,x0,x1,x2)滿足Nagumo條件,即存在一個(gè)定義于[0,+)上的正值連續(xù)函數(shù)h(s),使得?(t,x0,x1,x2)∈[0,1]×[-M,M]2×,有
則三階四點(diǎn)邊值問題(1)-(2)至少存在一個(gè)解x=x(t)滿足
證明:首先驗(yàn)證下面的邊值問題族
x?=λf(t,x,x′,x″),t∈[0,1],λ∈[0,1],
(4)
x(0)=0,x′(0)=αx′(ξ),x′(1)=βx′(η),
(5)
在C2[0,1]中先驗(yàn)有界.為此,設(shè)x(t)是BVP(4)-(5)的任意一個(gè)解.我們將證明
(6)
以及
(7)
首先證明
(8)
注意到,如果在方程(4)中λ=0,則BVP(4)-(5)只有平凡解,從而式(6)和(7)成立.因此可設(shè)λ∈(0,1].假設(shè)式(8)不成立,則存在t*∈[0,1],使得
x′(t*)>M或x′(t*)<-M.
x′(t0)x?(t0)=λx′(t0)f(t0,x(t0),x′(t0),0) ≥λx′(t0)f(t0,x′(t0),x′(t0),0)>0,
從而x?(t0)>0,這與x′(t)在t=t0處達(dá)到其正的最大值以及x″(t0)=0矛盾,故式(8)成立.
于是由式(8)和邊界條件(5),有
綜上,不等式(6)成立.
茲斷定存在t1∈(0,1),使得
因此x″(t)在(t3,t4)內(nèi)恒正或恒負(fù).于是由假設(shè)條件(ⅲ)和N的定義,可得下面的矛盾:
故不等式(7)成立.于是由式(6)和(7),有
(9)
最后,我們將證明BVP(1)-(2)的解的存在性.為此,定義線性映射L:D(L)?C2[0,1]→C[0,1]如下:
(Lx)(t)=x?(t),x∈D(L),
這里D(L)={x∈C3[0,1]:x(t)滿足(5)},則L是一對(duì)一映射.又定義非線性映射N:C2[0,1]→C[0,1]如下:
(Nx)(t)=f(t,x(t),x′(t),x″(t)),x∈C2[0,1].
則N是有界連續(xù)映射.再定義線性映射K:C[0,1]→C2[0,1]如下:
這里G(t,s)是x?(t)=0滿足邊界條件(5)的格林函數(shù).則易見,LKx=x,?x∈C[0,1],并且KLx=x,?x∈D(L).更進(jìn)一步,由Arzela-Ascoli定理可知,K將C[0,1]中的有界集映成C2[0,1]中的相對(duì)緊致集.因此KN:C2[0,1]→C2[0,1]是全連續(xù)的.
注意到x∈C3[0,1]是BVP(4)-(5)的解當(dāng)且僅當(dāng)x∈C2[0,1]是算子方程
Lx=λNx
的解.而算子方程Lx=λNx等價(jià)于算子方程
[I-λKN]x=0,
這里I:C2[0,1]→C2[0,1]是恒同映射.
degLS(I-KN,Br,0)=degLS(I-λKN,Br,0)=degLS(I,Br,0)=1.
故KN在Br內(nèi)有不動(dòng)點(diǎn)x(t).易見,此不動(dòng)點(diǎn)x=x(t)即為BVP(1)-(2)的解,并且滿足
證畢.
對(duì)于三階四點(diǎn)邊值問題(1)-(3),類似于定理1證明,可得如下結(jié)果:
定理2假設(shè)
(ⅰ) f(t,x0,x1,x2)∈C([0,1]×3),并且對(duì)每一個(gè)固定的(t,x1,x2)∈[0,1]×2, f關(guān)于x0單調(diào)遞增;
xf(t,x,-x,0)<0;
(ⅲ) f(t,x0,x1,x2)滿足Nagumo條件,即存在一個(gè)定義于[0,+)上的正值連續(xù)函數(shù)h(s),使得?(t,x0,x1,x2)∈[0,1]×[-M,M]2×,有
則三階四點(diǎn)邊值問題(1)-(3)至少存在一個(gè)解x=x(t)滿足
這里N與定理1中的相同.
考慮三階四點(diǎn)邊值問題
x?=-tx3+x′ex′2+x″2, t∈[0,1],
(10)
x(0)=0, x′(0)=αx′(ξ), x′(1)=βx′(η),
(11)
這里ξ,η∈(0,1),0<α≤1,0<β≤1,并且α+β≠2.
令
xf(t,x,x,0)=-tx4+x2ex2≥-x4+x2ex2.
而
xf(t,x,x,0)>0.
此外,易見函數(shù)f(t,x0,x1,x2)滿足定理1的假設(shè)條件(ⅰ)和(ⅲ).因此由定理1,三階四點(diǎn)邊值問題(10)-(11)至少存在一個(gè)解.
[1] H H Alsulami,S K Ntouyas,SA Al Mezel.A study of third-order single-valued and multi-valued problems with integral boundary conditions[J].Boundary Value Problems,2015,2015:25.
[2] M Gregus.Third order linear differential equations[M].Dordrecht:Reidel Publishing Co,1987.
[3] R P Agarwal.Boundary value problems for higher order differential equations[M].Singapore:World Scientific,1986.
[4] A Boucherif,N Al-Malki.Nonlinear three-point third-order boundary value problems[J].Appl Math Comput,2007,190:1168-1177.
[5] A Cabada,M R Grossinho,F(xiàn) M Minhós.On the solvability of some discontinuous third order nonlinear differential equations with two point boundary conditions[J].J Math Anal Appl,2003,285:174-190.
[6] C P Gupta,V Lakshmikantham.Existence and uniqueness theorems for a third-order three-point boundary value problem[J].Nonlinear Anal,1991,16:949-957.
[7] Z Du,X Lin,W Ge.On a third-order multi-point boundary value problem at resonance[J].J Math Anal Appl,2005,302:217-229.
[8] J R Graef,J Henderson,R Luca,etal.Boundary value problems for third-order Lipschitz ordinary differential equations[J].Proceedings of the Edinburgh Mathematical Society,2015,58:183-197.
[9] M R Grossinho,F(xiàn) M Minhós,A I Santos.Existence result for a third-order ODE with nonlinear boundary conditions in presence of a sign-type Nagumo control[J].J Math Anal Appl,2005,309:271-283.
[10] J Henderson.Best interval lengths for third order Lipschitz equations[J].SIAM J Math Anal,1987,18:293-305.
[11] B Hopkins,N Kosmatov.Third-order boundary value problems with sign-changing solutions[J].Nonlinear Anal,2007,67:126-137.[12] W Jiang,F(xiàn) Li.Several existence theorems of monotone positive solutions for third-order multipoint boundary value problems[J].Boundary Value Problems,2007,2007:1-9.[13] S Jin,S Lu.Existence of solutions for a third-order multipoint boundary value problem with p-Laplacian[J].Journal of the Franklin Institute,2010,347:599-606.
[14] R Ma.Multiplicity results for a third order boundary value problem at resonance[J].Nonlinear Anal,1998,32:493-499.
[15] M Pei,S K Chang.Existence and uniqueness of solutions for third-order nonlinear boundary value problems[J].J Math Anal Appl,2007,327:23-35.
[16] M Pei,S K Chang.Solvability of nth-order Lipschitz equations with nonlinear three-point boundary conditions[J].Boundary Value Problems,2014,2014:239.
[17] H Shi,M Pei,L Wang.Solvability of a third-order three-point boundary value problem on a half-line[J].Bull Malays Math Sci Soc,2015,38:909-926.
【責(zé)任編輯:陳麗華】
Existence of Solutions for Two Classes of Nonlinear Third-Order Four-Point Boundary Value Problems
Lin Donghai,Pei Minghe
(School of Mathematics and Statistics,Beihua University,Jilin 132013,China)
By using the Leray-Schauder degree theory,we obtained the existence of solutions for nonlinear third-order differentialx?=f(t,x,x′,x″),t∈[0,1]with one of the following sets of four-point boundary conditionsx(0)=0,x′(0)=αx′(ξ),x′(1)=βx′(η);x′(0)=αx′(ξ),x(1)=0,x′(1)=βx′(η).Meanwhile,as an application of our results,an example is given.
Leray-Schauder degree theory;Nagumo condition;four-point boundary value problem;existence
1009-4822(2016)05-0572-05
10.11713/j.issn.1009-4822.2016.05.003
2016-06-15
吉林省教育廳科學(xué)技術(shù)研究項(xiàng)目(2016-45).
林東海(1982-),男,碩士研究生,主要從事微分方程邊值問題研究,E-mail:limdonghae@163.com;通信作者:裴明鶴(1963-),男,博士,教授,主要從事微分方程定性理論研究,E-mail:peiminghe@163.com.
O175.8
A