• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The experiment and analysis of transitional flow in pipe*

    2016-10-14 12:23:33JunWANG王軍GuangshengDU杜廣生JingyingWANG王京盈JieGENG耿介DongLI李冬
    關(guān)鍵詞:王軍

    Jun WANG (王軍),Guang-sheng DU (杜廣生),Jing-ying WANG (王京盈),Jie GENG (耿介),Dong LI (李冬)

    1.School of Energy and Power Engineering,Shandong University,Jinan 250061,China

    2.School of Thermal Engineering,Shandong Jianzhu University,Jinan 250101,China,E-mail:wwjjy99@126.com

    The experiment and analysis of transitional flow in pipe*

    Jun WANG (王軍)1,2,Guang-sheng DU (杜廣生)1,Jing-ying WANG (王京盈)1,Jie GENG (耿介)1,Dong LI (李冬)1

    1.School of Energy and Power Engineering,Shandong University,Jinan 250061,China

    2.School of Thermal Engineering,Shandong Jianzhu University,Jinan 250101,China,E-mail:wwjjy99@126.com

    The transitional flow in a pipe is important for delivery,but its characteristics remain to be explored.In this paper,the two-dimensional laser Doppler velocimetry (LDV) is used for the study,focusing on the attenuation characteristics of the axial velocity,the variation of the velocity gradient,the effect of the angle between the axis and the resultant velocity vector,and the relationship between the energy coefficient and the flow state.The attenuation characteristics of the axial velocity along the radial direction are obtained.It is shown that with the increase of the Reynolds number,the change rate of the velocity gradient slows down with a similar distribution,and a rapid decrease is seen in the near wall region.The amplitude and the frequency of the angular variation are obviously improved with the increase of the Reynolds number.The instability of the velocity field is enhanced with the increase of the energy coefficient.

    transitional flow,attenuation,velocity gradient,flow instability,energy coefficient

    Introduction

    The pipe flow is one of the most common phenomena in industrial processes,the flow in the pipe is complicated,unstable,and related with a complex fluid dynamics.Aravinth[1]studied the heat and mass transfer processes of the turbulent fluid flow in the pipe,and proposed formulas obtained from a wide range of experimental data.References [2,3]analyzed the fully developed turbulent pipe flow by experiments,and obtained the velocity distribution and the von Karman' s coefficient in the pipe.

    Most of the researches mentioned above deal with the turbulence.The transition from the laminar to the turbulent flows has not been paid due attention,while there are significant differences between theflow field of a fully developed turbulence and that in the transitional area.A simplified flow model is often adopted to analyze it,and the experimental results focus on the change of the turbulent velocity field in the pipe.

    The transitional flow may be found in civil and industrial processes,and it is often treated as a turbulence.Using this method to design the pipe system and to make the flow measurement will cause a remarkable error,therefore,it is important to make a study of the flow of the transition area.The difference between a simplified theoretical model and the actual flow will bring about some errors,as the simplified model cannot fully reflect the essence of the pipe flow.In this paper,we study the transition area in the pipe by the experimental method to avoid the disadvantage of the simplified model.In the meantime,the factors affecting the pipe flow are discussed based on the velocity field.

    The Navier-Stokes (N-S) equation[4]of the incompressible fluid is usually used in the study of the pipe flow.In order to analyze the flow situation,the traditional method of analysis is to simplify the N-S equation by a dimensionless method.The dimensionless N-S equation takes the form

    In Eq.(1) and Eq.(2),W is the speed,t is the time,p is the pressure,Re is the Reynolds number andf is the volume force.

    It can be found from the dimensionless equations that the flo w states with the same Reynolds number are similar.It is seen that the speed item plays an important part in the flow process,so that the attenuation and the change of the velocity in the pipe can affect the flow significantly.In this paper,we use the two-dimensional laser Doppler velocimetry (LDV)[5,6]for the measurements in the transition area of the pipe flow.Because of the measuring advantage of the LDV[7,8]in the near wall region,the results can reflect the true state of the flow due to the uniformity of distribution and the good flow property of the natural impurities in water.The test area is arranged depending on the structural characteristics of the three-dimensional coordinate frame.

    From the pipe wall to the axis in the radial direction,the LDV is utilized sequentially for different positions and sections of the flow at different Reynolds numbers to obtain the flow parameters.From the experiment results,we can further analyze the variation and the attenuation of the flow and check the effects of the relevant parameters on the flow state.A reference can be provided for the numerical simulation of the pipe,the design of the piping system and the flow measuring device.

    Fig.1 Doppler testing system

    1.Experiment devices

    The experimental system includes a water circulation system[9-11]and a Doppler testing system,the water circulation system includes an upper water tank,a pipe system,an electromagnetic flow meter,a regulating valve,a circulating water pump and a lower water tank.The Doppler testing system is shown in Fig.1[12],the position of the measuring points can be adjusted by the use of a three-dimensional coordinate frame.

    2.Experiment method

    The water cycling system is started to form different flow states by the regulation of the valve opening,the flux is measured by the flow meter.To ensure the accuracy of the measurement,the LDV should be adjusted in accordance with the requirements of the experiment[12-14].The test section of the pipe is made of transparent plexiglass,its inner diameter is 0.04 m.The LDV is adjusted according to the technical parameters of the three-dimensional coordinates frame,the test area is shown in Fig.2.

    Fig.2 Test area

    According to the characteristics of the pipe flow,the flow velocity near the pipe wall changes greatly and the velocity decreases from the pipe center to the pipe wall.The measuring points near the wall are arranged densely to reflect the flow characteristics,the inner wall of the pipe is the starting point,on each section the beam intersection point is used as a measuring point and a set of data is obtained.There are 40 nodes in the radial direction and 70 nodes in the axial direction,the entire test area contains 2 800 nodes.A set of samples is chosen in the speed measurement,according to the initial setting of the test system,the average values are taken as the required data.The Reynolds number of the test area is from 2 000 to 8 000.On each test section,400 sets of data are obtained for every Reynolds number.

    3.Analysis of test results

    3.1 Attenuation characteristics of average axial velocity

    The axial velocity distribution varies greatly in different flow areas in the pipe[15,16],the attenuation characteristics have much to do with the flow state.Six flow states in the experiment ( Re = 2 400,3 800,4 800,5 800,6 800,7 800) are selected.

    Comparing the velocity of each measuring point with the average velocity in each flow state,it can befound that the proportion of the velocity below the average value is gradually decreased with the increase of the Reynolds number.When Re =2 400,the proportion of the measured velocity below the average speed is 40%,and it becomes 25% when Re =7800,and the flow state tends to be enhanced.The results of the experiment are shown in Table 1.

    Table 1 Proportion of velocity below average speed

    The attenuation characteristics in different flow states are analyzed.Considering the instantaneity and the mutability of the flow field,the radial coordinate is nondimensionalized.

    Fig.3 Distributions of the average speed

    Figure 3 shows the average velocity distribution along the radial direction.The center of the pipe is used as the starting point of the coordinater and the pipe wall is the end.Comparing the occurrence position of the average speed,it can be seen that the mainstream area is enlarged with the increase of the Reynolds number.In Fig.3,Curve 1 is the occurrence position of the average speed in the radial direction in different flow states,Curve 2 is the positional distribution when the speed is down to the 50 percent of the average velocity.The axial velocity is enhanced with the increase of the Reynolds number; because of the inertia force,the axial velocity at different measuring points shows a trend of overall increase,the occurrence position of the average speed gradually moves towards the pipe wall,reflecting the change of the velocity distribution in the flow field.With the increase of the Reynolds number,the distribution of the points on Curves 1 and 2 has an approximately linear relationship.Comparing Curve 1 with Curve 2,it can be found that the decaying rate at a high Reynolds number is significantly greater than that at a low Reynolds number on the basis of per unit length under different flow conditions,when the average speed declines gradually to its 50% in the radial direction,the attenuation improves greatly with the increase of the Reynolds number,and the decaying rate of the axial velocity in the radial direction has a close relationship with the flow state.

    3.2 Analysis of flow changes near the pipe wall

    The LDV performs well in the testing area near the pipe wall.The distribution of the flow velocity vector at different Reynolds numbers is shown in Fig.4.With the increase of the Reynolds number,the influence of the inertia force is gradually increased and that of the viscous force is weakened[17],the flow velocity near the pipe wall is increased,the velocity profile develops gradually and becomes full,the shape of the profile boundary changes from parabola to logarithmic curve,the flow state is gradually changed.The change extent of the profile shape is particularly evident near the pipe wall.

    Fig.4 Distributions of the velocity vector near the pipe wall

    In order to study the flow characteristics near the pipe wall quantitatively,the axial velocity profile composed of ten continuous measuring points is analyzed numerically and the distribution of the velocity gradient along the radial direction is obtained,from which the effective scope of the flow field can be determined.Based on the work of the Ref.[18],the velocity gradient is dealt with the dimensionless method to reach some general conclusions.The dimensionless uses the following method

    where ?u is the axial velocity change,V is theaverage velocity,?r is the radius variation,andD is the diameter.The distribution of the dimensionless velocity gradient is shown in Fig.5.

    Fig.5 Distributions of the dimensionless velocity gradient

    According to the distribution of the dimensionless velocity gradient,in the starting stage of the curve,six curves of the velocity gradient see a certain similarity.With the measuring point being moved from the axis to the pipe wall,the inertial force plays more important role than that of the viscous force at a low Reynolds number,the change of the velocity gradient along the radial direction is significant and has a certain continuity,the curve shows the state of a rapid uplift and the uplift location is far away from the pipe wall.

    With the increase of the Reynolds number,the axial velocity is improved,the impact of the inertial force is enhanced and that of the viscous force is reduced.The mixing of the fluid particles is improved.It can be observed in Fig.5 that the similarity of the velocity gradient curve is apparent at a high Reynolds number.With the expansion of the axial velocity boundary,the front of the curve is relatively flat,with characteristics of a sharp improvement in the position close to the pipe wall.

    Fig.6 Axial angle distributions of the resultant velocity

    3.3 The change of the angle between the resultant velocity vector and the pipe axis

    In various sections of the pipe,the flow velocities are in the form of resultant vectors,and the change of the resultant velocity has an important impact on the pipe flow.According to the features of the Doppler velocimetry,the distribution of the resultant velocity on the longitudinal section of the pipe is analyzed.

    Figure 6 shows the change of the angle between the resultant velocity vector on the longitudinal section in the pipe and the pipe axis at different Reynolds numbers.At a low Reynolds number,the angle changes but little.The tendency of the curve is relatively stable.Because of the viscous force,the impact of the radial velocity is weakened.Interference between different flow layers is small.

    With the increase of the Reynolds number,the axial velocity becomes to play a leading role at the position close to the pipe axis because of the impact of the inertial force,the change of the angle is not significant,when the considered position moves continuously towards the pipe wall along the radial direction,there is a significant increase in the angle with the improvement of the effect of the viscous force,the angle sees a larger fluctuation,the direction of the resultant velocity changes frequently,which causes the interference between different flow layers.The radial velocity is severely affected in the area close to the pipe wall and the angle becomes to show a downward trend.

    At a high Reynolds number,the position where the angle changes significantly moves forward obviously,the radial velocity plays a more important role with the reduction of the viscosity force effect,the region of the angle fluctuation is widened and the volatility is also increased.The variation and the frequency of the axial angle are improved and the uncertainty of the flow is enhanced,the disturbance and the mixing between flow layers lead to the change of the flow state.Because of the impact of the pipe wall,the radial velocity is reduced and the angle also shows a downward trend in the area close to the pipe wall.

    3.4 The effect of energy coefficient

    The kinetic energy is an important parameter to analyze the flow state,and the energy change in the fluid flow can be analyzed as

    In Eq.(4),1u,1vand1ware,respectively,the root mean square values of the axial,radial and circumferential velocities,V is the average axial velocity and βis the energy coefficient.

    In the experiment,the two-dimensional Doppler velocimetry is used as the testing instrument,and the experimental data contain only the radial and axial velocity components.It is assumed that the pipe flowis isotropic.To analyze the flow state,Eq.(4) can be simplified as

    The relationship between the energy coefficient and the change of the flow state in the pipe can be studied according to the change of the energy coefficient.

    Figure 7 is the distribution of the energy coefficient in three flow states.With the increase of the Reynolds number,the growth ofβis improved,the kinetic energy coefficient in three flow states can reach the maximum value at the pipe axis,with the radial velocity and the axial velocity increasing rapidly.At a high Reynolds number,there are more peak points of the kinetic energy coefficient on the curves,the change of the energy is more severe,and the randomness and the volatility of the flow are significantly increased.

    Fig.7 Distributions of the energy coefficients

    The curves ofβin the three flowing states see a decrease in the region close to the pipe wall,the greater the Reynolds number,the more obvious the downward trend.At a low Reynolds number,the location where the curves show a downtrend trend is far from the pipe wall.With the increase of the Reynolds number,the curves rapidly decline at locations close to the pipe wall,which reflects the influence of the pipe wall on the velocity field in different flow states,that is,the region near the pipe wall has an inhibitory effect on the flow development.The shape of the curve shows irregular changes,by comparing the coefficient curves at different Reynolds numbers.It is found that the fluctuations of the curve at a high Reynolds number can appear in the whole radial area,which reflects the increase of the energy distribution instability.When moving along the radial direction,the velocity field changes due to the effect of the viscous force which leads to the change of the energy coefficient.

    At a small Reynolds number,the acting area and the intensity of the viscous force are enlarged,the energy of the fluid changes slowly,and its kinetic coefficient curve is relatively flat.At a high Reynolds number,one sees the steep rise and drop in the curves,the instability of the flow is more severe.The energy coefficient curves in the three flowing states are in a downward trend,which indicates that the development of the flow in the near wall region is inhibited.In the flow process,the curve fluctuations are not significant near the pipe axis area,the fluctuations of the curves appear mainly in the movement from the pipe axis to the pipe wall.The interaction between the inertia force and the viscous force has a great bearing on the flow state in the flow region,and the distribution of the energy coefficient also sees a significant change.

    4.Conclusions

    The radial attenuation of the axial velocity is closely related to the flow conditions and the flow area,the attenuation is not significant at the area close to the pipe axis,and at a high Reynolds number,the attenuation is significantly increased near the pipe wall.Due to the intensification of the flow and the expansion of the flow area,the position where the average velocity changes steeply moves toward the pipe wall with the increase of the Reynolds number.

    The variation of the velocity gradient can affect the flow state.Under different flow conditions,the tendencies of the velocity gradient curves are similar in the pipe axis region where the inertia force has a strong effect.When the observation point moves gradually to the pipe wall,the changing range of the velocity gradient is larger at a low Reynolds number.At a high Reynolds number,the velocity gradient sees a rapid decline in the area close to the pipe wall.

    At a low Reynolds number,the angle between the resultant velocity vector and the pipe axis is small,the interference between different flow layers is weak,the effect of the viscous force is enhanced and the flow has better stability.At a high Reynolds number,the angle between the resultant velocity vector and the pipe axis is increased and sees fluctuations when moving to the pipe wall along the radial direction,the change of the velocity vector angle will increase the uncertainty of the fluid particle motion and promote the change of the flow state.

    The energy coefficient can reflect the change of the flowing state,the instability of the flow improves with the increase of the energy coefficient,the trend is proportional to the increase of the Reynolds number,the fluctuation of the energy coefficient is mainly in the region between the pipe axis and the pipe wall.

    [1]ARAVINTH S.Prediction of heat and mass transfer forfully developed turbulent fluid flow through pipes[J].International Journal of Heat and Mass Transfer,2000,43(8):1399-1408.

    [2]DUGUET Y.,WILLIS A.P.and KERSWELL R.R.Slug genesis in cylindrical pipe flow[J].Journal of Fluid Mechanics,2010,663(11):180-208.

    [3]FENG Bin-chun,CUI Gui-xiang and ZHANG Zhao-shun.Experimental study for fully developed turbulent pipe flow[J].Acta Mechanica Sinica,2002,34(2):156-167(in Chinese).

    [4]KOEHLER C.,BERAN P.and VANELLA M.et al.Flows produced by the combined oscillatory rotation and translation of a circular cylinder in a quiescent fluid[J].Journal of Fluid Mechanics,2015,764(2):148-170.

    [5]LIU You,YANG Xiao-tao and MA Xiu-zhen.Technique of flow field measurement based on laser Doppler velocimetry[J].Laser and Infrared,2012,42(1):18-21(in Chinese).

    [6]TIAN Zhong,DENG Jun and FENG Xue-min.Investigation of flow Fields for plug dissipaters by LDV[J].Journal of Sichuan University (Engineering Science Edition),2014,46(4):1-5(in Chinese).

    [7]SANTINI M.,SANTINI S.F.and COSSALI G.LDV characterization and visualization of the liquid velocity field underneath an impacting drop in isothermal conditions[J].Experiments in Fluids,2013,54(9):1593-1597.

    [8]MOUAZE D.,BELORGEY P.M.Internally mounted laser-Doppler-anemometry system for boundary layer measureme[J].Experiments in Fluids,2001,30(1):111-114.

    [9]LIU Yong-hui,DU Guang-sheng and LIU Li-ping et al.Experimental study of velocity distribution in the transition region of pipes[J].Journal of Hydrodynamics,2011,23(5):643-648.

    [10]PAN Dong-yuan,WANG Tong and ZHANG Bin et al.PIV measurement on rotating disks flow in cylinder[J].Chinese Journal of Hydrodynamics,2009,24(2):200-206(in Chinese).

    [11]TALPOS S.,APOSTOL M.Displaced logarithmic profile of the velocity distribution in the boundary layer of a turbulent flow over an unbounded flat surface[J].Physics Letters A,2015,379(47):3102-3107.

    [12]SHEN Xiong.Principle and application of laser doppler testing technique[M].Beijing,China:Tsinghua University Press,2004(in Chinese).

    [13]ZHOU Jian.Application of frequency spectrum refinementand correction technology in laser doppler velocimeter[J].Laser and Infrared,2010,40(2):146-151(in Chinese).

    [14]WEN Yuan-fan,XIAO Hong-yin.A laser imaging-LDV coupling measurement of single bubble forming and rising in shear-thinning fluid[J].Journal of Thermal Science,2014,23(3):233-238.

    [15]ARMAN M.,LYES K.and AFSHIN G.Measurement of fluid velocity development in laminar pipe flow using laser Doppler velocimetry[J].European Journal of Physics,2013,34(5):1127-1134.

    [16]FENG Jian-jun,LUO Xing-qi and BENRA Friedrich-Kar et al.Experimental investigation of velocity fluctuations in a radial diffuser pump[J].Journal of Hydrodynamics,2015,27(3):332-339.

    [17]SAD CHEMLOUL N.Experimental study of the drag reduction in turbulent pipe flow[J].Energy,2014,64(1):818-827.

    [18]LAI Yong-bin,YANG Min-guan and GAO Bo.Experiment on axial circle flow in axially stirred tank[J].Journal of Jiangsu University (Natural Science Edition),2009,30(4):379-382(in Chinese).

    10.1016/S1001-6058(16)60633-9

    (Received October 23,2015,Revised February 20,2016)

    * Project supported by the National Natural Science Foundation of China (Grant No.10972123).

    Biography:Jun WANG (1969-),Male,Ph.D.Candidate,Associate professor

    Guang-sheng DU,E-mail:du@sdu.edu.cn

    2016,28(2):313-318

    猜你喜歡
    王軍
    HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELD
    石榴樹想法妙
    我要好好來欣賞
    不下戰(zhàn)場的士兵——王軍
    活力(2019年19期)2020-01-06 07:34:36
    蜜蜂和油菜花
    可愛的小丫丫
    生態(tài)景觀在城市規(guī)劃中的應(yīng)用探索
    Revisit submergence of ice blocks in front of ice cover-an experimental study *
    Impact of bridge pier on the stability of ice jam*
    Simulations of ice jam thickness distribution in the transverse direction*
    国产成人a∨麻豆精品| 国产伦理片在线播放av一区| 久久99热6这里只有精品| 国产黄色视频一区二区在线观看| 久久人人爽人人片av| 丝袜在线中文字幕| 久久韩国三级中文字幕| 大片免费播放器 马上看| 亚洲婷婷狠狠爱综合网| 99久国产av精品国产电影| 亚洲,欧美,日韩| 91精品伊人久久大香线蕉| 亚洲综合精品二区| 丝袜脚勾引网站| 韩国高清视频一区二区三区| 欧美成人午夜免费资源| 国产xxxxx性猛交| 国产不卡av网站在线观看| 在线天堂中文资源库| 久久人妻熟女aⅴ| 超色免费av| 亚洲国产av新网站| 九色成人免费人妻av| 免费大片18禁| 日日摸夜夜添夜夜爱| 国产av国产精品国产| 精品少妇内射三级| 丝袜美足系列| 美女国产高潮福利片在线看| 啦啦啦啦在线视频资源| 亚洲av在线观看美女高潮| 日韩电影二区| 欧美激情国产日韩精品一区| 欧美日韩综合久久久久久| 制服丝袜香蕉在线| 成人黄色视频免费在线看| 桃花免费在线播放| 91久久精品国产一区二区三区| 久久久精品94久久精品| 欧美精品av麻豆av| 国产激情久久老熟女| 日本猛色少妇xxxxx猛交久久| 久久午夜综合久久蜜桃| 亚洲色图 男人天堂 中文字幕 | 日日撸夜夜添| 搡老乐熟女国产| 9191精品国产免费久久| 人妻人人澡人人爽人人| 国产日韩欧美视频二区| 涩涩av久久男人的天堂| 国产精品麻豆人妻色哟哟久久| 80岁老熟妇乱子伦牲交| 久久久a久久爽久久v久久| 国产精品久久久久久久久免| 亚洲欧美色中文字幕在线| 久久久久久久久久成人| 一级毛片黄色毛片免费观看视频| av在线观看视频网站免费| 菩萨蛮人人尽说江南好唐韦庄| 国产精品免费大片| 啦啦啦视频在线资源免费观看| 在线 av 中文字幕| 亚洲精品456在线播放app| 亚洲欧美色中文字幕在线| 考比视频在线观看| 国产成人精品在线电影| 亚洲精品视频女| 极品人妻少妇av视频| 久久ye,这里只有精品| 国产免费一区二区三区四区乱码| 最近的中文字幕免费完整| 内地一区二区视频在线| 人妻 亚洲 视频| 亚洲欧美中文字幕日韩二区| 9热在线视频观看99| 亚洲精品456在线播放app| 久久狼人影院| 精品酒店卫生间| 天天躁夜夜躁狠狠久久av| 搡女人真爽免费视频火全软件| 多毛熟女@视频| 综合色丁香网| 亚洲av免费高清在线观看| 久久精品久久久久久久性| 国产高清三级在线| 十八禁网站网址无遮挡| 亚洲欧美一区二区三区黑人 | 亚洲av成人精品一二三区| 精品午夜福利在线看| 中文字幕av电影在线播放| 大香蕉97超碰在线| 国产精品久久久久久精品古装| 亚洲图色成人| 日本欧美视频一区| 久久av网站| 国产成人精品在线电影| 日本黄大片高清| 一区二区三区精品91| 日本与韩国留学比较| 一区二区av电影网| 91久久精品国产一区二区三区| 亚洲欧美清纯卡通| 日韩一区二区三区影片| 在线观看人妻少妇| 精品人妻熟女毛片av久久网站| 亚洲,欧美,日韩| 人妻一区二区av| 亚洲欧美一区二区三区黑人 | 亚洲精品aⅴ在线观看| 亚洲精品aⅴ在线观看| 婷婷色综合大香蕉| 亚洲国产av影院在线观看| 中国国产av一级| 春色校园在线视频观看| 免费看av在线观看网站| av黄色大香蕉| 两个人免费观看高清视频| 免费av不卡在线播放| 亚洲天堂av无毛| av一本久久久久| 国产免费一区二区三区四区乱码| a 毛片基地| 国产深夜福利视频在线观看| 午夜视频国产福利| 熟女电影av网| 国产黄频视频在线观看| 极品人妻少妇av视频| av一本久久久久| 亚洲欧洲日产国产| 国产精品一区二区在线不卡| 在线 av 中文字幕| 伊人久久国产一区二区| 捣出白浆h1v1| 亚洲激情五月婷婷啪啪| 欧美bdsm另类| av又黄又爽大尺度在线免费看| 美女xxoo啪啪120秒动态图| www日本在线高清视频| 精品亚洲成a人片在线观看| tube8黄色片| 亚洲经典国产精华液单| 91aial.com中文字幕在线观看| 丰满乱子伦码专区| 国产精品嫩草影院av在线观看| 亚洲av在线观看美女高潮| 久久久久国产网址| 免费女性裸体啪啪无遮挡网站| 久久精品国产自在天天线| 日本猛色少妇xxxxx猛交久久| 婷婷色综合www| 韩国精品一区二区三区 | 男女高潮啪啪啪动态图| videossex国产| av女优亚洲男人天堂| 热re99久久精品国产66热6| av线在线观看网站| 少妇精品久久久久久久| 在线精品无人区一区二区三| 你懂的网址亚洲精品在线观看| 少妇人妻 视频| 免费在线观看黄色视频的| 国产精品秋霞免费鲁丝片| 一级a做视频免费观看| 国产亚洲精品久久久com| 熟妇人妻不卡中文字幕| 妹子高潮喷水视频| 欧美丝袜亚洲另类| 男女无遮挡免费网站观看| 你懂的网址亚洲精品在线观看| 欧美bdsm另类| 国产av国产精品国产| 欧美 日韩 精品 国产| 人人妻人人爽人人添夜夜欢视频| 亚洲一码二码三码区别大吗| 一级毛片 在线播放| 午夜91福利影院| 女的被弄到高潮叫床怎么办| 在线精品无人区一区二区三| 最新的欧美精品一区二区| 五月伊人婷婷丁香| 天美传媒精品一区二区| 久久精品久久久久久久性| 国产精品不卡视频一区二区| 亚洲精品视频女| 男女国产视频网站| 少妇 在线观看| 一区二区日韩欧美中文字幕 | 亚洲成国产人片在线观看| 午夜91福利影院| 新久久久久国产一级毛片| 成人亚洲欧美一区二区av| 国产麻豆69| 亚洲精品av麻豆狂野| 18禁观看日本| 女人久久www免费人成看片| 最黄视频免费看| 看免费av毛片| 纯流量卡能插随身wifi吗| 免费看光身美女| av播播在线观看一区| 国产国拍精品亚洲av在线观看| 精品久久久精品久久久| 三上悠亚av全集在线观看| 欧美人与善性xxx| 黄片无遮挡物在线观看| 激情五月婷婷亚洲| 欧美人与性动交α欧美软件 | 国产欧美日韩综合在线一区二区| 美女xxoo啪啪120秒动态图| 欧美精品亚洲一区二区| 在线观看人妻少妇| 国产精品一区二区在线观看99| 成人黄色视频免费在线看| 天美传媒精品一区二区| 国产精品一二三区在线看| 成年动漫av网址| 成年美女黄网站色视频大全免费| 99香蕉大伊视频| 国产综合精华液| 啦啦啦啦在线视频资源| 国产又色又爽无遮挡免| 边亲边吃奶的免费视频| 桃花免费在线播放| 久久国产亚洲av麻豆专区| 美女视频免费永久观看网站| 男人添女人高潮全过程视频| 亚洲成人av在线免费| 亚洲精品aⅴ在线观看| 日韩大片免费观看网站| 咕卡用的链子| 成年av动漫网址| 色94色欧美一区二区| 一区二区av电影网| 又黄又粗又硬又大视频| 国产日韩欧美在线精品| 成人亚洲欧美一区二区av| 亚洲av.av天堂| 精品国产国语对白av| 亚洲精品一区蜜桃| 国产免费现黄频在线看| 亚洲伊人久久精品综合| videossex国产| 免费黄频网站在线观看国产| 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| 水蜜桃什么品种好| 人体艺术视频欧美日本| 国产av国产精品国产| 日韩欧美一区视频在线观看| 亚洲精品色激情综合| 女的被弄到高潮叫床怎么办| 在线观看免费日韩欧美大片| 亚洲精品国产av成人精品| 国产免费又黄又爽又色| 亚洲av日韩在线播放| 欧美+日韩+精品| 国产毛片在线视频| 亚洲欧洲国产日韩| 国产精品久久久久成人av| 国产午夜精品一二区理论片| 国产精品一国产av| 王馨瑶露胸无遮挡在线观看| 精品亚洲成国产av| 欧美最新免费一区二区三区| 亚洲av男天堂| 久久久久精品性色| 免费看光身美女| 亚洲av.av天堂| 国产老妇伦熟女老妇高清| 91精品三级在线观看| 日日撸夜夜添| 久久久久国产精品人妻一区二区| 免费大片黄手机在线观看| 精品一区二区免费观看| 亚洲精品日本国产第一区| 午夜福利,免费看| 精品一区二区三区四区五区乱码 | 亚洲精品视频女| 一区二区日韩欧美中文字幕 | 看十八女毛片水多多多| 日韩精品有码人妻一区| 美女内射精品一级片tv| 丁香六月天网| 在线看a的网站| 国产精品欧美亚洲77777| 男人爽女人下面视频在线观看| 国产高清三级在线| a级毛片在线看网站| 精品少妇久久久久久888优播| 亚洲精品一区蜜桃| 国产成人精品无人区| 国产视频首页在线观看| 国产69精品久久久久777片| 国产成人午夜福利电影在线观看| 69精品国产乱码久久久| 国语对白做爰xxxⅹ性视频网站| 美女中出高潮动态图| 街头女战士在线观看网站| 亚洲成人手机| 国产淫语在线视频| 哪个播放器可以免费观看大片| 丝袜美足系列| 久热久热在线精品观看| 国产熟女欧美一区二区| 97在线视频观看| 999精品在线视频| 国产av码专区亚洲av| 丰满乱子伦码专区| 18禁观看日本| 精品福利永久在线观看| 天美传媒精品一区二区| 午夜福利视频在线观看免费| 久久精品人人爽人人爽视色| 一级毛片 在线播放| 亚洲精品国产av成人精品| 精品一区二区三卡| 欧美精品一区二区免费开放| 卡戴珊不雅视频在线播放| 亚洲国产看品久久| 久久99精品国语久久久| 国产综合精华液| 熟妇人妻不卡中文字幕| 人妻一区二区av| 欧美激情 高清一区二区三区| av免费观看日本| 嫩草影院入口| 免费少妇av软件| 99re6热这里在线精品视频| 1024视频免费在线观看| 有码 亚洲区| 久久97久久精品| 亚洲国产精品国产精品| 国产福利在线免费观看视频| 欧美精品国产亚洲| 在线免费观看不下载黄p国产| 建设人人有责人人尽责人人享有的| 青春草亚洲视频在线观看| 97人妻天天添夜夜摸| 国产av一区二区精品久久| 91午夜精品亚洲一区二区三区| 一级片'在线观看视频| 日韩一区二区三区影片| 女性生殖器流出的白浆| 国产国拍精品亚洲av在线观看| 另类精品久久| 久久国产精品大桥未久av| 夫妻午夜视频| 乱人伦中国视频| 欧美精品人与动牲交sv欧美| 久久综合国产亚洲精品| 久久人人爽人人片av| 97精品久久久久久久久久精品| 久久久久精品人妻al黑| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩卡通动漫| 国产精品久久久av美女十八| 亚洲激情五月婷婷啪啪| 久久午夜福利片| 两个人免费观看高清视频| av免费观看日本| 精品一区二区三区视频在线| www.av在线官网国产| 黑人猛操日本美女一级片| 成人二区视频| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲最大av| 欧美亚洲日本最大视频资源| 国产永久视频网站| 亚洲 欧美一区二区三区| 中文字幕亚洲精品专区| 欧美最新免费一区二区三区| 国产精品人妻久久久影院| 亚洲美女搞黄在线观看| 成人毛片60女人毛片免费| 一区二区三区四区激情视频| 亚洲精品国产av蜜桃| 男女边摸边吃奶| av电影中文网址| kizo精华| 中文字幕人妻熟女乱码| 国产精品嫩草影院av在线观看| 亚洲在久久综合| 中文精品一卡2卡3卡4更新| 男人舔女人的私密视频| 日韩av不卡免费在线播放| 久久午夜福利片| 熟女av电影| 各种免费的搞黄视频| 久热久热在线精品观看| 成年美女黄网站色视频大全免费| 精品少妇久久久久久888优播| 国产免费又黄又爽又色| 中文字幕人妻熟女乱码| 人妻少妇偷人精品九色| 亚洲人成77777在线视频| av一本久久久久| 精品亚洲成国产av| 欧美精品一区二区免费开放| 国产老妇伦熟女老妇高清| 久久久久精品人妻al黑| 黄色怎么调成土黄色| 久久久久国产网址| 国产免费一区二区三区四区乱码| 久久人妻熟女aⅴ| 亚洲国产日韩一区二区| 精品福利永久在线观看| av国产精品久久久久影院| 久久久久人妻精品一区果冻| 一区二区三区四区激情视频| 春色校园在线视频观看| 久久ye,这里只有精品| 一二三四中文在线观看免费高清| 大香蕉久久成人网| 制服丝袜香蕉在线| 免费女性裸体啪啪无遮挡网站| 90打野战视频偷拍视频| 色94色欧美一区二区| 男的添女的下面高潮视频| 亚洲成av片中文字幕在线观看 | 久久久久视频综合| 2018国产大陆天天弄谢| 亚洲国产色片| 国产精品不卡视频一区二区| 寂寞人妻少妇视频99o| 国产极品粉嫩免费观看在线| 亚洲欧美清纯卡通| 国产一区二区三区综合在线观看 | 在线免费观看不下载黄p国产| 女性生殖器流出的白浆| 亚洲精品乱久久久久久| 狠狠精品人妻久久久久久综合| 久久久久精品人妻al黑| 亚洲国产精品专区欧美| 一二三四中文在线观看免费高清| 中国美白少妇内射xxxbb| 亚洲激情五月婷婷啪啪| 欧美日韩视频高清一区二区三区二| 三上悠亚av全集在线观看| av网站免费在线观看视频| 观看美女的网站| 丝瓜视频免费看黄片| 国产精品一国产av| 久久精品夜色国产| 最近最新中文字幕大全免费视频 | 午夜福利乱码中文字幕| 欧美精品人与动牲交sv欧美| 嫩草影院入口| 国产成人午夜福利电影在线观看| 国产麻豆69| 丝袜脚勾引网站| 人妻一区二区av| 国产精品人妻久久久影院| 狂野欧美激情性bbbbbb| 欧美最新免费一区二区三区| 人妻系列 视频| 久久国产精品大桥未久av| 一级a做视频免费观看| 亚洲国产色片| 久久国产精品男人的天堂亚洲 | videossex国产| 国产av一区二区精品久久| 十分钟在线观看高清视频www| 97超碰精品成人国产| 中文字幕亚洲精品专区| 永久网站在线| 青春草亚洲视频在线观看| 国产日韩欧美亚洲二区| freevideosex欧美| 最近中文字幕高清免费大全6| h视频一区二区三区| 美女国产视频在线观看| 妹子高潮喷水视频| 插逼视频在线观看| 久久97久久精品| 国产精品不卡视频一区二区| 亚洲成国产人片在线观看| av电影中文网址| 一级黄片播放器| 国产一区二区三区综合在线观看 | 午夜福利视频精品| 午夜免费观看性视频| 男女下面插进去视频免费观看 | 久久久久久久精品精品| 色婷婷久久久亚洲欧美| 久久毛片免费看一区二区三区| 如日韩欧美国产精品一区二区三区| 美女内射精品一级片tv| 亚洲成av片中文字幕在线观看 | 午夜日本视频在线| 国产精品久久久久久精品电影小说| 在线天堂最新版资源| 一区二区三区四区激情视频| 国产探花极品一区二区| 国产精品欧美亚洲77777| 国产免费又黄又爽又色| 18禁裸乳无遮挡动漫免费视频| 18禁动态无遮挡网站| 大香蕉久久成人网| 国内精品宾馆在线| 黄色配什么色好看| 黄色怎么调成土黄色| 在线观看人妻少妇| 又大又黄又爽视频免费| 亚洲国产成人一精品久久久| 久久久亚洲精品成人影院| 亚洲精品日本国产第一区| 免费女性裸体啪啪无遮挡网站| 好男人视频免费观看在线| 欧美老熟妇乱子伦牲交| √禁漫天堂资源中文www| 国产色婷婷99| 色吧在线观看| 国产精品久久久久久精品古装| 国产女主播在线喷水免费视频网站| 一区二区三区乱码不卡18| 夫妻性生交免费视频一级片| 热re99久久国产66热| 伦理电影大哥的女人| 啦啦啦中文免费视频观看日本| 精品少妇黑人巨大在线播放| 欧美国产精品一级二级三级| 日本91视频免费播放| 亚洲伊人久久精品综合| 欧美日韩亚洲高清精品| 国产一区二区在线观看日韩| 丝袜在线中文字幕| 大香蕉久久成人网| 性色av一级| 日本av免费视频播放| 黄网站色视频无遮挡免费观看| 国产精品国产三级专区第一集| 三级国产精品片| 国产一区二区三区av在线| 99热这里只有是精品在线观看| 欧美精品一区二区免费开放| 国产69精品久久久久777片| av播播在线观看一区| 成人二区视频| 日本午夜av视频| 国产精品久久久久久久久免| 欧美日韩精品成人综合77777| 高清毛片免费看| 久久精品国产自在天天线| 国产日韩欧美视频二区| 日本色播在线视频| 久热久热在线精品观看| 26uuu在线亚洲综合色| 女的被弄到高潮叫床怎么办| 精品国产一区二区久久| 蜜桃国产av成人99| 久久99精品国语久久久| 男人爽女人下面视频在线观看| 国产有黄有色有爽视频| 热re99久久国产66热| 十八禁网站网址无遮挡| 制服人妻中文乱码| 精品视频人人做人人爽| 男女国产视频网站| 欧美+日韩+精品| 久久青草综合色| 国产毛片在线视频| 日韩大片免费观看网站| 亚洲美女搞黄在线观看| 香蕉国产在线看| 日本午夜av视频| a 毛片基地| av.在线天堂| 亚洲成人手机| 亚洲性久久影院| 国产精品欧美亚洲77777| 又黄又爽又刺激的免费视频.| 99热网站在线观看| 久久精品国产a三级三级三级| 欧美bdsm另类| 亚洲av在线观看美女高潮| 久久人人爽人人爽人人片va| 欧美日本中文国产一区发布| 曰老女人黄片| 久久精品国产自在天天线| 午夜视频国产福利| 亚洲婷婷狠狠爱综合网| 欧美亚洲 丝袜 人妻 在线| 新久久久久国产一级毛片| 欧美日韩视频高清一区二区三区二| 在线看a的网站| 纯流量卡能插随身wifi吗| 午夜久久久在线观看| av有码第一页| 久久精品夜色国产| 中国三级夫妇交换| 日本黄色日本黄色录像| 国产精品嫩草影院av在线观看| av免费观看日本| 国产深夜福利视频在线观看| 99久久中文字幕三级久久日本| 欧美日韩av久久| 亚洲第一av免费看| 日本vs欧美在线观看视频| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久久av不卡| 十八禁网站网址无遮挡| 免费大片18禁| av有码第一页| 欧美日韩国产mv在线观看视频| 欧美日本中文国产一区发布| 精品少妇久久久久久888优播| 亚洲性久久影院| 91久久精品国产一区二区三区| 日韩欧美一区视频在线观看| 97在线视频观看| 国产精品人妻久久久久久| 黑人欧美特级aaaaaa片| 黄色一级大片看看| 99九九在线精品视频|