• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The experiment and analysis of transitional flow in pipe*

    2016-10-14 12:23:33JunWANG王軍GuangshengDU杜廣生JingyingWANG王京盈JieGENG耿介DongLI李冬
    關(guān)鍵詞:王軍

    Jun WANG (王軍),Guang-sheng DU (杜廣生),Jing-ying WANG (王京盈),Jie GENG (耿介),Dong LI (李冬)

    1.School of Energy and Power Engineering,Shandong University,Jinan 250061,China

    2.School of Thermal Engineering,Shandong Jianzhu University,Jinan 250101,China,E-mail:wwjjy99@126.com

    The experiment and analysis of transitional flow in pipe*

    Jun WANG (王軍)1,2,Guang-sheng DU (杜廣生)1,Jing-ying WANG (王京盈)1,Jie GENG (耿介)1,Dong LI (李冬)1

    1.School of Energy and Power Engineering,Shandong University,Jinan 250061,China

    2.School of Thermal Engineering,Shandong Jianzhu University,Jinan 250101,China,E-mail:wwjjy99@126.com

    The transitional flow in a pipe is important for delivery,but its characteristics remain to be explored.In this paper,the two-dimensional laser Doppler velocimetry (LDV) is used for the study,focusing on the attenuation characteristics of the axial velocity,the variation of the velocity gradient,the effect of the angle between the axis and the resultant velocity vector,and the relationship between the energy coefficient and the flow state.The attenuation characteristics of the axial velocity along the radial direction are obtained.It is shown that with the increase of the Reynolds number,the change rate of the velocity gradient slows down with a similar distribution,and a rapid decrease is seen in the near wall region.The amplitude and the frequency of the angular variation are obviously improved with the increase of the Reynolds number.The instability of the velocity field is enhanced with the increase of the energy coefficient.

    transitional flow,attenuation,velocity gradient,flow instability,energy coefficient

    Introduction

    The pipe flow is one of the most common phenomena in industrial processes,the flow in the pipe is complicated,unstable,and related with a complex fluid dynamics.Aravinth[1]studied the heat and mass transfer processes of the turbulent fluid flow in the pipe,and proposed formulas obtained from a wide range of experimental data.References [2,3]analyzed the fully developed turbulent pipe flow by experiments,and obtained the velocity distribution and the von Karman' s coefficient in the pipe.

    Most of the researches mentioned above deal with the turbulence.The transition from the laminar to the turbulent flows has not been paid due attention,while there are significant differences between theflow field of a fully developed turbulence and that in the transitional area.A simplified flow model is often adopted to analyze it,and the experimental results focus on the change of the turbulent velocity field in the pipe.

    The transitional flow may be found in civil and industrial processes,and it is often treated as a turbulence.Using this method to design the pipe system and to make the flow measurement will cause a remarkable error,therefore,it is important to make a study of the flow of the transition area.The difference between a simplified theoretical model and the actual flow will bring about some errors,as the simplified model cannot fully reflect the essence of the pipe flow.In this paper,we study the transition area in the pipe by the experimental method to avoid the disadvantage of the simplified model.In the meantime,the factors affecting the pipe flow are discussed based on the velocity field.

    The Navier-Stokes (N-S) equation[4]of the incompressible fluid is usually used in the study of the pipe flow.In order to analyze the flow situation,the traditional method of analysis is to simplify the N-S equation by a dimensionless method.The dimensionless N-S equation takes the form

    In Eq.(1) and Eq.(2),W is the speed,t is the time,p is the pressure,Re is the Reynolds number andf is the volume force.

    It can be found from the dimensionless equations that the flo w states with the same Reynolds number are similar.It is seen that the speed item plays an important part in the flow process,so that the attenuation and the change of the velocity in the pipe can affect the flow significantly.In this paper,we use the two-dimensional laser Doppler velocimetry (LDV)[5,6]for the measurements in the transition area of the pipe flow.Because of the measuring advantage of the LDV[7,8]in the near wall region,the results can reflect the true state of the flow due to the uniformity of distribution and the good flow property of the natural impurities in water.The test area is arranged depending on the structural characteristics of the three-dimensional coordinate frame.

    From the pipe wall to the axis in the radial direction,the LDV is utilized sequentially for different positions and sections of the flow at different Reynolds numbers to obtain the flow parameters.From the experiment results,we can further analyze the variation and the attenuation of the flow and check the effects of the relevant parameters on the flow state.A reference can be provided for the numerical simulation of the pipe,the design of the piping system and the flow measuring device.

    Fig.1 Doppler testing system

    1.Experiment devices

    The experimental system includes a water circulation system[9-11]and a Doppler testing system,the water circulation system includes an upper water tank,a pipe system,an electromagnetic flow meter,a regulating valve,a circulating water pump and a lower water tank.The Doppler testing system is shown in Fig.1[12],the position of the measuring points can be adjusted by the use of a three-dimensional coordinate frame.

    2.Experiment method

    The water cycling system is started to form different flow states by the regulation of the valve opening,the flux is measured by the flow meter.To ensure the accuracy of the measurement,the LDV should be adjusted in accordance with the requirements of the experiment[12-14].The test section of the pipe is made of transparent plexiglass,its inner diameter is 0.04 m.The LDV is adjusted according to the technical parameters of the three-dimensional coordinates frame,the test area is shown in Fig.2.

    Fig.2 Test area

    According to the characteristics of the pipe flow,the flow velocity near the pipe wall changes greatly and the velocity decreases from the pipe center to the pipe wall.The measuring points near the wall are arranged densely to reflect the flow characteristics,the inner wall of the pipe is the starting point,on each section the beam intersection point is used as a measuring point and a set of data is obtained.There are 40 nodes in the radial direction and 70 nodes in the axial direction,the entire test area contains 2 800 nodes.A set of samples is chosen in the speed measurement,according to the initial setting of the test system,the average values are taken as the required data.The Reynolds number of the test area is from 2 000 to 8 000.On each test section,400 sets of data are obtained for every Reynolds number.

    3.Analysis of test results

    3.1 Attenuation characteristics of average axial velocity

    The axial velocity distribution varies greatly in different flow areas in the pipe[15,16],the attenuation characteristics have much to do with the flow state.Six flow states in the experiment ( Re = 2 400,3 800,4 800,5 800,6 800,7 800) are selected.

    Comparing the velocity of each measuring point with the average velocity in each flow state,it can befound that the proportion of the velocity below the average value is gradually decreased with the increase of the Reynolds number.When Re =2 400,the proportion of the measured velocity below the average speed is 40%,and it becomes 25% when Re =7800,and the flow state tends to be enhanced.The results of the experiment are shown in Table 1.

    Table 1 Proportion of velocity below average speed

    The attenuation characteristics in different flow states are analyzed.Considering the instantaneity and the mutability of the flow field,the radial coordinate is nondimensionalized.

    Fig.3 Distributions of the average speed

    Figure 3 shows the average velocity distribution along the radial direction.The center of the pipe is used as the starting point of the coordinater and the pipe wall is the end.Comparing the occurrence position of the average speed,it can be seen that the mainstream area is enlarged with the increase of the Reynolds number.In Fig.3,Curve 1 is the occurrence position of the average speed in the radial direction in different flow states,Curve 2 is the positional distribution when the speed is down to the 50 percent of the average velocity.The axial velocity is enhanced with the increase of the Reynolds number; because of the inertia force,the axial velocity at different measuring points shows a trend of overall increase,the occurrence position of the average speed gradually moves towards the pipe wall,reflecting the change of the velocity distribution in the flow field.With the increase of the Reynolds number,the distribution of the points on Curves 1 and 2 has an approximately linear relationship.Comparing Curve 1 with Curve 2,it can be found that the decaying rate at a high Reynolds number is significantly greater than that at a low Reynolds number on the basis of per unit length under different flow conditions,when the average speed declines gradually to its 50% in the radial direction,the attenuation improves greatly with the increase of the Reynolds number,and the decaying rate of the axial velocity in the radial direction has a close relationship with the flow state.

    3.2 Analysis of flow changes near the pipe wall

    The LDV performs well in the testing area near the pipe wall.The distribution of the flow velocity vector at different Reynolds numbers is shown in Fig.4.With the increase of the Reynolds number,the influence of the inertia force is gradually increased and that of the viscous force is weakened[17],the flow velocity near the pipe wall is increased,the velocity profile develops gradually and becomes full,the shape of the profile boundary changes from parabola to logarithmic curve,the flow state is gradually changed.The change extent of the profile shape is particularly evident near the pipe wall.

    Fig.4 Distributions of the velocity vector near the pipe wall

    In order to study the flow characteristics near the pipe wall quantitatively,the axial velocity profile composed of ten continuous measuring points is analyzed numerically and the distribution of the velocity gradient along the radial direction is obtained,from which the effective scope of the flow field can be determined.Based on the work of the Ref.[18],the velocity gradient is dealt with the dimensionless method to reach some general conclusions.The dimensionless uses the following method

    where ?u is the axial velocity change,V is theaverage velocity,?r is the radius variation,andD is the diameter.The distribution of the dimensionless velocity gradient is shown in Fig.5.

    Fig.5 Distributions of the dimensionless velocity gradient

    According to the distribution of the dimensionless velocity gradient,in the starting stage of the curve,six curves of the velocity gradient see a certain similarity.With the measuring point being moved from the axis to the pipe wall,the inertial force plays more important role than that of the viscous force at a low Reynolds number,the change of the velocity gradient along the radial direction is significant and has a certain continuity,the curve shows the state of a rapid uplift and the uplift location is far away from the pipe wall.

    With the increase of the Reynolds number,the axial velocity is improved,the impact of the inertial force is enhanced and that of the viscous force is reduced.The mixing of the fluid particles is improved.It can be observed in Fig.5 that the similarity of the velocity gradient curve is apparent at a high Reynolds number.With the expansion of the axial velocity boundary,the front of the curve is relatively flat,with characteristics of a sharp improvement in the position close to the pipe wall.

    Fig.6 Axial angle distributions of the resultant velocity

    3.3 The change of the angle between the resultant velocity vector and the pipe axis

    In various sections of the pipe,the flow velocities are in the form of resultant vectors,and the change of the resultant velocity has an important impact on the pipe flow.According to the features of the Doppler velocimetry,the distribution of the resultant velocity on the longitudinal section of the pipe is analyzed.

    Figure 6 shows the change of the angle between the resultant velocity vector on the longitudinal section in the pipe and the pipe axis at different Reynolds numbers.At a low Reynolds number,the angle changes but little.The tendency of the curve is relatively stable.Because of the viscous force,the impact of the radial velocity is weakened.Interference between different flow layers is small.

    With the increase of the Reynolds number,the axial velocity becomes to play a leading role at the position close to the pipe axis because of the impact of the inertial force,the change of the angle is not significant,when the considered position moves continuously towards the pipe wall along the radial direction,there is a significant increase in the angle with the improvement of the effect of the viscous force,the angle sees a larger fluctuation,the direction of the resultant velocity changes frequently,which causes the interference between different flow layers.The radial velocity is severely affected in the area close to the pipe wall and the angle becomes to show a downward trend.

    At a high Reynolds number,the position where the angle changes significantly moves forward obviously,the radial velocity plays a more important role with the reduction of the viscosity force effect,the region of the angle fluctuation is widened and the volatility is also increased.The variation and the frequency of the axial angle are improved and the uncertainty of the flow is enhanced,the disturbance and the mixing between flow layers lead to the change of the flow state.Because of the impact of the pipe wall,the radial velocity is reduced and the angle also shows a downward trend in the area close to the pipe wall.

    3.4 The effect of energy coefficient

    The kinetic energy is an important parameter to analyze the flow state,and the energy change in the fluid flow can be analyzed as

    In Eq.(4),1u,1vand1ware,respectively,the root mean square values of the axial,radial and circumferential velocities,V is the average axial velocity and βis the energy coefficient.

    In the experiment,the two-dimensional Doppler velocimetry is used as the testing instrument,and the experimental data contain only the radial and axial velocity components.It is assumed that the pipe flowis isotropic.To analyze the flow state,Eq.(4) can be simplified as

    The relationship between the energy coefficient and the change of the flow state in the pipe can be studied according to the change of the energy coefficient.

    Figure 7 is the distribution of the energy coefficient in three flow states.With the increase of the Reynolds number,the growth ofβis improved,the kinetic energy coefficient in three flow states can reach the maximum value at the pipe axis,with the radial velocity and the axial velocity increasing rapidly.At a high Reynolds number,there are more peak points of the kinetic energy coefficient on the curves,the change of the energy is more severe,and the randomness and the volatility of the flow are significantly increased.

    Fig.7 Distributions of the energy coefficients

    The curves ofβin the three flowing states see a decrease in the region close to the pipe wall,the greater the Reynolds number,the more obvious the downward trend.At a low Reynolds number,the location where the curves show a downtrend trend is far from the pipe wall.With the increase of the Reynolds number,the curves rapidly decline at locations close to the pipe wall,which reflects the influence of the pipe wall on the velocity field in different flow states,that is,the region near the pipe wall has an inhibitory effect on the flow development.The shape of the curve shows irregular changes,by comparing the coefficient curves at different Reynolds numbers.It is found that the fluctuations of the curve at a high Reynolds number can appear in the whole radial area,which reflects the increase of the energy distribution instability.When moving along the radial direction,the velocity field changes due to the effect of the viscous force which leads to the change of the energy coefficient.

    At a small Reynolds number,the acting area and the intensity of the viscous force are enlarged,the energy of the fluid changes slowly,and its kinetic coefficient curve is relatively flat.At a high Reynolds number,one sees the steep rise and drop in the curves,the instability of the flow is more severe.The energy coefficient curves in the three flowing states are in a downward trend,which indicates that the development of the flow in the near wall region is inhibited.In the flow process,the curve fluctuations are not significant near the pipe axis area,the fluctuations of the curves appear mainly in the movement from the pipe axis to the pipe wall.The interaction between the inertia force and the viscous force has a great bearing on the flow state in the flow region,and the distribution of the energy coefficient also sees a significant change.

    4.Conclusions

    The radial attenuation of the axial velocity is closely related to the flow conditions and the flow area,the attenuation is not significant at the area close to the pipe axis,and at a high Reynolds number,the attenuation is significantly increased near the pipe wall.Due to the intensification of the flow and the expansion of the flow area,the position where the average velocity changes steeply moves toward the pipe wall with the increase of the Reynolds number.

    The variation of the velocity gradient can affect the flow state.Under different flow conditions,the tendencies of the velocity gradient curves are similar in the pipe axis region where the inertia force has a strong effect.When the observation point moves gradually to the pipe wall,the changing range of the velocity gradient is larger at a low Reynolds number.At a high Reynolds number,the velocity gradient sees a rapid decline in the area close to the pipe wall.

    At a low Reynolds number,the angle between the resultant velocity vector and the pipe axis is small,the interference between different flow layers is weak,the effect of the viscous force is enhanced and the flow has better stability.At a high Reynolds number,the angle between the resultant velocity vector and the pipe axis is increased and sees fluctuations when moving to the pipe wall along the radial direction,the change of the velocity vector angle will increase the uncertainty of the fluid particle motion and promote the change of the flow state.

    The energy coefficient can reflect the change of the flowing state,the instability of the flow improves with the increase of the energy coefficient,the trend is proportional to the increase of the Reynolds number,the fluctuation of the energy coefficient is mainly in the region between the pipe axis and the pipe wall.

    [1]ARAVINTH S.Prediction of heat and mass transfer forfully developed turbulent fluid flow through pipes[J].International Journal of Heat and Mass Transfer,2000,43(8):1399-1408.

    [2]DUGUET Y.,WILLIS A.P.and KERSWELL R.R.Slug genesis in cylindrical pipe flow[J].Journal of Fluid Mechanics,2010,663(11):180-208.

    [3]FENG Bin-chun,CUI Gui-xiang and ZHANG Zhao-shun.Experimental study for fully developed turbulent pipe flow[J].Acta Mechanica Sinica,2002,34(2):156-167(in Chinese).

    [4]KOEHLER C.,BERAN P.and VANELLA M.et al.Flows produced by the combined oscillatory rotation and translation of a circular cylinder in a quiescent fluid[J].Journal of Fluid Mechanics,2015,764(2):148-170.

    [5]LIU You,YANG Xiao-tao and MA Xiu-zhen.Technique of flow field measurement based on laser Doppler velocimetry[J].Laser and Infrared,2012,42(1):18-21(in Chinese).

    [6]TIAN Zhong,DENG Jun and FENG Xue-min.Investigation of flow Fields for plug dissipaters by LDV[J].Journal of Sichuan University (Engineering Science Edition),2014,46(4):1-5(in Chinese).

    [7]SANTINI M.,SANTINI S.F.and COSSALI G.LDV characterization and visualization of the liquid velocity field underneath an impacting drop in isothermal conditions[J].Experiments in Fluids,2013,54(9):1593-1597.

    [8]MOUAZE D.,BELORGEY P.M.Internally mounted laser-Doppler-anemometry system for boundary layer measureme[J].Experiments in Fluids,2001,30(1):111-114.

    [9]LIU Yong-hui,DU Guang-sheng and LIU Li-ping et al.Experimental study of velocity distribution in the transition region of pipes[J].Journal of Hydrodynamics,2011,23(5):643-648.

    [10]PAN Dong-yuan,WANG Tong and ZHANG Bin et al.PIV measurement on rotating disks flow in cylinder[J].Chinese Journal of Hydrodynamics,2009,24(2):200-206(in Chinese).

    [11]TALPOS S.,APOSTOL M.Displaced logarithmic profile of the velocity distribution in the boundary layer of a turbulent flow over an unbounded flat surface[J].Physics Letters A,2015,379(47):3102-3107.

    [12]SHEN Xiong.Principle and application of laser doppler testing technique[M].Beijing,China:Tsinghua University Press,2004(in Chinese).

    [13]ZHOU Jian.Application of frequency spectrum refinementand correction technology in laser doppler velocimeter[J].Laser and Infrared,2010,40(2):146-151(in Chinese).

    [14]WEN Yuan-fan,XIAO Hong-yin.A laser imaging-LDV coupling measurement of single bubble forming and rising in shear-thinning fluid[J].Journal of Thermal Science,2014,23(3):233-238.

    [15]ARMAN M.,LYES K.and AFSHIN G.Measurement of fluid velocity development in laminar pipe flow using laser Doppler velocimetry[J].European Journal of Physics,2013,34(5):1127-1134.

    [16]FENG Jian-jun,LUO Xing-qi and BENRA Friedrich-Kar et al.Experimental investigation of velocity fluctuations in a radial diffuser pump[J].Journal of Hydrodynamics,2015,27(3):332-339.

    [17]SAD CHEMLOUL N.Experimental study of the drag reduction in turbulent pipe flow[J].Energy,2014,64(1):818-827.

    [18]LAI Yong-bin,YANG Min-guan and GAO Bo.Experiment on axial circle flow in axially stirred tank[J].Journal of Jiangsu University (Natural Science Edition),2009,30(4):379-382(in Chinese).

    10.1016/S1001-6058(16)60633-9

    (Received October 23,2015,Revised February 20,2016)

    * Project supported by the National Natural Science Foundation of China (Grant No.10972123).

    Biography:Jun WANG (1969-),Male,Ph.D.Candidate,Associate professor

    Guang-sheng DU,E-mail:du@sdu.edu.cn

    2016,28(2):313-318

    猜你喜歡
    王軍
    HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELD
    石榴樹想法妙
    我要好好來欣賞
    不下戰(zhàn)場的士兵——王軍
    活力(2019年19期)2020-01-06 07:34:36
    蜜蜂和油菜花
    可愛的小丫丫
    生態(tài)景觀在城市規(guī)劃中的應(yīng)用探索
    Revisit submergence of ice blocks in front of ice cover-an experimental study *
    Impact of bridge pier on the stability of ice jam*
    Simulations of ice jam thickness distribution in the transverse direction*
    精品国产超薄肉色丝袜足j| 免费一级毛片在线播放高清视频| av在线天堂中文字幕| 国产一级毛片七仙女欲春2 | 国产乱人伦免费视频| 国语自产精品视频在线第100页| 成人欧美大片| 黄色丝袜av网址大全| 成熟少妇高潮喷水视频| 真人一进一出gif抽搐免费| or卡值多少钱| 国产欧美日韩精品亚洲av| 亚洲精品国产一区二区精华液| 国产极品粉嫩免费观看在线| 国产又黄又爽又无遮挡在线| 欧美色欧美亚洲另类二区| 在线观看日韩欧美| 青草久久国产| 真人一进一出gif抽搐免费| 成人手机av| 麻豆成人午夜福利视频| 亚洲色图 男人天堂 中文字幕| 国产色视频综合| 可以在线观看的亚洲视频| 操出白浆在线播放| x7x7x7水蜜桃| av片东京热男人的天堂| xxxwww97欧美| 午夜老司机福利片| 非洲黑人性xxxx精品又粗又长| 非洲黑人性xxxx精品又粗又长| 夜夜夜夜夜久久久久| 国产视频内射| 欧美丝袜亚洲另类 | 伦理电影免费视频| 黑人欧美特级aaaaaa片| 免费观看精品视频网站| 精品久久久久久久人妻蜜臀av| 久久精品国产综合久久久| 一本综合久久免费| 在线十欧美十亚洲十日本专区| 手机成人av网站| av免费在线观看网站| 国产亚洲av高清不卡| 身体一侧抽搐| 国产成人欧美| 亚洲专区中文字幕在线| 亚洲国产毛片av蜜桃av| 亚洲国产看品久久| 久久天堂一区二区三区四区| 亚洲国产欧洲综合997久久, | 50天的宝宝边吃奶边哭怎么回事| 免费在线观看日本一区| 在线观看舔阴道视频| 99国产精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 满18在线观看网站| 亚洲aⅴ乱码一区二区在线播放 | 国产色视频综合| 可以在线观看的亚洲视频| 国产日本99.免费观看| 99热6这里只有精品| aaaaa片日本免费| 久久精品成人免费网站| 中亚洲国语对白在线视频| 午夜免费激情av| 人人妻人人澡人人看| 国产成人欧美在线观看| 亚洲avbb在线观看| 亚洲人成网站高清观看| 91在线观看av| 香蕉久久夜色| 色婷婷久久久亚洲欧美| 黄网站色视频无遮挡免费观看| 大型黄色视频在线免费观看| 亚洲国产精品999在线| 两个人免费观看高清视频| 丰满人妻熟妇乱又伦精品不卡| 可以免费在线观看a视频的电影网站| 国产麻豆成人av免费视频| 亚洲成a人片在线一区二区| 女人被狂操c到高潮| www.熟女人妻精品国产| 九色国产91popny在线| 我的亚洲天堂| 亚洲国产欧美网| 国产亚洲精品一区二区www| 好看av亚洲va欧美ⅴa在| 日韩精品中文字幕看吧| 亚洲熟女毛片儿| 午夜视频精品福利| 国产成人系列免费观看| 国产单亲对白刺激| 十八禁人妻一区二区| 后天国语完整版免费观看| 免费在线观看成人毛片| 久久久久国产一级毛片高清牌| 精品久久久久久久久久久久久 | 亚洲午夜理论影院| 精品国产国语对白av| 一本大道久久a久久精品| 在线观看66精品国产| 黄色 视频免费看| 久久精品aⅴ一区二区三区四区| 国产一区二区激情短视频| 极品教师在线免费播放| 中亚洲国语对白在线视频| tocl精华| 老司机福利观看| 最近最新中文字幕大全电影3 | 欧美日韩黄片免| 久久久久亚洲av毛片大全| 草草在线视频免费看| av有码第一页| 亚洲av熟女| 国产极品粉嫩免费观看在线| 午夜成年电影在线免费观看| 99国产精品99久久久久| 欧美日韩精品网址| 少妇粗大呻吟视频| 97人妻精品一区二区三区麻豆 | 午夜福利视频1000在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 免费看日本二区| 国产又黄又爽又无遮挡在线| 中文资源天堂在线| 麻豆成人av在线观看| 国产av在哪里看| 在线免费观看的www视频| www日本黄色视频网| 免费在线观看完整版高清| 免费人成视频x8x8入口观看| 免费在线观看成人毛片| 丰满人妻熟妇乱又伦精品不卡| 99国产精品99久久久久| 精品不卡国产一区二区三区| 日韩欧美 国产精品| 亚洲精品中文字幕一二三四区| 亚洲av五月六月丁香网| 亚洲精品在线美女| 无遮挡黄片免费观看| 18禁国产床啪视频网站| 久久久国产精品麻豆| 一边摸一边抽搐一进一小说| 免费在线观看亚洲国产| 欧美大码av| 中文资源天堂在线| 中文亚洲av片在线观看爽| 午夜影院日韩av| 国产精品二区激情视频| 久久中文字幕一级| 91国产中文字幕| 日本撒尿小便嘘嘘汇集6| 天堂影院成人在线观看| 中文资源天堂在线| 欧美不卡视频在线免费观看 | 一区二区三区激情视频| 无遮挡黄片免费观看| 国产精品一区二区三区四区久久 | 成人三级做爰电影| 中文字幕久久专区| 白带黄色成豆腐渣| 此物有八面人人有两片| 国产在线观看jvid| 女生性感内裤真人,穿戴方法视频| 欧美在线一区亚洲| 亚洲人成伊人成综合网2020| xxx96com| 亚洲最大成人中文| 老熟妇仑乱视频hdxx| 91麻豆精品激情在线观看国产| 免费女性裸体啪啪无遮挡网站| 久9热在线精品视频| 精品久久久久久成人av| 最近最新免费中文字幕在线| 欧美日韩一级在线毛片| 亚洲欧美日韩高清在线视频| 久久香蕉精品热| 国产欧美日韩一区二区三| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看黄色视频的| 国内久久婷婷六月综合欲色啪| 国产私拍福利视频在线观看| 日本三级黄在线观看| 欧美日本视频| 黄色 视频免费看| 国产精品久久久久久精品电影 | 亚洲欧洲精品一区二区精品久久久| 国产1区2区3区精品| 亚洲中文字幕日韩| 精品国产一区二区三区四区第35| 亚洲人成77777在线视频| 香蕉国产在线看| 精品欧美一区二区三区在线| 久久 成人 亚洲| 亚洲精品一卡2卡三卡4卡5卡| 日韩成人在线观看一区二区三区| 女生性感内裤真人,穿戴方法视频| 最近在线观看免费完整版| 亚洲第一欧美日韩一区二区三区| 黑人操中国人逼视频| 亚洲国产欧美日韩在线播放| 一进一出好大好爽视频| 日日干狠狠操夜夜爽| 一进一出抽搐动态| 午夜久久久久精精品| 亚洲av五月六月丁香网| 美女大奶头视频| 久久久久久大精品| 麻豆国产av国片精品| 精品久久久久久久久久久久久 | 亚洲国产看品久久| 天天添夜夜摸| av福利片在线| 高潮久久久久久久久久久不卡| 91成人精品电影| 午夜免费观看网址| 桃红色精品国产亚洲av| 99热只有精品国产| 夜夜爽天天搞| 成熟少妇高潮喷水视频| 色婷婷久久久亚洲欧美| 欧美在线黄色| 中文字幕另类日韩欧美亚洲嫩草| 午夜激情福利司机影院| 成人一区二区视频在线观看| 黄网站色视频无遮挡免费观看| 丰满的人妻完整版| 免费人成视频x8x8入口观看| 老司机福利观看| 国产伦一二天堂av在线观看| 自线自在国产av| 亚洲熟妇熟女久久| 成人手机av| 欧美大码av| 侵犯人妻中文字幕一二三四区| 男女做爰动态图高潮gif福利片| 欧美zozozo另类| 可以免费在线观看a视频的电影网站| 成人欧美大片| 丝袜在线中文字幕| 天堂动漫精品| 可以在线观看的亚洲视频| 精品国内亚洲2022精品成人| 12—13女人毛片做爰片一| 亚洲精品美女久久av网站| 午夜精品久久久久久毛片777| 国产成人av激情在线播放| 久久婷婷成人综合色麻豆| 亚洲熟妇中文字幕五十中出| 久久午夜亚洲精品久久| 91大片在线观看| 亚洲欧美精品综合一区二区三区| 亚洲国产看品久久| 欧美zozozo另类| 亚洲精品国产一区二区精华液| 国产精品1区2区在线观看.| 国产主播在线观看一区二区| a在线观看视频网站| 精品久久久久久久久久久久久 | 人人妻,人人澡人人爽秒播| 琪琪午夜伦伦电影理论片6080| 黄色片一级片一级黄色片| 波多野结衣巨乳人妻| 国产高清视频在线播放一区| 长腿黑丝高跟| 欧美成狂野欧美在线观看| 国产精品一区二区免费欧美| 婷婷精品国产亚洲av| 两个人免费观看高清视频| 中亚洲国语对白在线视频| 法律面前人人平等表现在哪些方面| 亚洲一区中文字幕在线| 久久精品夜夜夜夜夜久久蜜豆 | 国产免费av片在线观看野外av| av视频在线观看入口| 首页视频小说图片口味搜索| 麻豆一二三区av精品| 日韩欧美国产一区二区入口| 久久久久久久午夜电影| 午夜激情福利司机影院| 色综合婷婷激情| av天堂在线播放| 欧美日韩亚洲综合一区二区三区_| 日韩一卡2卡3卡4卡2021年| 欧美乱色亚洲激情| 亚洲欧美日韩无卡精品| 亚洲成人免费电影在线观看| 免费av毛片视频| 欧美色视频一区免费| 久久 成人 亚洲| 男人舔奶头视频| 久久中文字幕人妻熟女| 一区二区三区国产精品乱码| 麻豆国产av国片精品| 精品久久久久久久久久免费视频| 日本成人三级电影网站| 香蕉av资源在线| 午夜免费激情av| 成人一区二区视频在线观看| 国产精品综合久久久久久久免费| 亚洲精品国产精品久久久不卡| 国产成人av教育| 黑人操中国人逼视频| 亚洲欧美日韩无卡精品| 免费女性裸体啪啪无遮挡网站| 成熟少妇高潮喷水视频| 777久久人妻少妇嫩草av网站| 免费av毛片视频| 成人手机av| 久久久久久久久中文| 久久欧美精品欧美久久欧美| 嫩草影院精品99| 中出人妻视频一区二区| 777久久人妻少妇嫩草av网站| 欧美黄色片欧美黄色片| 国产国语露脸激情在线看| 欧美精品啪啪一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | av在线播放免费不卡| 色播亚洲综合网| 伦理电影免费视频| 亚洲精品中文字幕在线视频| 亚洲av日韩精品久久久久久密| 非洲黑人性xxxx精品又粗又长| 无限看片的www在线观看| 男人舔女人下体高潮全视频| 视频在线观看一区二区三区| 99精品在免费线老司机午夜| 18禁观看日本| 午夜亚洲福利在线播放| 国产亚洲欧美精品永久| 久久香蕉精品热| 亚洲av成人av| e午夜精品久久久久久久| 亚洲自偷自拍图片 自拍| 国产蜜桃级精品一区二区三区| 制服诱惑二区| 91麻豆精品激情在线观看国产| 不卡一级毛片| 欧美激情极品国产一区二区三区| 午夜老司机福利片| 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av香蕉五月| 国产色视频综合| 久久久久免费精品人妻一区二区 | 精品久久久久久久毛片微露脸| 狂野欧美激情性xxxx| 国产精品免费视频内射| 亚洲精品国产精品久久久不卡| 精品午夜福利视频在线观看一区| 黄网站色视频无遮挡免费观看| 亚洲无线在线观看| 国产亚洲av高清不卡| 美女高潮喷水抽搐中文字幕| 18禁黄网站禁片午夜丰满| 免费在线观看视频国产中文字幕亚洲| 国产欧美日韩一区二区三| 三级毛片av免费| 欧美精品啪啪一区二区三区| 国产一卡二卡三卡精品| 欧美日韩一级在线毛片| 免费在线观看视频国产中文字幕亚洲| 丰满的人妻完整版| 久久香蕉激情| 中文资源天堂在线| 国产精品久久久人人做人人爽| 99在线视频只有这里精品首页| 亚洲自偷自拍图片 自拍| 国产精品久久久久久精品电影 | 丝袜在线中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 久久精品国产99精品国产亚洲性色| 一二三四在线观看免费中文在| 色综合站精品国产| 人妻久久中文字幕网| 在线观看免费视频日本深夜| 久久久久久久午夜电影| 老司机福利观看| 亚洲中文字幕日韩| 琪琪午夜伦伦电影理论片6080| 婷婷丁香在线五月| 丝袜在线中文字幕| 久久精品国产亚洲av高清一级| 淫妇啪啪啪对白视频| 国产三级在线视频| 一边摸一边抽搐一进一小说| 观看免费一级毛片| 黄色成人免费大全| 国产黄a三级三级三级人| 成人手机av| 最近最新中文字幕大全电影3 | 免费高清在线观看日韩| 欧美中文综合在线视频| 亚洲专区中文字幕在线| 啪啪无遮挡十八禁网站| 成人一区二区视频在线观看| 国内揄拍国产精品人妻在线 | 99精品在免费线老司机午夜| 国产又色又爽无遮挡免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产综合亚洲| 亚洲av日韩精品久久久久久密| 成人18禁在线播放| 亚洲 国产 在线| 中国美女看黄片| 久久精品亚洲精品国产色婷小说| 18禁国产床啪视频网站| xxxwww97欧美| 动漫黄色视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 无遮挡黄片免费观看| 成年人黄色毛片网站| 国产免费男女视频| 亚洲熟妇中文字幕五十中出| 亚洲男人的天堂狠狠| 亚洲av成人不卡在线观看播放网| 色精品久久人妻99蜜桃| 91九色精品人成在线观看| 黄片小视频在线播放| 亚洲欧美精品综合久久99| ponron亚洲| 久久天躁狠狠躁夜夜2o2o| 亚洲专区字幕在线| 日韩三级视频一区二区三区| 色av中文字幕| 成人国产一区最新在线观看| 在线观看午夜福利视频| 一本大道久久a久久精品| АⅤ资源中文在线天堂| 国内久久婷婷六月综合欲色啪| 麻豆一二三区av精品| 国产av在哪里看| 久久久久国内视频| 亚洲一区二区三区不卡视频| 男女床上黄色一级片免费看| 欧美中文综合在线视频| 2021天堂中文幕一二区在线观 | 精品高清国产在线一区| 国产精品久久久人人做人人爽| 久久草成人影院| 国内少妇人妻偷人精品xxx网站 | 国产三级在线视频| 久久香蕉激情| 国产亚洲av高清不卡| 制服丝袜大香蕉在线| 久久青草综合色| 丰满的人妻完整版| 免费看日本二区| 神马国产精品三级电影在线观看 | 香蕉av资源在线| 18禁黄网站禁片午夜丰满| 欧美日韩瑟瑟在线播放| 90打野战视频偷拍视频| 黄色a级毛片大全视频| 久久99热这里只有精品18| 亚洲成国产人片在线观看| 大型黄色视频在线免费观看| 一本一本综合久久| 婷婷精品国产亚洲av| 久久中文字幕一级| 亚洲av中文字字幕乱码综合 | 九色国产91popny在线| 在线观看一区二区三区| 午夜老司机福利片| 亚洲国产高清在线一区二区三 | 男人的好看免费观看在线视频 | 国产一区二区三区视频了| 中亚洲国语对白在线视频| 免费在线观看视频国产中文字幕亚洲| 成人免费观看视频高清| 91大片在线观看| 国产精品香港三级国产av潘金莲| 国产成人一区二区三区免费视频网站| 黄网站色视频无遮挡免费观看| 国产精品久久久久久人妻精品电影| 9191精品国产免费久久| 免费高清视频大片| 国内久久婷婷六月综合欲色啪| 日韩成人在线观看一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲五月色婷婷综合| 满18在线观看网站| 黑人操中国人逼视频| 黄色视频不卡| 午夜免费鲁丝| 久久99热这里只有精品18| 精品日产1卡2卡| 亚洲真实伦在线观看| 国产成人一区二区三区免费视频网站| 不卡一级毛片| 在线观看午夜福利视频| 色老头精品视频在线观看| 91av网站免费观看| 国产亚洲精品综合一区在线观看 | 国产av又大| 国产亚洲精品久久久久久毛片| 国产精品 国内视频| 亚洲va日本ⅴa欧美va伊人久久| or卡值多少钱| 成人欧美大片| 欧美黄色片欧美黄色片| 校园春色视频在线观看| 无遮挡黄片免费观看| 免费在线观看亚洲国产| 99久久久亚洲精品蜜臀av| 午夜福利视频1000在线观看| 曰老女人黄片| 国产精品av久久久久免费| 人人妻人人看人人澡| 国产精品二区激情视频| 久久人妻av系列| 18禁国产床啪视频网站| 亚洲avbb在线观看| 亚洲美女黄片视频| 很黄的视频免费| 欧美一区二区精品小视频在线| 一本一本综合久久| 亚洲成人免费电影在线观看| 国产精品久久视频播放| 欧美不卡视频在线免费观看 | 国产精品av久久久久免费| 国产激情偷乱视频一区二区| 久久久水蜜桃国产精品网| 中文字幕最新亚洲高清| 久久精品aⅴ一区二区三区四区| 美女扒开内裤让男人捅视频| 成人三级黄色视频| 成年女人毛片免费观看观看9| 色在线成人网| 狂野欧美激情性xxxx| 美女免费视频网站| 久久久久亚洲av毛片大全| 久久久久久九九精品二区国产 | 黄频高清免费视频| 搞女人的毛片| 久久人妻福利社区极品人妻图片| 黄色毛片三级朝国网站| 天堂动漫精品| 精品久久久久久久久久免费视频| 亚洲第一青青草原| 国产aⅴ精品一区二区三区波| 丰满的人妻完整版| 成人18禁在线播放| 免费av毛片视频| 99热这里只有精品一区 | 99国产综合亚洲精品| 日韩欧美三级三区| 国内精品久久久久精免费| 99在线人妻在线中文字幕| 日日夜夜操网爽| 亚洲精品国产精品久久久不卡| 免费一级毛片在线播放高清视频| 亚洲中文av在线| 久久国产亚洲av麻豆专区| 成人亚洲精品一区在线观看| 色播在线永久视频| 欧美激情极品国产一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲熟妇中文字幕五十中出| 啦啦啦观看免费观看视频高清| 欧美黄色片欧美黄色片| 亚洲欧洲精品一区二区精品久久久| 搡老岳熟女国产| 国内精品久久久久久久电影| 成人特级黄色片久久久久久久| 欧美日韩亚洲综合一区二区三区_| 亚洲av电影不卡..在线观看| 国内少妇人妻偷人精品xxx网站 | 精品国产美女av久久久久小说| 久久天躁狠狠躁夜夜2o2o| 国产成人啪精品午夜网站| 亚洲精品一区av在线观看| 99久久综合精品五月天人人| 男女下面进入的视频免费午夜 | 婷婷精品国产亚洲av| 亚洲五月婷婷丁香| 国产高清视频在线播放一区| 99热6这里只有精品| 国产在线观看jvid| 丰满人妻熟妇乱又伦精品不卡| 国产91精品成人一区二区三区| 夜夜躁狠狠躁天天躁| 欧美黑人欧美精品刺激| 日日爽夜夜爽网站| 精品国产乱码久久久久久男人| 国产乱人伦免费视频| 亚洲性夜色夜夜综合| 老司机深夜福利视频在线观看| 国产成人精品无人区| 国产亚洲av高清不卡| 日韩有码中文字幕| 久久久国产欧美日韩av| 久久伊人香网站| 成人精品一区二区免费| 久久天堂一区二区三区四区| 国产精品电影一区二区三区| 久久中文字幕一级| 欧美精品啪啪一区二区三区| 桃红色精品国产亚洲av| 好男人电影高清在线观看| 成人亚洲精品av一区二区| 久久精品国产清高在天天线| 亚洲在线自拍视频| 日韩三级视频一区二区三区| 欧美大码av| 亚洲三区欧美一区| 亚洲第一电影网av| 99精品欧美一区二区三区四区| 看黄色毛片网站| 亚洲国产欧美一区二区综合| 久久久久久人人人人人| 精品午夜福利视频在线观看一区| 亚洲精品美女久久久久99蜜臀| 天天一区二区日本电影三级|