• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved formulas for thermal behavior of oscillating nanobubbles*

    2016-10-14 12:23:35YuningZHANG張宇寧ShengcaiLI

    Yu-ning ZHANG (張宇寧),Shengcai LI

    1.State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan 430072,China

    2.Key Laboratory of Condition Monitoring and Control for Power Plant Equipment,Ministry of Education,North China Electric Power University (Beijing),Beijing 102206,China

    3.School of Engineering,University of Warwick,Coventry CV4 7AL,UK,E-mail:y.zhang@ncepu.edu.cn

    Improved formulas for thermal behavior of oscillating nanobubbles*

    Yu-ning ZHANG (張宇寧)1,2,3,Shengcai LI3

    1.State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan 430072,China

    2.Key Laboratory of Condition Monitoring and Control for Power Plant Equipment,Ministry of Education,North China Electric Power University (Beijing),Beijing 102206,China

    3.School of Engineering,University of Warwick,Coventry CV4 7AL,UK,E-mail:y.zhang@ncepu.edu.cn

    The study of nanobubbles (with sizes of the order of tens to hundreds of nanometers) is currently a hot spot of cavitation and bubble dynamics.In the literature,classical formulas are widely employed for the predictions of the thermal behavior of oscillating macro-bubbles.However,for modelling nanobubbles,the classical formulas may not be adequate due to the effects of the surface tension.In the present paper,a formula with the effects of surface tension fully considered is proposed for the predictions of thermal behavior.The predictions based on the classical formula are also presented for comparisons to show the advantages of the present formula.

    nanobubbles,cavitation,thermal behavior,surface tension

    Nanobubbles are bubbles with sub-micro sizes and gas inside in the aqueous solution.Recently,the presence of stable surface nanobubbles has attracted intensive studies[1,2].Those surface nanobubbles have many unique characteristics,leading to plenty of applications in the industry[1].For example,the surface nanobubbles could have a long lifetime up to several days[1].The production of surface nanobubbles can be easily achieved through the so-called standard solvent exchange procedure (i.e.,exchange of short-chain alcohol with water on solid substrate).The gaseous nature of surface nanobubbles has also been confirmed by experimental studies[1].Lohse and Zhang[1]gave a full review of surface nanobubbles.

    Owing to the small size of nanobubbles,many classical formulas may not be valid.For example,the classical diffusion theory predicts that the nanobubbles should be totally dissolved into the solution throughthe mass diffusion within tens of microseconds.However,the air nanobubbles could persist for more than four days,suggesting a new mechanism beyond the classical theory[1].Similarly,the thermal behavior of nanobubbles has its features.The thermal damping mechanism is one of the important aspects for accurate modeling of bubbles.The thermal damping mechanism of macro-bubbles has been investigated by many researchers over several decades.Assuming a uniform pressure inside the gas bubbles,Devin[3]derived an analytical formula for the predictions of the thermal damping mechanism,which is currently highly cited in the literature and has been widely quoted by many textbooks and research papers.Formulas related with the thermal damping mechanism are widely employed for revealing underlying physics in the bubble phenomenon,e.g.,the rectified mass diffusion,the wave propagation in bubbly liquids,the acoustical scattering,the bubble instability,the bubble-bubble interaction,and the sonoluminescence.Zhang[4]gave a brief review of the models for thermal effects.

    In the present paper,the thermal behavior of spherical nanobubbles in the liquids are theoretically investigated.After a close re-examination of the classical formula,it is found that the effects of the surface tension are not fully considered in the aforementioned formula,leading to a less accurate prediction of the nanobubble behaviors.

    In this section,the classical work by Devin[3]onthe spherical bulk bubbles will be introduced with details.The following assumptions are used[3]:

    (1) The liquid temperature adjacent the bubble interface does not change so the liquid behaves as a heat reservoir[3].Therefore,the equation of the energy conservation in the liquid was not solved in Ref.[3].

    (2) The density and the specific heats of the gas are regarded as constants[3].

    (3) The pressure in the gas bubbles is uniformly distributed.Therefore,the pressure in the gas is only a function of the time but not the radial coordinate[3].

    (4) The boundary conditions on the bubble interface and at the bubble center are given as follows[3]:at the center of the bubble,the changes of the temperature must be finite and the gradient of the change of the temperature must be zero,on the bubble-liquid interface,the changes of the temperature must be zero and the gradient of the change of the temperature must be finite.If we define θ1as the change of the temperature inside the gas bubbles from the equilibrium absolute temperature,the boundary conditions at the center of the bubble areθ1→∞and dθ1/dt=0 while the boundary conditions on the bubble-liquid interface are θ1=0and dθ1/dt→∞.

    (5) The oscillations of the pressure,the bubble volume and the temperature are assumed to be small[3].

    In this section,the key points of the derivation process of Devin[3]is summarized.Here,most notations of Devin[3]are retained.

    By differentiating the first law of thermodynamics,one obtains,

    with

    Here,U is the internal energy of the gas bubble,qis the amount of heat transferred,Wis the work done on the gas bubbles,t is the time,ρ1is the gas density,sv1is the specific heat of the gas at a constant volume,θ1is the change of the temperature inside the gas bubbles from the equilibrium absolute temperature,K1is the thermal conductivity of the gas,r is the radial coordinate,P2′is the pressure on a infinitesimal spherical shell with volumev′.Using the ideal gas law,v′in Eq.(1) can be eliminated,resulting in a differential equation of θ1.Then the solution of θ1can be obtained through solving this differential equation with related boundary conditions.

    Using the ideal gas law again,the dynamic volume of the oscillating gas bubble can be obtained.By employing the equation of the bubble motion,the stiffness and the energy loss caused by the thermal damping mechanism can both be obtained.

    For convenience,the dissipation of the energy through the thermal damping mechanism is represented by a term related with the “effective thermal viscosity (μth)” as done in Ref.[3].The non-dimensional thermal damping constant(δth)is defined by Devin[3]as

    Here,ωis the angular frequency of the driving sound field,μthis the effective thermal viscosity,ρlis the liquid density,R0is the equilibrium bubble radius,ω0is the natural frequency of the oscillating gas bubbles,and βthis the thermal damping constant.Devin[3]gave the expression of δas follows:

    th

    where

    Here,Im and Redenote the imaginary and real parts of the function,respectively,Dg,pis the thermal diffusivity of the gas at a constant pressure,γ is the ratio of the specific heats of the gas.Eqs.(2)-(4) is the widely cited formulas for the predictions of the thermal damping behavior of the oscillating bubbles.In Eqs.(3) and (4),the notations of Prosperetti are employed.

    After the derivation of Devin's formulas as shown in the last section,it is found that the effects of the surface tension has not been fully considered.Hence,in this section,a correction is made following the framework of Devin[3]with most of his notations retained.

    In Eq.(4) of Devin[3],the instantaneous pressure on the bubble interface (P2′)can be represented by the sum of two terms as follows

    Here,P′is the complex amplitude of the pressure change from the equilibrium state,P0is the ambient pressure.With the surface tension included,the above equation should be written as

    where

    Here,Pin,eqis the equilibrium pressure in the gas,σ is the surface tension coefficient.Because Devin[3]assumed that the pressure inside the gas bubble is uniformly distributed,P2′andP′are only functions of the time(t)but not the radial coordinate (r).Hence,P′can also be considered as the (uniform) instantaneous pressure inside the gas bubbles.

    Based on the first law of thermodynamics,the deviation of the absolute temperature (θ1(r,t))from the equilibrium absolute temperature (T0)was determined by Eqs.(38) and (40) of Devin[3].The expression of θ1(r,t)is not influenced by the surface tension.For a spherical shell with radius rand thicknessdr,the equilibrium volume of the shell (v0)can be written as Eq.(41) of Ref.[3]

    Based on the law of the ideal gas,with the correction of the effects of the surface tension,one can obtain

    with

    Here,v is the deviation of the volume of the shell from the equilibrium volume v0,Tis the instantaneous absolute temperature inside the gas bubbles.Following Eqs.(43)-(47) of Devin[3]and differentiating both sides of Eq.(7) and integratingdνfrom r =0to r=R0,one can obtain the deviation of the total bubble volume(V′)from the equilibrium total bubble volume (V0)as follows

    Here,Φis given by Eq.(3).P0in Eq.(47) of Devin[3]is replaced byPin,eqto include the effect of the surface tension.Assuming that the instantaneous bubble radius(R)is

    Here,x is the non-dimensional amplitude of the oscillations of the instantaneous bubble radius.Then,based on Eq.(49) of Devin[3],one can obtain

    Here,the dot over a variable denotes its time derivative,k is the polytropic exponent,bthis the dissipation coefficient.The meaning of k′will be explained later.Noticing that,one can obtain

    In Eq.(9),the restoring stiffness kused by Eq.(49) of Devin[3]is replaced byk′because the two expressions are not identical if the surface tension is considered.With the surface tension included,the expression of the stiffnesskis

    Therefore,k in Eq.(12) reduces tok′in Eq.(11)when the surface tension in Eq.(12) is neglected.Alternatively,δthdefined by Devin[3]can be expressed as

    Substituting Eq.(8) into Eq.(9),bthand k′can be expressed as functions ofΦ.Furthermore,using Eqs.(12) and (13),one can obtain expressions for k and δthas follows:

    Comparing with Eq.(2) derived by Devin[3],one can see a term involving the surface tension in the denominator of Eq.(15).The expression of the polytropic exponent in Ref.[3]is not influenced by the correction of the surface tension.

    In this section,some demonstrating examples will be given to show the effects of the surface tension(i.e.,the difference between Eq.(2) by Ref.[3]and Eq.(15) by us) in predicting the thermal damping mechanism during the radial oscillations of the gas bubbles in liquids under the acoustic excitation.For simplicity,the air bubbles oscillating in water are considered with the following constants:Dg,p=2.08× 10-5m2/s,σ=72.8dyn/m ,P0=1.01× 105Pa,γ=1.40.In the following discussions,the normalized error of the predictions of the non-dimensional thermal damping constant(δth)between Eq.(2) and Eq.(15) will be shown.

    Fig.1 Normalized error of the predictions of non-dimensional thermal damping constant (δth)by the formulas with and without corrections of surface tension (referring to Eq.(15) and Eq.(2) respectively) for air bubbles oscillating in water

    Figure 1 compares the predictions of the normalized error of the non-dimensional thermal damping constant (δth)with or without the effects of the surface tension considered (referring to Eq.(15) and Eq.(2),respectively).The predictions ofδthwithout the surface tension considered (Eq.(2)) are lower than those with the surface tension considered (Eq.(15)) for small bubbles,leading to the normalized error more than 30% for the nanobubbles.Hence,Eq.(15) should be employed for bubbles with radii within the range of micrometers,which drops into the regions of currently widely used microbubbles in the biomedical engineering (e.g.,in the tumor treatment based on the acoustic cavitation) and nanobubbles.Based on the analysis of a large amount of nanobubbles observed in the experiment,it is found that the radii of the nanobubbles are less than 2 μm[1].For those nanobubbles,the surface tension plays a major role in their physical processes(e.g.,the thermal damping mechanism during their oscillations) and should be fully considered.For macro bubbles (e.g.,bubbles with sizes more than 10 micrometers),the normalized error shown in Fig.1 is within 10%,hence the correction proposed here is not important.

    At the end of this section,several limitations of the present paper will be discussed.In the present paper,many assumptions are adopted in order to obtain a simple analytical solution.In fact,the violent bubble motion could also be involved when the nanobubble is near the surface.Those details may be found in Ref.[1]for recent progress and Refs.[5-7]for the dynamics of macroscopic bubbles as a comparison.In the current cavitation models,only bubbles with sizes above several micrometers are considered as the cavitation bubble nuclei.The existence of nanobubbles also requires a further refinement of the current cavitation model (e.g.,the cavitation model based on the mass transfer equation) to incorporate the effects of nano-scale bubbles for industrial scale applications[8].

    In the present paper,for modelling nanobubbles,a correction based on a well-known formula for the predictions of the thermal behavior is proposed for fully considering the effects of surface tension.The formula of the thermal damping constant will be influenced by this correction while the formula of the polytropic exponent will not.This corrections will be prominent for bubble sizes in the range of several micrometers.

    [1]LOHSE D.,ZHANG X.Surface nanobubbles and nanodroplets[J].Reviews of Modern Physics,2015,87(3):981-1035.

    [2]YASUI K.,TUZIUTI T.and KANEMATSU W.et al.Advanced dynamic-equilibrium model for a nanobubble and a micropancake on a hydrophobic or hydrophilic surface[J].Physical Review E,2015,91(3):033008.

    [3]DEVIN Jr C.Survey of thermal,radiation,and viscous damping of pulsating air bubbles in water[J].The Journal of the Acoustical Society of America,1959,31(12):1654-1667.

    [4]ZHANG Y.Heat transfer across interfaces of oscillating gas bubbles in liquids under acoustic excitation[J].International Communications in Heat and Mass Transfer,2013,43(2):1-7.

    [5]ZHANG A.M.,CUI P.and CUI J.,et al.Experimental study on bubble dynamics subject to buoyancy[J].Journal of Fluid Mechanics,2015,776:137-160.

    [6]ZHANG A.M.,LI S.and CUI J.Study on splitting of a toroidal bubble near a rigid boundary[J].Physics of Fluids,2015,27:062102.

    [7]ZHANG A.M.,LIU Y.L.Improved three-dimensional bubble dynamics model based on boundary element method[J].Journal of Computational Physics,2015,294:208-223.

    [8]ZHANG Y.,QIAN Z.and JI B.et al.A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow[J].Renewable and Sustainable Energy Reviews,2016,56:303-318.

    10.1016/S1001-6058(16)60635-2

    (Received October 3,2015,Revised January 14,2016)

    * Project supported by the National Natural Science Foundation of China (Grant No.51506051),the Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University (Grant No.2014SDG01).

    Biography:Yu-ning ZHANG (1983-),Male,Ph.D.,Associate Professor

    2016,28(2):325-328

    久9热在线精品视频| 国内精品久久久久精免费| 搞女人的毛片| 亚洲乱码一区二区免费版| 午夜免费观看网址| 成人午夜高清在线视频| www国产在线视频色| 一级毛片女人18水好多| 亚洲中文字幕一区二区三区有码在线看| www日本黄色视频网| 舔av片在线| 欧美日韩福利视频一区二区| 少妇的逼水好多| 夜夜看夜夜爽夜夜摸| 色综合亚洲欧美另类图片| 亚洲欧美日韩卡通动漫| 久久精品国产99精品国产亚洲性色| 午夜视频国产福利| 1000部很黄的大片| 国产精品日韩av在线免费观看| 欧美乱妇无乱码| 亚洲天堂国产精品一区在线| 精品不卡国产一区二区三区| 欧美黄色片欧美黄色片| 午夜福利视频1000在线观看| 精品国内亚洲2022精品成人| 伊人久久大香线蕉亚洲五| 99在线人妻在线中文字幕| 观看美女的网站| 俺也久久电影网| 日韩欧美精品免费久久 | 国产免费av片在线观看野外av| 91麻豆精品激情在线观看国产| 老汉色av国产亚洲站长工具| 久久久精品欧美日韩精品| 日本 欧美在线| 青草久久国产| 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 可以在线观看毛片的网站| 老司机深夜福利视频在线观看| 午夜两性在线视频| 99国产极品粉嫩在线观看| 国产高清激情床上av| 久久久久久国产a免费观看| 男女视频在线观看网站免费| 18禁黄网站禁片午夜丰满| 99久久成人亚洲精品观看| 看黄色毛片网站| 久久香蕉精品热| 最好的美女福利视频网| 中文字幕人妻丝袜一区二区| 听说在线观看完整版免费高清| 两个人视频免费观看高清| 午夜福利视频1000在线观看| 国产日本99.免费观看| 日本在线视频免费播放| 免费一级毛片在线播放高清视频| 岛国在线观看网站| 三级国产精品欧美在线观看| 亚洲成人免费电影在线观看| 亚洲精品在线观看二区| 97人妻精品一区二区三区麻豆| 99热只有精品国产| 男人的好看免费观看在线视频| 欧美大码av| 国产亚洲精品久久久久久毛片| 一进一出好大好爽视频| 欧美色视频一区免费| 国产色婷婷99| 99国产极品粉嫩在线观看| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| netflix在线观看网站| 久久欧美精品欧美久久欧美| 叶爱在线成人免费视频播放| 少妇的丰满在线观看| 一本综合久久免费| 久久这里只有精品中国| 一本一本综合久久| 中文资源天堂在线| 日韩欧美精品v在线| 一夜夜www| 老司机福利观看| 又黄又爽又免费观看的视频| 色综合亚洲欧美另类图片| 午夜免费激情av| 精品久久久久久久久久久久久| 国产老妇女一区| 在线免费观看的www视频| 中国美女看黄片| 国产精品久久视频播放| 国产不卡一卡二| 国产一区二区激情短视频| 69av精品久久久久久| 亚洲成a人片在线一区二区| 午夜视频国产福利| 亚洲av成人不卡在线观看播放网| 国产高清激情床上av| 日韩av在线大香蕉| 欧美3d第一页| netflix在线观看网站| 男人舔奶头视频| 亚洲,欧美精品.| www.www免费av| 级片在线观看| 欧美日韩国产亚洲二区| 麻豆久久精品国产亚洲av| 男女做爰动态图高潮gif福利片| 制服丝袜大香蕉在线| 亚洲欧美激情综合另类| 一卡2卡三卡四卡精品乱码亚洲| 国产又黄又爽又无遮挡在线| netflix在线观看网站| 999久久久精品免费观看国产| 97人妻精品一区二区三区麻豆| 亚洲无线在线观看| 成人无遮挡网站| 性欧美人与动物交配| 久久久久久久久中文| 亚洲 欧美 日韩 在线 免费| 国产一区二区在线观看日韩 | 深爱激情五月婷婷| 亚洲国产色片| 成人18禁在线播放| 日韩国内少妇激情av| 村上凉子中文字幕在线| АⅤ资源中文在线天堂| 亚洲精品久久国产高清桃花| 蜜桃久久精品国产亚洲av| 日韩精品中文字幕看吧| 日韩欧美精品v在线| 精品国产美女av久久久久小说| 日韩欧美一区二区三区在线观看| 欧美日韩乱码在线| 久久久色成人| av黄色大香蕉| www日本在线高清视频| 亚洲乱码一区二区免费版| 久久香蕉国产精品| 日韩av在线大香蕉| 首页视频小说图片口味搜索| 免费观看精品视频网站| 欧美日韩黄片免| 久久亚洲精品不卡| 少妇裸体淫交视频免费看高清| 国产成人av教育| 久久久精品大字幕| 亚洲国产日韩欧美精品在线观看 | 色精品久久人妻99蜜桃| 又爽又黄无遮挡网站| 免费av观看视频| 成人av一区二区三区在线看| 国产高清视频在线观看网站| 亚洲av免费高清在线观看| 国产又黄又爽又无遮挡在线| 伊人久久精品亚洲午夜| 国内精品美女久久久久久| 亚洲av免费在线观看| 99久久无色码亚洲精品果冻| 欧美中文日本在线观看视频| 日韩欧美在线乱码| 一进一出抽搐gif免费好疼| 在线免费观看的www视频| 亚洲五月婷婷丁香| 精品人妻一区二区三区麻豆 | 在线a可以看的网站| 国内揄拍国产精品人妻在线| 岛国在线免费视频观看| 又爽又黄无遮挡网站| 91在线观看av| 成人国产一区最新在线观看| 久久久国产精品麻豆| 欧美日韩一级在线毛片| 国产高清videossex| 波野结衣二区三区在线 | 免费看十八禁软件| 成熟少妇高潮喷水视频| 欧美大码av| 成年版毛片免费区| 久久亚洲精品不卡| 欧美激情在线99| 亚洲欧美精品综合久久99| 国产亚洲精品一区二区www| 亚洲av成人不卡在线观看播放网| 国产精品三级大全| 51国产日韩欧美| 国产伦精品一区二区三区四那| 不卡一级毛片| 国产精品久久久久久精品电影| 99国产精品一区二区蜜桃av| 免费看日本二区| 久久精品国产综合久久久| 欧美一区二区精品小视频在线| 99久久精品热视频| 欧美黑人巨大hd| 欧美中文综合在线视频| 岛国在线观看网站| 中文字幕人成人乱码亚洲影| 日日干狠狠操夜夜爽| 欧美一级毛片孕妇| 国产免费男女视频| 久久欧美精品欧美久久欧美| 综合色av麻豆| 三级毛片av免费| 亚洲av中文字字幕乱码综合| 嫩草影视91久久| 国产精品精品国产色婷婷| av片东京热男人的天堂| 欧美日韩国产亚洲二区| 精华霜和精华液先用哪个| 亚洲性夜色夜夜综合| 国产美女午夜福利| 一级毛片女人18水好多| 99久久久亚洲精品蜜臀av| 女生性感内裤真人,穿戴方法视频| av女优亚洲男人天堂| 夜夜躁狠狠躁天天躁| 欧美三级亚洲精品| 久久久久久久久大av| 一本久久中文字幕| 制服人妻中文乱码| 精品一区二区三区人妻视频| 国产精品,欧美在线| 嫁个100分男人电影在线观看| 国产在线精品亚洲第一网站| 成年女人看的毛片在线观看| 亚洲熟妇熟女久久| 国产精华一区二区三区| 国产高清三级在线| 久久香蕉精品热| 男女床上黄色一级片免费看| 男人和女人高潮做爰伦理| 免费观看精品视频网站| 伊人久久大香线蕉亚洲五| 精品久久久久久久毛片微露脸| 免费在线观看亚洲国产| 国产免费男女视频| 国内揄拍国产精品人妻在线| 精品久久久久久久末码| 天堂影院成人在线观看| 精品一区二区三区视频在线观看免费| 老汉色av国产亚洲站长工具| 欧美日韩一级在线毛片| 亚洲国产日韩欧美精品在线观看 | 久久草成人影院| 精品国产超薄肉色丝袜足j| 成人特级av手机在线观看| 亚洲成人久久爱视频| 国产伦在线观看视频一区| 久久久久久人人人人人| 亚洲av日韩精品久久久久久密| 久久精品国产99精品国产亚洲性色| 少妇熟女aⅴ在线视频| 日韩 欧美 亚洲 中文字幕| 丝袜美腿在线中文| 久久国产精品人妻蜜桃| 国产极品精品免费视频能看的| 亚洲,欧美精品.| 女警被强在线播放| 欧美高清成人免费视频www| 精品久久久久久,| 岛国在线免费视频观看| 高清在线国产一区| 夜夜看夜夜爽夜夜摸| АⅤ资源中文在线天堂| 久久久国产成人免费| 亚洲国产欧美网| 美女免费视频网站| 中亚洲国语对白在线视频| 看免费av毛片| 亚洲va日本ⅴa欧美va伊人久久| av在线蜜桃| 国产高清视频在线观看网站| 观看美女的网站| 色尼玛亚洲综合影院| 麻豆久久精品国产亚洲av| 乱人视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美精品啪啪一区二区三区| 久久精品国产亚洲av香蕉五月| 国模一区二区三区四区视频| 国内精品久久久久精免费| 亚洲 国产 在线| 精品免费久久久久久久清纯| www.熟女人妻精品国产| 午夜福利高清视频| 我要搜黄色片| 中出人妻视频一区二区| 精品福利观看| 国产成年人精品一区二区| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品合色在线| 国产91精品成人一区二区三区| 成人av在线播放网站| 欧美乱色亚洲激情| 香蕉av资源在线| 午夜激情福利司机影院| 日韩精品中文字幕看吧| 五月玫瑰六月丁香| 亚洲成人久久爱视频| 国产伦一二天堂av在线观看| 色噜噜av男人的天堂激情| 中亚洲国语对白在线视频| av专区在线播放| 中文字幕人成人乱码亚洲影| 久久久久九九精品影院| 美女被艹到高潮喷水动态| 神马国产精品三级电影在线观看| 18禁在线播放成人免费| 熟女少妇亚洲综合色aaa.| 亚洲精品一卡2卡三卡4卡5卡| 久久精品影院6| 性欧美人与动物交配| 亚洲专区国产一区二区| 国产精品三级大全| 成年女人看的毛片在线观看| 天天躁日日操中文字幕| h日本视频在线播放| 亚洲七黄色美女视频| 国产熟女xx| 国产精品三级大全| 国产精品 欧美亚洲| 亚洲 国产 在线| 亚洲精品影视一区二区三区av| 免费观看精品视频网站| 欧美av亚洲av综合av国产av| 最近最新免费中文字幕在线| 国产欧美日韩精品一区二区| 亚洲精品成人久久久久久| 麻豆成人午夜福利视频| 成人精品一区二区免费| 日韩欧美一区二区三区在线观看| 在线观看免费午夜福利视频| 老司机深夜福利视频在线观看| 亚洲内射少妇av| 国产成人啪精品午夜网站| 中文字幕av成人在线电影| 狠狠狠狠99中文字幕| 国产单亲对白刺激| 午夜福利在线观看免费完整高清在 | 老司机午夜十八禁免费视频| 婷婷精品国产亚洲av在线| 日韩有码中文字幕| 日韩精品青青久久久久久| 男女视频在线观看网站免费| 精品久久久久久久人妻蜜臀av| 欧美又色又爽又黄视频| 中亚洲国语对白在线视频| 可以在线观看毛片的网站| 3wmmmm亚洲av在线观看| 欧美成狂野欧美在线观看| www日本在线高清视频| 最近视频中文字幕2019在线8| 一区二区三区国产精品乱码| 亚洲av电影在线进入| 啦啦啦韩国在线观看视频| 午夜a级毛片| 黄色片一级片一级黄色片| 757午夜福利合集在线观看| 亚洲av美国av| 少妇的丰满在线观看| 欧美三级亚洲精品| 免费人成视频x8x8入口观看| 亚洲欧美日韩高清在线视频| 在线观看av片永久免费下载| 欧美在线一区亚洲| 波多野结衣巨乳人妻| 久久精品国产亚洲av香蕉五月| 老司机午夜十八禁免费视频| 国产午夜福利久久久久久| 免费看十八禁软件| 日本黄色视频三级网站网址| 久久久国产成人免费| 国产高潮美女av| 成人av在线播放网站| ponron亚洲| 久99久视频精品免费| 久久久久久九九精品二区国产| 亚洲人成电影免费在线| 日韩精品青青久久久久久| 中文字幕精品亚洲无线码一区| 久久欧美精品欧美久久欧美| 99在线视频只有这里精品首页| av福利片在线观看| 日本免费a在线| 精品久久久久久久久久免费视频| av天堂在线播放| 国产精品久久视频播放| 亚洲中文日韩欧美视频| 国产精品免费一区二区三区在线| 国产精品亚洲av一区麻豆| 亚洲国产高清在线一区二区三| 天美传媒精品一区二区| 国产熟女xx| 午夜亚洲福利在线播放| 亚洲av五月六月丁香网| 日韩高清综合在线| 两个人的视频大全免费| 亚洲五月婷婷丁香| 成年版毛片免费区| 欧美日韩乱码在线| 久久久久久久久中文| 国产精品,欧美在线| 欧美成人免费av一区二区三区| 亚洲电影在线观看av| 69人妻影院| 国产伦精品一区二区三区四那| 国产精品免费一区二区三区在线| 99久国产av精品| 午夜福利高清视频| 免费搜索国产男女视频| 久久久久久久久中文| 99精品欧美一区二区三区四区| 日韩欧美在线二视频| 国产欧美日韩一区二区三| 国产综合懂色| 国产精品日韩av在线免费观看| 亚洲国产日韩欧美精品在线观看 | 国产毛片a区久久久久| 精品久久久久久久末码| av在线蜜桃| 51国产日韩欧美| 亚洲美女黄片视频| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕人妻丝袜一区二区| 久久久久久久久中文| 少妇裸体淫交视频免费看高清| 又黄又爽又免费观看的视频| 午夜免费激情av| 成人av一区二区三区在线看| 成年免费大片在线观看| 亚洲美女视频黄频| 夜夜躁狠狠躁天天躁| 九九热线精品视视频播放| 久久久久免费精品人妻一区二区| av视频在线观看入口| 国产伦在线观看视频一区| 精华霜和精华液先用哪个| avwww免费| 禁无遮挡网站| 亚洲欧美日韩东京热| 午夜免费观看网址| 99热这里只有精品一区| 男人舔奶头视频| 又爽又黄无遮挡网站| 欧美bdsm另类| 国产成人a区在线观看| 床上黄色一级片| 99久久99久久久精品蜜桃| 免费无遮挡裸体视频| 最近最新免费中文字幕在线| 亚洲成人久久性| 久99久视频精品免费| 免费在线观看影片大全网站| 午夜精品在线福利| 久久精品91蜜桃| 一区二区三区免费毛片| 亚洲色图av天堂| av视频在线观看入口| 伊人久久精品亚洲午夜| 超碰av人人做人人爽久久 | 99久久九九国产精品国产免费| 色精品久久人妻99蜜桃| 一区二区三区高清视频在线| 少妇的丰满在线观看| 国产精品久久久久久精品电影| 脱女人内裤的视频| 搡老妇女老女人老熟妇| 夜夜看夜夜爽夜夜摸| 男人和女人高潮做爰伦理| 日韩中文字幕欧美一区二区| 日韩欧美精品免费久久 | 国产高清视频在线播放一区| 日韩亚洲欧美综合| 日本黄大片高清| 性色avwww在线观看| 亚洲精品一卡2卡三卡4卡5卡| 天天躁日日操中文字幕| 两个人的视频大全免费| 久久亚洲真实| 两个人的视频大全免费| 久久草成人影院| 免费电影在线观看免费观看| 国产亚洲精品综合一区在线观看| 亚洲狠狠婷婷综合久久图片| 成人精品一区二区免费| 亚洲av日韩精品久久久久久密| 国产激情偷乱视频一区二区| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看| 天天添夜夜摸| 小说图片视频综合网站| 亚洲人成伊人成综合网2020| 热99在线观看视频| a级一级毛片免费在线观看| 搡老妇女老女人老熟妇| 国产午夜福利久久久久久| 桃色一区二区三区在线观看| 他把我摸到了高潮在线观看| 国产伦精品一区二区三区四那| 国产高清有码在线观看视频| 成人特级黄色片久久久久久久| 老司机午夜十八禁免费视频| 国产精品久久久久久精品电影| 麻豆一二三区av精品| 日韩av在线大香蕉| 久久久久久人人人人人| 欧美日韩亚洲国产一区二区在线观看| 国产国拍精品亚洲av在线观看 | 亚洲乱码一区二区免费版| 成年免费大片在线观看| 男人舔奶头视频| x7x7x7水蜜桃| 2021天堂中文幕一二区在线观| 欧美3d第一页| 亚洲成人中文字幕在线播放| 成人鲁丝片一二三区免费| 国产真实伦视频高清在线观看 | 国产69精品久久久久777片| 在线视频色国产色| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区在线观看日韩 | 全区人妻精品视频| 亚洲成av人片免费观看| 亚洲精品在线美女| 国产精品嫩草影院av在线观看 | 男插女下体视频免费在线播放| 欧美三级亚洲精品| 麻豆国产av国片精品| 身体一侧抽搐| 麻豆国产av国片精品| 亚洲精品亚洲一区二区| 日本在线视频免费播放| 久久久精品欧美日韩精品| 国产老妇女一区| 两人在一起打扑克的视频| 免费电影在线观看免费观看| 成人永久免费在线观看视频| 一本一本综合久久| 中文字幕人成人乱码亚洲影| 日日摸夜夜添夜夜添小说| 啪啪无遮挡十八禁网站| 91字幕亚洲| 成人18禁在线播放| 国产精品自产拍在线观看55亚洲| 日本成人三级电影网站| 午夜激情欧美在线| 2021天堂中文幕一二区在线观| 中出人妻视频一区二区| 国产精品av视频在线免费观看| 九色国产91popny在线| 老汉色av国产亚洲站长工具| 成人精品一区二区免费| 我要搜黄色片| 网址你懂的国产日韩在线| 国产亚洲精品久久久com| 老汉色∧v一级毛片| 国产精品美女特级片免费视频播放器| 国产乱人视频| 国产69精品久久久久777片| 搡女人真爽免费视频火全软件 | 脱女人内裤的视频| 精品久久久久久久毛片微露脸| 欧美日韩综合久久久久久 | 亚洲片人在线观看| 欧美大码av| 国产一区二区在线av高清观看| 国产亚洲精品一区二区www| 给我免费播放毛片高清在线观看| 日本五十路高清| 国产成人欧美在线观看| 日韩欧美一区二区三区在线观看| 亚洲天堂国产精品一区在线| 天堂动漫精品| 国产亚洲精品综合一区在线观看| 亚洲av第一区精品v没综合| 亚洲成人免费电影在线观看| 久久久久性生活片| 欧美黄色片欧美黄色片| 岛国在线观看网站| 美女 人体艺术 gogo| 丰满人妻一区二区三区视频av | a级毛片a级免费在线| 又紧又爽又黄一区二区| 又爽又黄无遮挡网站| 亚洲精品粉嫩美女一区| 精品不卡国产一区二区三区| 久久精品国产99精品国产亚洲性色| 国产av不卡久久| 亚洲专区国产一区二区| 又爽又黄无遮挡网站| 亚洲精品国产精品久久久不卡| 一级黄色大片毛片| 免费看日本二区| 国产一区二区亚洲精品在线观看| 国产视频一区二区在线看| 免费看日本二区| 久久久久久久午夜电影| 成人特级黄色片久久久久久久| 精品午夜福利视频在线观看一区| 丰满乱子伦码专区| 国产午夜福利久久久久久| 亚洲久久久久久中文字幕| 99国产综合亚洲精品| 麻豆久久精品国产亚洲av| 国内久久婷婷六月综合欲色啪| 欧美日韩乱码在线| 精品电影一区二区在线| 国产 一区 欧美 日韩| 欧美成人性av电影在线观看| 久久欧美精品欧美久久欧美| 夜夜躁狠狠躁天天躁| 免费搜索国产男女视频| 一区二区三区高清视频在线|