• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種基于星型圖的漢字鏡像對稱檢測方法

    2016-10-12 08:28:54廖媛呂肖慶孫建伶湯幟王勇濤
    關(guān)鍵詞:星型鏡像漢字

    廖媛 呂肖慶,3,? 孫建伶 湯幟,2 王勇濤

    ?

    一種基于星型圖的漢字鏡像對稱檢測方法

    廖媛1呂肖慶1,3,?孫建伶4湯幟1,2王勇濤1

    1.北京大學(xué)計算機科學(xué)技術(shù)研究所, 北京100871; 2.數(shù)字出版技術(shù)國家重點實驗室, 北京 100871; 3.中國文字字體設(shè)計與研究中心, 北京 100871; 4.浙江大學(xué)計算機科學(xué)與技術(shù)學(xué)院, 杭州 310027; ?通信作者, E-mail: lvxiaoqing@pku.edu.cn

    結(jié)合不同類型的漢字特征——尺度不變特征變換(SIFT)和輪廓信息, 提出一種基于星型圖的漢字鏡像對稱檢測方法。該方法利用基礎(chǔ)對稱元素構(gòu)造一個加強關(guān)系有向圖來描述不同對稱元素之間的加強關(guān)系, 從而將檢測漢字的顯著對稱軸問題轉(zhuǎn)化為尋找具有局部最大權(quán)重的星型子圖問題。實驗結(jié)果表明, 與現(xiàn)有方法相比, 所提方法在漢字數(shù)據(jù)集上具有更好的檢測效果。

    鏡像對稱; 漢字; 星型圖; 對稱檢測

    1 Background

    The natural world in which we live is characterized by miraculous phenomena involving symmetry. Symmetry is also a significant structural feature that profoundly influences the development of Chinese characters. As the foundation of an ideographic script,many Chinese characters were originally created to simulate and describe nature, including the symmetries in various objects and phenomena. Given the external morphology of symmetry, most characters not only reflect the visual effects of harmony, such as balance, stability, and massiveness, but the symmetry also enables our ancestors to distinguish and remember these characters with remarkable convenience. Many Chinese characters exhibit global and local symmetry, as shown in Fig. 1.

    Throughout the long-term evolutionary process of Chinese characters, the symmetries of almost all characters have not remained static. Rather, these characters underwent complex progressive develop- ment involving inheritances and mutations. For example, we can perceive the original demand of the character “草” (grass) for symmetry through its early shapes, such as the oracle bone inscription and the warring states script depicted in Fig. 2(a) and (b).

    Fig. 2(c) indicates that the small seal script of the character “草” is almost perfectly symmetrical, with a free-flowing, gracefully curved shape. The clerical script (Fig. 2(d)) inherits the symmetry from the small seal script, however, the curved strokes are replaced with straight strokes. As the standard font type of writing, the regular script (Fig. 2(e)) is in fact a hybrid of the semi-cursive and the neo-clerical scripts. To facilitate smooth writing and to achieve a beautiful and abstract appearance, the semi-cursive (Fig. 2(f)) and cursive scripts (Fig. 2(g)) eliminate angular strokes and simplify characters through highly rounded and soft shapes. This observation suggests that the effect of symmetry on regular, semi-cursive, and cursive scripts does not disappear. The symmetric structures in these scripts are progressively lenient; nonetheless, a new level of visual balance is achieved based on implicit and dynamic symmetries with width variation, stroke tip decorations, and the continuity of trajectories.

    The significance of symmetry research lies in the following aspects: exploring more characteristics and regularities in typeface design and font development, providing ordinary students and professional calli- graphers with helpful advices (for instance, the guide to good handwriting, as illustrated in Fig. 3), and promoting the recognition and retrieval of Chinese characters further by simplifying feature descriptions and matching algorithms.

    Accurate symmetry detection is crucial to further analysis in many cases. However, researchers encounter several challenges at present: first, the explanation for most symmetrical phenomena depends heavily on visual perception. To our knowledge, no accepted computational model that accurately simulates the perception of symmetry has been developed in general. In fact, numerous features that contribute to symmetrical perception captivate us when selecting the dominant features to represent symmetry. Second, despite our focus on some of these preferred features, describing these characteristics quantitatively is another serious problem. Last, these features are correlatively dependent and interplay with one another. To a certain extent, some combinations play a more important role in the formation of characters than the individual features themselves do.

    2 Related Work

    To detect symmetry effectively, a variety of methods have been proposed recently. Most of them can be classified into two categories: SIFT-based and contour-based.

    SIFT is adopted in many symmetry detection algorithms due to its scale invariant property. Park et al.[1]evaluated the performance of three state-of- the-art symmetry detection algorithms. The LE algorithm proposed by Loy et al.[2]is a classic method on the basis of matching symmetric pairs of feature points. It adopted SIFT to describe the feature points and voted potential pairs of symmetry point in Hough space to find the dominent symmetry axes. Cho et al.[3]improved the LE algorithm using symmetry- growing. Sun et al.[4]established a symmetry axis matrix that described the relationship betwween an original region and its symmetrically reflected region. Hauagge et al.[5]presented a technique to extract local features for image matching on the basis of detecting local symmetries. Xiang et al.[6]proposed a centripetal-SIFT edge descriptor to detect the location of symmetric object. Lee et al.[7]adopted a gradient filter and a Canny edge detector to increase the quantity of SIFT feature points.

    Many symmetry detection models are mainly based on contour information[8-10]. Ming et al.[11]constructed a directed graph of symmetry interaction. Each symmetric element, which is a trapezoid consisting of a pair of line segments and a corresponding symmetric axis, is represented as a node in a graph. An edge between two nodes is added when the two symmetric axes are close enough. The symmetric objects are detected with a search method of subgraphs.

    In addition to the detection of symmetry axis, the assessment of symmetry magnitude also attracts many researchers. Lee et al.[12]defined the symmetry intensity asref= exp(-||), whereis the Euclidean distance between each point and corresponding symmetry axis. Dalitz et al.[13]introduced an intensity for rotational symmetry and obtained the sizes of symmetry region. Fu et al.[14]defined a symmetry magnitude map by estimating the symmetry intensity of each point in an image.

    To summarize, the SIFT-based algorithms are more robust than other methods, but they also have obvious drawbacks, for example, relying too much on the effect of SIFT detection. The Contour-based algorithms sometimes outperform the SIFT-based methods. However the low accurancy of countor detection also limits the efficience of such algori- thms. Combining different types of feature leads to the more accurate detetion of symmetry.

    3 Symmetry Detection via Mutual Enhancement of Double Types of Feature

    3.1 Workflow

    Symmetry perception is a complex procedure that combines different features. Recent studies in the field of cognitive psychology suggest that humans observe symmetric objects by processing features in different layers, such as edges and points. Point features represent the local information on color and texture, whereas edge features represent shape information. These features complement each other mutually. Thus, a new model can be established based on the combination of SIFT-based features with contour- based features.

    In this model, a potential symmetry element (PSE) is defined as a pair of point features or a pair of edge features that correspond to a potential symmetry axis (PSA) on the basis of regular symmetry transformation. To describe the relationship among PSAs, a directed star graph with symmetry weight (S-graph) is introduced. The nodes of this graph are PSAs, and its edges represent the mutual influences among these axes. As part of the S-graph, the single-PSA-centered subgraph can be adopted to calculate local symmetry intensity.

    The main workflow consists of following steps. First, we derive all of the SIFT points and edges from a preprocessed image. Second, we select PSEs and their corresponding PSAs. Then, a S-graph is constructed to describe the symmetry information on the image. Each salient symmetric object can be represented as a star subgraph. Next, the local symmetry detection problem is transformed into a problem with determining the subgraph that exhibits the local maximum magnitude. Last, the magnitudes of all the star subgraphs are projected to Hough space, and the most significant symmetric axes are detected as the maximum points.

    3.2 PSE and PSA

    Two kinds of PSE are adopted in our approach: contour-based and SIFT-based PSEs.

    3.2.1 SIFT-based PSE

    A SIFT-based PSE is converted from a pair of similar feature vectors in LE[2]. In our model, we define a PSA generated by a SIFT-based PSE, such asin Fig. 4, as the mid-perpendicular of line (), which links the two feature points1and2in a PSE.

    In Fig. 4,(1) and(2) are feature vectors. The weight ofAis defined as

    Eq. (1) assigns a high weight to PSAs that are formed by similar SIFT feature point pairs.

    3.2.2 Contour-based PSE

    Contour symmetry is a significant feature for symmetric objects. Contours are generaly irregular curves, therefore, the line-fitting algorithm is adopted to segment and to represent contours. Two line segments with enough probability of a boundary (Pb value)[15]are selected to form a PSE. The angular bisector of each line pair is regarded as a PSA. Fig. 5 illustrates an example of a contour-based PSE and its corresponding PSA.

    In Fig. 5,1and2are two lines that are regarded as PSEs. An angular bisector is positioned between these lines, and they project themselves to this bisector. If the overlap area of the projections is not empty, then a PSAAis generated.1and2represent the corresponding parts of1and2that contribute toA. The weight ofAis defined as

    3.3 Directed graph of enhancement relation

    To combine contour-based and SIFT-based PSEs, we construct a directed graph of enhancement relation, i.e., the S-graph, to describe the symmetry information of an image. Each PSA is abstracted as a node in the S-graph, and the directed edgeelinking nodesandreflects how strong the nodecan enhance the symmetry intensity represented by node.

    If two PSAs generated by two PSEs are close enough, then the reliability of symmetry will be mutually enhanced. Specifically, small angle and short distance between two PSAs will lead to their enhanced intensity of symmetry for each other. The magnitude of the enhancement for each edge is calculated using the following formula:

    Wherewis the weight of node, andgis the position relationship between the two nodes. Eq. (3) indicates that the enhancement magnitude is proportional to the saliency of node.gis defined as

    Where Δis the angle between two PSAs, anddis the distance between the centers of the two PSAs. Eq. (4) assigns a large value to a pair of PSAs with close relationships.

    As the PSA nodes are added from both SIFT-based and contour-based PSEs, the enhancement between different types of features can be obtained in this model. Fig. 6 is an example of a directed graph of enhancement relation. Our approach is different from existing methods that mainly depend on a single type of feature because it adopts more image context to achieve more accurate symmetry intensity.

    3.4 Extract star subgrap as symmetry object

    A symmetric object consists of a set of symmetric elements. Correspondingly, PSEs that contribute the same symmetry axis strongly enhance one another. Therefore, we translate the identification of a symmetry object to find a subgraph with strong enhancement relations.

    We undertake several topologies of subgraphs, including star, chain, and tree[11,16-17]. Our experiments verify that the star subgraph outperforms the other types of subgraphs. The star subgraph ensures that all the leave nodes close to the center node contribute the same symmetry axes. However, the nodes in a chain or tree may share different axes. The larger the number of nodes becomes, the more calculations have to be performed for the irrelevant axes.

    The symmetry magnitude of star subgraphSis defined as the sum weight of the center nodeand all incoming directed edges with the following formula:

    wherewis the weight of center node, the current SPA (anAor anA).andare parameters whose values are between 0 and 1.represents the importance of the current center when it becomes large. Whenis high, the influence of line pairs is enhanced. We introduce thresholdofgto filter unimportant links and thus simplify the calculation. In short, only the edges that satisfygare regarded as the relative edges that possibly share the same axis.

    3.5 Symmetry axis detection

    A star subgraph should have a local maximum magnitude in the directed graph. To find the local maximum magnitude, a star subgraph is projected to Hough space as a point. The magnitude of a star subgraph corresponds to the weight of the Hough space point. When the local maximum points in the Hough space are detected, the corresponding symmetry axes are also detected.

    4 Experiment

    The proposed method is implemented in Matlab 2012. In our experiments, the parameter values for the algorithm are set as follows:= 20 in Eq. (4), and reliable edge threshold= 0.75. We set the value for parameter,in Eq. (5) as 0.3 to ensure the optimal performance of our method in the experiment dataset. Moreover, we construct a dataset that consists of 6713 images of Chinese characters presented in the Hei typeface and evaluate our method on the dataset. The symmetric axes in the ground truth dataset are represented by the two endpoints of a line segment. A detected axis is considered to be correct if the angle between the ground truth axis and the axis in question is less than 5°, and the distances between the endpoints of a ground truth axis and the corresponding endpoints of a detected axis are less than 8% of char size.

    Examples of the experiments are shown in Fig. 7. The detected axes are represented by gray lines.

    The proposed method generates better axis detection results than the LE method does, especially when the images contain less effective SIFT points. Fig. 8 depicts the comparison.

    We compare the precision and recall rates of our results with those of LE method findings[2]. Table 1 shows the statistical results on the dataset. Averageand R of LE method are P=0.5777, R=0.5202; ave- rageandof proposed method are=0.5952,=0.6401. The two methods report almost similarly accurate results (=1,=1); however, the proposed method generates fewer erroneous results (=0,=0). Furthermore, the proposed method generally produces a better overall detection result with a higher averageandthan the LE method does. Additional details on the detection results are shown in Fig. 9.

    Table 1 Statistical results of P and R for the LE and the proposed methods

    Fig. 9 indicates thatandgenerated by the proposed method are mainly located in the top right region of the PR coordinate system, whereasandgenerated by LE method are primarily distributed at the bottom left region. This scenario implies that our method outperforms LE method given characters whose symmetry can be only partially detected.

    Nonetheless, the proposed method does not detect all of the symmetry axes of Chinese characters correctly. In fact, this technique fails on some complicated Chinese characters, such as when the main symmetry axis is affected by many overlapping strokes, as illustrated in Fig. 10.

    To overcome the weaknesses of the current method, future works should explore more symmetry features, improve the efficiency of the graph model, and refine the selection process of candidate axes.

    5 Conclusion

    Limited texture features make traditional sym- metry detection methods not effective for Chinese character symmetry detection. For this matter, a detection method of bilateral symmetry combiningSIFT-based and contour-based features is proposed in this paper. A directed graph of enhancement relation is constructed, and each symmetric element is represented as a node in the graph. A star subgraph search method is also proposed to identify the potential symmetry objects. Our experiment on Chinese character images shows that the proposed approach outperforms the existing single-type-feature-based methods.

    References

    [1]Park M, Lee S, Chen P C, et al. Performance evaluation of state-of-the-art discrete symmetry detection algorithms // Computer Vision and Pattern Recognition, CVPR 2008. Anchorage, AK, 2008: 1–8

    [2]Loy G, Eklundh J O. Detecting symmetry and symmetric constellations of features // Computer Vision–ECCV 2006. Berlin: Springer, 2006: 508–521

    [3]Cho M, Lee K M. Bilateral symmetry detection via symmetry-growing // BMVC. London, 2009: 1–11

    [4]Sun Y, Bhanu B. Reflection symmetry-integrated image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1827–1841

    [5]Hauagge D C, Snavely N. Image matching using local symmetry features // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, 2012: 206–213

    [6]Xiang Y, Li S. Symmetric object detection based on symmetry and centripetal-SIFT edge descriptor // 21st International Conference on Pattern Recognition (ICPR). Tsukuba, 2012: 1403–1406

    [7]Lee S, Liu Y. Curved glide-reflection symmetry detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 266–278

    [8]Prasad V, Yegnanarayana B. Finding axes of symmetry from potential fields. IEEE Transactions on Image Processing, 2004, 13(12): 1559–1566

    [9]Stahl J S, Wang S. Globally optimal grouping for symmetric closed boundaries by combining boundary and region information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 395– 411

    [10]Yl?-J??ski A, Ade F. Grouping symmetrical structures for object segmentation and description. Computer Vision and Image Understanding, 1996, 63(3): 399– 417

    [11]Ming Y, Li H, He X. Symmetry detection via contour grouping // 20th IEEE International Conference on Image Processing (ICIP). Melbourne, VIC, 2013: 4259–4263

    [12]Lee S, Liu Y. Symmetry-Driven Shape Matching [R]. University Park: Pennsylvania State University, 2009

    [13]Dalitz C, Pohle-Fr?hlich R, Bolten T. Detection of symmetry points in images // VISAPP. Barcelona, 2013: 577–585

    [14]Fu H, Cao X, Tu Z, et al. Symmetry Constraint for Foreground Extraction. IEEE Transactions on Cyber- netics, 2014, 44(5): 644–654

    [15]Arbelaez P, Maire M, Fowlkes C, et al. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898–916

    [16]Ishikawa H, Geiger D, Cole R. Finding tree structures by grouping symmetries // Tenth IEEE International Conference on Computer Vision. Beijing, 2005: 1132–1139

    [17]Liu Y, Hel-Or H, Kaplan C S. Computational symmetry in computer vision and computer graphics. Hanover, MA: Now publishers Inc, 2010

    A Star-Graph-Based Detection Method for Reflection Symmetry of Chinese Characters

    LIAO Yuan1, Lü Xiaoqing1,3,?, SUN Jianling4, TANG Zhi1,2, WANG Yongtao1

    1. Institute of Computer Science and Technology, Peking University, Beijing 100871; 2. State Key Laboratory of Digital Publishing Technology, Beijing 100871; 3. Center for Chinese Font Design and Research, Beijing 100871; 4. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027; ? Corresponding author, E-mail: lvxiaoqing@pku.edu.cn

    This study proposes a detection method of bilateral symmetry for Chinese characters that combines different types of character features, such as scale invariant feature transform (SIFT) and contour information. A directed graph is constructed with the basic symmetric elements of a character to describe the enhancement relationships among the elements. Furthermore, the detection of the most significant axes of symmetry in one character is transformed into the problem of finding star subgraphs with local maximum weight. Experiment results show that the proposed method outperforms the existing methods on Chinese characters database.

    reflection symmetry; Chinese character; star graph; symmetry detection

    10.13209/j.0479-8023.2016.015

    TP391

    2015-06-05;

    2015-08-17; 網(wǎng)絡(luò)出版日期: 2015-09-29

    國家自然科學(xué)基金(61300061)和863計劃(2012AA013102)資助

    猜你喜歡
    星型鏡像漢字
    增加斷電連鎖 減少絞傷風(fēng)險
    勞動保護(2021年5期)2021-05-19 04:04:38
    鏡像
    金銀點綴
    鏡像
    小康(2018年23期)2018-08-23 06:18:52
    漢字這樣記
    漢字這樣記
    D-π-A星型分子的合成及非線性光學(xué)性質(zhì)
    化工進展(2015年6期)2015-11-13 00:27:23
    鏡像
    小康(2015年4期)2015-03-31 14:57:40
    鏡像
    小康(2015年6期)2015-03-26 14:44:27
    活化的星型膠質(zhì)細胞生成Aβ對阿爾茨海默病的影響
    亚洲自拍偷在线| 欧美色视频一区免费| 三级毛片av免费| 国产片内射在线| 在线国产一区二区在线| 午夜福利在线在线| 久久久水蜜桃国产精品网| 亚洲av第一区精品v没综合| 午夜老司机福利片| 亚洲国产欧美网| 欧美成人午夜精品| 久久精品国产清高在天天线| 在线观看免费日韩欧美大片| 成人18禁在线播放| 欧美不卡视频在线免费观看 | 三级毛片av免费| 亚洲欧美日韩高清在线视频| 我的老师免费观看完整版| 欧美在线黄色| av超薄肉色丝袜交足视频| 少妇的丰满在线观看| 亚洲av片天天在线观看| 欧美一区二区精品小视频在线| 黄片小视频在线播放| 母亲3免费完整高清在线观看| 成年免费大片在线观看| 欧美绝顶高潮抽搐喷水| 成人永久免费在线观看视频| 国产精品乱码一区二三区的特点| 老汉色∧v一级毛片| 国产三级中文精品| 国内精品久久久久精免费| 91大片在线观看| 久久久久免费精品人妻一区二区| 精品不卡国产一区二区三区| 亚洲 国产 在线| 亚洲美女视频黄频| 91成年电影在线观看| 最近最新免费中文字幕在线| 两性夫妻黄色片| 非洲黑人性xxxx精品又粗又长| 久久久国产成人精品二区| 天堂影院成人在线观看| 亚洲专区字幕在线| 婷婷亚洲欧美| 不卡一级毛片| 午夜影院日韩av| 99久久精品热视频| 19禁男女啪啪无遮挡网站| 男女之事视频高清在线观看| 黄片大片在线免费观看| 一进一出抽搐动态| 亚洲男人的天堂狠狠| 久久国产精品人妻蜜桃| 可以免费在线观看a视频的电影网站| 久久人妻av系列| 欧美乱码精品一区二区三区| 麻豆成人av在线观看| 天天躁夜夜躁狠狠躁躁| 日韩精品免费视频一区二区三区| 亚洲av成人av| 18禁美女被吸乳视频| 久久九九热精品免费| 夜夜夜夜夜久久久久| 久久午夜综合久久蜜桃| 亚洲一区二区三区不卡视频| 亚洲成人免费电影在线观看| 国产三级在线视频| 变态另类丝袜制服| 男女视频在线观看网站免费 | 国产精品永久免费网站| 亚洲精品av麻豆狂野| 老熟妇乱子伦视频在线观看| 欧美又色又爽又黄视频| 亚洲片人在线观看| 日韩欧美三级三区| а√天堂www在线а√下载| 制服诱惑二区| 免费人成视频x8x8入口观看| 国产一区二区在线av高清观看| avwww免费| 亚洲国产欧美人成| 国产精品 国内视频| 俺也久久电影网| 色综合欧美亚洲国产小说| 国产激情偷乱视频一区二区| 亚洲va日本ⅴa欧美va伊人久久| 精品少妇一区二区三区视频日本电影| 老司机靠b影院| 国产三级在线视频| 国产精品一及| 日本免费a在线| 欧美成狂野欧美在线观看| 狂野欧美激情性xxxx| 99国产精品99久久久久| 久久香蕉精品热| 午夜福利在线在线| 日韩欧美国产一区二区入口| 在线国产一区二区在线| 亚洲成人久久性| 亚洲片人在线观看| 男女之事视频高清在线观看| 国产亚洲欧美98| svipshipincom国产片| 又黄又粗又硬又大视频| 午夜视频精品福利| 91字幕亚洲| 黄片小视频在线播放| 国产高清视频在线观看网站| 色精品久久人妻99蜜桃| 青草久久国产| 欧美日韩一级在线毛片| 女人被狂操c到高潮| 国产99久久九九免费精品| 精品国产超薄肉色丝袜足j| 两个人免费观看高清视频| 国产精品自产拍在线观看55亚洲| 99国产精品一区二区蜜桃av| 精品无人区乱码1区二区| 国产人伦9x9x在线观看| 成年版毛片免费区| 国产成人系列免费观看| 亚洲av日韩精品久久久久久密| 久久性视频一级片| 亚洲国产中文字幕在线视频| 又黄又粗又硬又大视频| 国产亚洲av高清不卡| 国产成人系列免费观看| 麻豆国产97在线/欧美 | 又大又爽又粗| 高清毛片免费观看视频网站| a在线观看视频网站| 久久精品成人免费网站| 亚洲成人久久爱视频| 国产1区2区3区精品| 国产99白浆流出| 国产精品av视频在线免费观看| 两个人视频免费观看高清| www国产在线视频色| 国产亚洲精品一区二区www| 曰老女人黄片| 久久亚洲精品不卡| 国产一区二区三区在线臀色熟女| x7x7x7水蜜桃| 成人18禁在线播放| 国产乱人伦免费视频| 五月伊人婷婷丁香| 亚洲精品色激情综合| 亚洲无线在线观看| av福利片在线| 久久热在线av| 白带黄色成豆腐渣| 国产免费av片在线观看野外av| 国产一区二区三区在线臀色熟女| 别揉我奶头~嗯~啊~动态视频| 亚洲精品国产一区二区精华液| 色老头精品视频在线观看| 国产一区在线观看成人免费| 黄频高清免费视频| 久久久国产成人精品二区| 亚洲 欧美一区二区三区| 国产午夜福利久久久久久| 亚洲美女黄片视频| 国产成人系列免费观看| 久久精品综合一区二区三区| 日韩欧美三级三区| 欧美性猛交╳xxx乱大交人| 一本久久中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 免费一级毛片在线播放高清视频| 夜夜看夜夜爽夜夜摸| 在线永久观看黄色视频| 成人午夜高清在线视频| 欧美黄色淫秽网站| 精品国内亚洲2022精品成人| 久久精品91蜜桃| 1024香蕉在线观看| 国产精品久久视频播放| 国产久久久一区二区三区| 欧美日韩瑟瑟在线播放| av天堂在线播放| 亚洲av日韩精品久久久久久密| 麻豆成人午夜福利视频| 国产探花在线观看一区二区| 动漫黄色视频在线观看| 欧美中文综合在线视频| 人妻久久中文字幕网| 人人妻人人看人人澡| 成人国产一区最新在线观看| 亚洲中文av在线| 久99久视频精品免费| 日韩欧美国产在线观看| 国产乱人伦免费视频| 免费av毛片视频| 少妇裸体淫交视频免费看高清 | 九九热线精品视视频播放| 99热这里只有是精品50| 黄色成人免费大全| 亚洲男人天堂网一区| 51午夜福利影视在线观看| bbb黄色大片| 桃色一区二区三区在线观看| 床上黄色一级片| 欧美zozozo另类| 亚洲欧美精品综合久久99| 看黄色毛片网站| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区三| 一级片免费观看大全| 久久伊人香网站| 老司机深夜福利视频在线观看| 久久99热这里只有精品18| 日本一区二区免费在线视频| 手机成人av网站| 哪里可以看免费的av片| 亚洲欧洲精品一区二区精品久久久| 精品电影一区二区在线| 老鸭窝网址在线观看| 啦啦啦韩国在线观看视频| www日本黄色视频网| 最近在线观看免费完整版| 欧美绝顶高潮抽搐喷水| 久久久久久大精品| 天堂影院成人在线观看| av中文乱码字幕在线| 日韩大码丰满熟妇| 一本综合久久免费| 精品国产美女av久久久久小说| 亚洲五月婷婷丁香| 欧美国产日韩亚洲一区| 狂野欧美白嫩少妇大欣赏| 91成年电影在线观看| 好男人在线观看高清免费视频| 正在播放国产对白刺激| 悠悠久久av| 日本精品一区二区三区蜜桃| 国产日本99.免费观看| 成人精品一区二区免费| 在线视频色国产色| 性色av乱码一区二区三区2| 久久伊人香网站| 三级国产精品欧美在线观看 | 一a级毛片在线观看| 1024视频免费在线观看| 精品久久久久久久久久免费视频| 国产精品1区2区在线观看.| 久久这里只有精品中国| 日本免费a在线| 亚洲国产精品久久男人天堂| 每晚都被弄得嗷嗷叫到高潮| 亚洲熟妇中文字幕五十中出| 99久久精品国产亚洲精品| 午夜日韩欧美国产| 嫩草影视91久久| 欧美一区二区国产精品久久精品 | 日韩欧美国产在线观看| 国产视频一区二区在线看| 在线观看一区二区三区| 精品久久久久久久末码| 黄色丝袜av网址大全| 亚洲专区国产一区二区| 99热只有精品国产| 中亚洲国语对白在线视频| 精品第一国产精品| 两个人免费观看高清视频| 国产97色在线日韩免费| 嫩草影视91久久| 国产精华一区二区三区| 国产精品一区二区精品视频观看| av视频在线观看入口| 一级毛片高清免费大全| 国产欧美日韩一区二区三| 久久精品国产99精品国产亚洲性色| 国产高清视频在线播放一区| 成年人黄色毛片网站| 激情在线观看视频在线高清| 国产伦人伦偷精品视频| 黑人操中国人逼视频| 男女床上黄色一级片免费看| 最新美女视频免费是黄的| 成人三级黄色视频| 国产日本99.免费观看| 国产一级毛片七仙女欲春2| 51午夜福利影视在线观看| 亚洲av中文字字幕乱码综合| 19禁男女啪啪无遮挡网站| 亚洲天堂国产精品一区在线| 久久亚洲精品不卡| 亚洲欧美激情综合另类| 不卡一级毛片| 久久中文字幕人妻熟女| 欧美最黄视频在线播放免费| 在线免费观看的www视频| 精品久久久久久成人av| 18禁黄网站禁片免费观看直播| 一进一出抽搐动态| 亚洲精品在线美女| 中亚洲国语对白在线视频| 韩国av一区二区三区四区| 免费高清视频大片| 高清在线国产一区| 草草在线视频免费看| e午夜精品久久久久久久| 老汉色∧v一级毛片| 一级片免费观看大全| 香蕉久久夜色| 亚洲性夜色夜夜综合| 啦啦啦观看免费观看视频高清| 久久天堂一区二区三区四区| 国产片内射在线| 午夜福利欧美成人| 婷婷丁香在线五月| 97人妻精品一区二区三区麻豆| 国产成人av教育| 身体一侧抽搐| 丝袜人妻中文字幕| 在线十欧美十亚洲十日本专区| 国产精品香港三级国产av潘金莲| 久久久精品国产亚洲av高清涩受| 欧美一区二区精品小视频在线| 午夜福利视频1000在线观看| 久热爱精品视频在线9| 免费高清视频大片| 国内久久婷婷六月综合欲色啪| 午夜福利18| 欧美zozozo另类| 亚洲 欧美一区二区三区| 在线免费观看的www视频| 国产久久久一区二区三区| 精华霜和精华液先用哪个| 亚洲欧美激情综合另类| 亚洲精品一区av在线观看| 在线观看免费午夜福利视频| 精品电影一区二区在线| 女警被强在线播放| www.自偷自拍.com| 久9热在线精品视频| 日本黄色视频三级网站网址| 桃红色精品国产亚洲av| 全区人妻精品视频| 午夜福利在线观看吧| 欧美激情久久久久久爽电影| 免费搜索国产男女视频| 老司机在亚洲福利影院| 久久精品国产亚洲av高清一级| 国产精品亚洲美女久久久| 露出奶头的视频| 亚洲av中文字字幕乱码综合| 欧美性猛交黑人性爽| 亚洲国产欧美一区二区综合| 亚洲成人久久性| 亚洲精品国产精品久久久不卡| 欧美丝袜亚洲另类 | 一本久久中文字幕| 香蕉久久夜色| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 18禁黄网站禁片免费观看直播| 最新在线观看一区二区三区| 日韩成人在线观看一区二区三区| 女人被狂操c到高潮| 国产野战对白在线观看| 亚洲第一欧美日韩一区二区三区| 国产又色又爽无遮挡免费看| 色综合欧美亚洲国产小说| 美女大奶头视频| 免费看日本二区| 在线视频色国产色| 欧美极品一区二区三区四区| 少妇人妻一区二区三区视频| 亚洲一区高清亚洲精品| 巨乳人妻的诱惑在线观看| 一本一本综合久久| 精品不卡国产一区二区三区| 禁无遮挡网站| 在线观看www视频免费| 国模一区二区三区四区视频 | www日本黄色视频网| 亚洲第一欧美日韩一区二区三区| 亚洲美女黄片视频| 国产亚洲欧美98| 日本五十路高清| 亚洲成av人片免费观看| 久久久久久人人人人人| 日本一区二区免费在线视频| 亚洲真实伦在线观看| 国产日本99.免费观看| 亚洲真实伦在线观看| 国产视频内射| 97人妻精品一区二区三区麻豆| 亚洲第一欧美日韩一区二区三区| 午夜a级毛片| 国产精品 欧美亚洲| 久久婷婷人人爽人人干人人爱| 国产精品永久免费网站| 国产精品免费一区二区三区在线| 淫妇啪啪啪对白视频| www.999成人在线观看| 国产探花在线观看一区二区| 淫秽高清视频在线观看| 国产精品亚洲美女久久久| 一夜夜www| www日本在线高清视频| 亚洲精品中文字幕一二三四区| 岛国在线观看网站| 日韩高清综合在线| 老司机靠b影院| 18禁黄网站禁片午夜丰满| 久久欧美精品欧美久久欧美| 免费看日本二区| 国产不卡一卡二| 国产精品 欧美亚洲| 亚洲激情在线av| 91大片在线观看| 国产精品一区二区三区四区久久| 亚洲精品av麻豆狂野| 91成年电影在线观看| 久久久久免费精品人妻一区二区| 国产成人精品无人区| 国内精品一区二区在线观看| 中亚洲国语对白在线视频| 国产亚洲精品久久久久久毛片| 久久久久九九精品影院| 欧美一区二区精品小视频在线| 非洲黑人性xxxx精品又粗又长| 最好的美女福利视频网| 欧美极品一区二区三区四区| 国产精品,欧美在线| 淫妇啪啪啪对白视频| 国产三级黄色录像| 亚洲av片天天在线观看| 亚洲中文av在线| 丁香六月欧美| 欧美日韩乱码在线| 久热爱精品视频在线9| 91国产中文字幕| ponron亚洲| 免费在线观看亚洲国产| 97人妻精品一区二区三区麻豆| 国产精品久久电影中文字幕| 99热只有精品国产| 亚洲中文日韩欧美视频| 欧美成人性av电影在线观看| av免费在线观看网站| 午夜免费激情av| 一区二区三区高清视频在线| 老司机午夜十八禁免费视频| 18禁黄网站禁片免费观看直播| 亚洲男人的天堂狠狠| 宅男免费午夜| 男男h啪啪无遮挡| 黄频高清免费视频| 女同久久另类99精品国产91| 亚洲人成电影免费在线| 免费在线观看完整版高清| 国产又黄又爽又无遮挡在线| 九色成人免费人妻av| 欧美日本视频| 啪啪无遮挡十八禁网站| 999久久久精品免费观看国产| 女警被强在线播放| 人人妻人人澡欧美一区二区| 午夜老司机福利片| 亚洲欧美精品综合一区二区三区| 久久婷婷成人综合色麻豆| 色播亚洲综合网| 少妇熟女aⅴ在线视频| 天天添夜夜摸| 看片在线看免费视频| 久久精品国产综合久久久| 两个人免费观看高清视频| www国产在线视频色| 精品一区二区三区视频在线观看免费| 日本免费a在线| 91在线观看av| 天堂动漫精品| 日本三级黄在线观看| 亚洲国产看品久久| 国产区一区二久久| 日韩免费av在线播放| 青草久久国产| 久热爱精品视频在线9| 亚洲av日韩精品久久久久久密| 免费在线观看日本一区| 色综合亚洲欧美另类图片| 成人国语在线视频| 大型黄色视频在线免费观看| 日韩高清综合在线| 国产亚洲精品一区二区www| videosex国产| 国产又黄又爽又无遮挡在线| 日韩 欧美 亚洲 中文字幕| aaaaa片日本免费| 日韩欧美 国产精品| 久久久久国内视频| 久久精品亚洲精品国产色婷小说| 亚洲九九香蕉| 啦啦啦韩国在线观看视频| 国产一区二区在线av高清观看| 亚洲成av人片在线播放无| 色播亚洲综合网| 国产一区二区三区视频了| xxxwww97欧美| 久久这里只有精品中国| 国产激情欧美一区二区| 天天添夜夜摸| 在线a可以看的网站| 亚洲欧美日韩高清专用| 神马国产精品三级电影在线观看 | 久久精品91蜜桃| 在线看三级毛片| 国产一区在线观看成人免费| 制服人妻中文乱码| 听说在线观看完整版免费高清| 婷婷亚洲欧美| 欧美日韩一级在线毛片| 欧美日本亚洲视频在线播放| 一本精品99久久精品77| 国产精品日韩av在线免费观看| 日本熟妇午夜| 午夜精品在线福利| 少妇人妻一区二区三区视频| 99热这里只有是精品50| 免费观看人在逋| 亚洲 欧美 日韩 在线 免费| 亚洲精品久久国产高清桃花| 国产av一区在线观看免费| 亚洲最大成人中文| 我要搜黄色片| 欧美日韩国产亚洲二区| av有码第一页| 麻豆一二三区av精品| 亚洲av成人av| 黄色a级毛片大全视频| 少妇被粗大的猛进出69影院| 亚洲av电影不卡..在线观看| 亚洲国产精品999在线| 少妇的丰满在线观看| 少妇粗大呻吟视频| 日本一区二区免费在线视频| 亚洲av成人不卡在线观看播放网| 久久久久性生活片| 亚洲国产精品sss在线观看| 两人在一起打扑克的视频| 午夜福利18| 色av中文字幕| 国内揄拍国产精品人妻在线| 日本在线视频免费播放| 久久中文看片网| 国产99久久九九免费精品| 久久久久久大精品| 国产成+人综合+亚洲专区| 久久精品国产亚洲av高清一级| 国产黄片美女视频| 99riav亚洲国产免费| 999精品在线视频| 久久久久性生活片| 国产精品久久久av美女十八| 亚洲国产精品久久男人天堂| 九九热线精品视视频播放| 欧美日韩精品网址| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品夜夜夜夜夜久久蜜豆 | 两个人的视频大全免费| 欧美日韩亚洲国产一区二区在线观看| 天堂动漫精品| 激情在线观看视频在线高清| 亚洲人与动物交配视频| 欧美午夜高清在线| 一本综合久久免费| 后天国语完整版免费观看| 色噜噜av男人的天堂激情| 真人做人爱边吃奶动态| 狠狠狠狠99中文字幕| 午夜福利高清视频| 黄色丝袜av网址大全| 99国产综合亚洲精品| 国产99白浆流出| 老司机福利观看| 色综合站精品国产| 在线a可以看的网站| 国产69精品久久久久777片 | 久9热在线精品视频| 国内揄拍国产精品人妻在线| 欧美高清成人免费视频www| 午夜免费激情av| 丁香欧美五月| 天堂av国产一区二区熟女人妻 | 亚洲va日本ⅴa欧美va伊人久久| 好男人在线观看高清免费视频| 日韩精品免费视频一区二区三区| 日韩欧美在线乱码| 久久九九热精品免费| 国产又色又爽无遮挡免费看| 中文字幕av在线有码专区| 黄片大片在线免费观看| www日本黄色视频网| 中文字幕高清在线视频| 久久亚洲真实| 国产三级在线视频| 精品国内亚洲2022精品成人| 精品久久久久久久末码| 日韩欧美精品v在线| 日日夜夜操网爽| 久久天躁狠狠躁夜夜2o2o| 欧美日本亚洲视频在线播放| 色尼玛亚洲综合影院| 老汉色av国产亚洲站长工具| 搡老熟女国产l中国老女人| 久久久久久免费高清国产稀缺| 亚洲国产欧美一区二区综合| 亚洲专区国产一区二区| 国产欧美日韩一区二区精品| 国产男靠女视频免费网站| 精品午夜福利视频在线观看一区|