• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RECURRENCE FOR WEIGHTED TRANSLATIONS ON GROUPS?

    2016-09-26 03:45:26ChungChuanCHEN陳中川
    關(guān)鍵詞:中川

    Chung-Chuan CHEN(陳中川)

    Department of Mathematics Education,National Taichung University of Education,Taiwan

    E-mail∶chungchuan@mail.ntcu.edu.tw

    ?

    RECURRENCE FOR WEIGHTED TRANSLATIONS ON GROUPS?

    Chung-Chuan CHEN(陳中川)

    Department of Mathematics Education,National Taichung University of Education,Taiwan

    E-mail∶chungchuan@mail.ntcu.edu.tw

    Let G be a locally compact group,and let 1≤p<∞.We characterize topologically multiply recurrent weighted translation operators on Lp(G)in terms of the Haar measure and the weight function.We also show that there do not exist any recurrent weighted translation operators on L∝(G).

    Topologically multiple recurrence;recurrence;hypercyclicity;locally compact group;Lp-space

    2010 MR Subject Classification37B20;47A16;43A15

    1 Introduction

    Recently,we gave sufficient and necessary conditions for weighted translation operators on groups to be hypercyclic and chaotic in[1-4],which subsumes some works in[5-8].The notion of hypercyclicity in linear dynamics is close to,but stronger than the notion of recurrence in topological dynamics in[9].It is well known that every hypercyclic operator is recurrent on separable Banach spaces in[10].However,this is not the case for topologically multiple recurrence,which is a stronger notion than recurrence.There exists a hypercyclic weighted backward shift on ?2(Z)in[10],which is not topologically multiply recurrent.In this note,we will give a sufficient and necessary condition for weighted translation operators on the Lebesgue space Lp(1≤p<∞)of a locally compact group to be topologically multiply recurrent in terms of the Haar measure and the weight function,and show,on the L∝space,there are no recurrent weighted translation operators.

    In linear dynamics,we first recall that an operator T on a Banach space X is called hypercyclicifthereexistsavectorx∈XsuchthatitsorbitunderTdenotedby Orb(x,T):={x,Tx,T2x,···}is dense in X in which x is said to be a hypercyclic vector of T.It is known that hypercyclicity is equivalent to topological transitivity.An operator T is topologically transitive if given two nonempty open subsets U,V?X,there is some n∈N such that TnU∩V 6=?.If TnU∩V 6=?from some n onwards,then T is called topologically mixing.Hypercyclicity and transitivity have been studied by many authors.We refer to these books[11,12]on this subject.In topological dynamics,an operator T is topologically multiplyrecurrent if for every positive integer N and every nonempty open set U in X,there is some n∈N such that U∩T?nU∩T?2nU∩···∩T?NnU 6=?.If N=1,then T is called recurrent,that is,the condition U∩T?nU 6=?is satisfied.

    The motivation to connect hypercyclicity with recurrence is inspired by the works in[9,10]. In[10],Costakis and Parissis characterized topologically multiply recurrent weighted shifts on?p(Z)in terms of the weight sequence.On the other hand,that the space ?∝(Z)does not support any recurrent weighted shifts was shown in[9].We note that the weighted shifts on?p(Z)and ?∝(Z)are a special case of the weighted translation operators on the Lebesgue space of a locally compact group.In this article,we will extend some results in[9,10]to the setting of translations on groups.

    In what follows,let G be a locally compact group with identity e and a right-invariant Haar measure λ.We denote by Lp(G)(1≤p≤∞)the complex Lebesgue space,with respect to λ.A bounded function w:G→(0,∞)is called a weight on G.Let a∈G and let δabe the unit point mass at a.A weighted translation on G is a weighted convolution operator Ta,w:Lp(G)?→Lp(G)defined by

    where w is a weight on G and Ta(f)=f?δa∈Lp(G)is the convolution:

    If w?1∈L∝(G),then the weighted translation operatorais the inverse of Ta,w. We write Sa,wforto simplify notation.We assume w,w?1∈L∝(G)throughout.

    2 Recurrence on Lp(G)

    In this section,we will prove the result on Lp(G)(1≤p<∞)for translations by aperiodic elements in G.An element a in a group G is called a torsion element if it is of finite order. In a locally compact group G,an element a∈G is called periodic(or compact)in[4]if the closed subgroup G(a)generated by a is compact.We call an element in G aperiodic if it is not periodic.For discrete groups,periodic and torsion elements are identical.It is proved in[4]that an element a∈G is aperiodic if and only if for any compact set K?G,there exists some N∈N such that K∩Ka±n=?for all n>N.

    We will make use of the aperiodic condition to obtain the result below.We note that[4]in many familiar non-discrete groups,including the additive group Rd,the Heisenberg group,and the affine group,all elements except the identity are aperiodic.

    Theorem 2.1Let G be a locally compact group and let a be an aperiodic element in G. Let 1≤p<∞and Ta,wbe a weighted translation on Lp(G).The following conditions are equivalent.

    (i)Ta,wis topologically multiply recurrent;

    (ii)For each N∈N and each compact subset K?G with λ(K)>0,there is a sequence of Borel sets(Ek)in K such that λ(K)=limk→∝λ(Ek)and both sequences(for 1≤l≤N)admit,respectively,subsequences)and)satisfying

    Proof(i)?(ii).Let Ta,wbe topologically multiply recurrent.Let K?G be a compact set with λ(K)>0.Let ε∈(0,1).By aperiodicity of a,there is some M such that K∩Ka?n=?for n>M.Let χK∈Lp(G)be the characteristic function of K.

    by the topologically multiply recurrent assumption.Hence,there exists f∈Lp(G)such that

    for l=1,2,...,N.Let

    and

    Then,we have

    and

    Moreover,by the inequality below,

    we have λ(A)<δp.Similarly,λ(B)<δp.

    In contrast,let

    and

    Then,

    and

    Again,by applying the inequality

    we have λ(Cl,m)<δp.Using the similar argument and the right invariance of Haar measure,we have λ(Dl,m)<δp.

    As K∩Ka?lm=?,we have

    and

    Let

    Then,we have λ(KEm)<4Nδpand‖<ε,which implies condition(ii).

    (ii)?(i).We show that Ta,wis topologically multiply recurrent.Let U be a non-empty open subset of Lp(G).As the space Cc(G)of continuous functions on G with compact support is dense in Lp(G),we can pick f∈Cc(G)with f∈U.Let K be the compact support of f. Given some N,let Ek?K and the sequences(?ln),(?~ln)satisfy condition(ii).

    By aperiodicity of a,there exists M∈N such that K∩Ka±n=?for any n>M.Let ε>0.There exists M′∈N such that nk>M andfor k>M′.Hence,

    as k→∞for 1≤l≤N.By the sequence),we havel=1,2,···,N.

    Now,we are ready to achieve our goal.For each k∈N,let =0 for

    Then,by the aperiodicity of a,we have

    and

    which implies

    Example 2.2Let G=Z,a=?1∈Z which is aperiodic.Let w?δ?1be a weight on Z. Then,the weighted translation operator T?1,w?δ?1is given by

    and

    which is the condition in[10,Proposition 5.3].

    In contrast,if w?1∈?∝(Z),then T1,w?1is the inverse of the operator,and the above weight conditions suffices T1,w?1to be multiply recurrent.Indeed,the weight conditions in Theorem 2.1 for T1,w?1is

    and

    which is the same with the conditions for T?1,w?δ?1.If we define w:Z→(0,∞)as

    Remark 2.3In Example 2.2,bothand the inverse ofcould be multiply recurrent simultaneously.In fact,this is also true for general cases.That is,an invertible weighted translation Ta,wgenerated by an aperiodic element is multiply recurrent on Lp(G),if and only if the inverse of Ta,wis multiply recurrent.

    Example 2.4Let G=R,a=3,and w be a weight on R.Then,the weighted translation T3,won Lp(R)is given by

    By Theorem 2.1,the operator T3,wis topologically multiply recurrent if given ε>0,some N∈N,and a compact subset K of R,there exists a positive integer n such that for 1≤l≤N

    and x∈K,we have

    and

    We may define w:R→(0,∞)by

    which satisfies the above weight condition.

    Example 2.5Let

    be the Heisenberg group which is neither abelian nor compact.For convenience,an element in G is written as(x,y,z).Let(x,y,z),(x′,y′,z′)∈H.Then,the multiplication is given by

    and

    Let a=(1,0,2)and w be a weight on H.Then,a?1=(?1,0,?2)and the weighted translationon Lp(H)is given by

    and

    Similarly,one can obtain the required weight condition by defining w:H→(0,∞)as follows:

    It is known that Devaney's notion of chaos consists of topological transitivity together with periodicity.That is,an operator T on a Banach space is chaotic if T is transitive and the set of periodic elements,{x∈X:?n∈N with Tnx=x},is dense in X.In[1,Corollary 2.3],we characterize chaotic weighted translation operators on discrete groups.

    Corollary 2.6([1,Corollary 2.3])Let G be a discrete group and let a be a non-torsion element in G.Let 1≤p<∞and Ta,wbe a weighted translation on ?p(G).Then,the following conditions are equivalent.

    (i)Ta,wis chaotic.

    (ii)For each finite subset K?G,both sequences

    admit,respectively,subsequences(?nk)and(~?nk)satisfying

    The following corollaries reveal that both chaos on discrete groups and topological mixing on locally compact groups are stronger notions than topologically multiple recurrence.

    Corollary 2.7Let G be a discrete group and let a be a non-torsion element in G.Let 1≤p<∞and Ta,wbe a weighted translation operator on ?p(G).If Ta,wis chaotic,then Ta,wis topologically multiply recurrent on ?p(G).

    ProofLet Ta,wbe chaotic on ?p(G).By the weight condition in Corollary 2.6,Ta,wis topologically multiply recurrent.

    Corollary 2.8Let G be a locally compact group and let a be an aperiodic element in G. Let 1≤p<∞and Ta,wbe a weighted translation operator on Lp(G).If Ta,wis topologically mixing,then Ta,wis topologically multiply recurrent on Lp(G).

    ProofLet ε>0 and choose 0<δ<ε

    1+ε.Let K be a compact set of G,and let U={g∈Lp(G):‖g?χK‖p<δ2}.Given N∈N,by the topologically mixing assumption,there exists some m∈N such that

    from m onwards.Hence,

    for l=1,2,···,N.Therefore,we can pick,for each l,a function fl∈U with∈U which gives

    Using this for each fland repeating the arguments in the proof of Theorem 2.1,we find Borel

    sets Ek?K such that

    which says Ta,wis topologically multiply recurrent.

    Example 2.9Let G=Z,a=?1∈Z and let w?δ?1be a weight on Z.Then,is the bilateral weighted backward shift on ?p(Z).By Corollaries 2.7 and 2.8,the operatoris topologically multiply recurrent ifis topologically mixing or chaotic.

    Remark 2.10We note that there exists a weighted shift which is topologically multiply recurrent but is neither chaotic nor topologically mixing in[13].

    To end up this section,we show that for weighted translations Ta,w,hypercyclicity is equivalent to recurrence.We,first,recall a work in[3].

    Theorem 2.11([3,Theorem 2.1])Let G be a locally compact group and let a be an aperiodic element in G.Let 1≤p<∞and Ta,wbe a weighted translation on Lp(G).The following conditions are equivalent.

    (i)Ta,wis hypercyclic.

    (ii)For each compact subset K?G with λ(K)>0,there is a sequence of Borel sets(Ek)in K such that λ(K)=)and both sequences

    admit,respectively,subsequences(?nk)and(~?nk)satisfying

    Now,we state the result below.

    Corollary 2.12Let G be a locally compact group and let a be an aperiodic element in G.Let 1≤p<∞and Ta,wbe a weighted translation on Lp(G).Then,Ta,wis hypercyclic if and only if Ta,wis recurrent.

    ProofAs hypercyclicity implies recurrence,we only need to show if Ta,wis recurrent,then Ta,wis hypercyclic.

    Let N=1 in Theorem 2.1,then the condition(ii)in Theorem 2.1 suffices Ta,wto be hypercyclic by Theorem 2.11.

    Example 2.13It was shown in[10,Proposition 5.1]that the bilateral weighted shift on?p(Z)is hypercyclic if and only if it is recurrent.One can obtain this result in the following way.Let G=Z,a=?1∈Z and let w?δ?1be a weight on Z.Then,is the bilateral weighted backward shift on ?p(Z).By Corollary 2.12,hypercyclicity and recurrence occur onsimultaneously.

    3 Recurrence on L∞(G)

    It is known in[14,15]that a complex Banach space admits a hypercyclic operator if and only if it is infinite-dimensional and separable.Therefore,there is no hypercyclic weighted translation operator Ta,won L∝(G)by the fact L∝(G)is non-separable.Moreover,we will show,in this section,that the space L∝(G)does not support any recurrent weighted translation operators Ta,w.

    Theorem 3.1Let G be a locally compact group and a∈G be an aperiodic element. Let w∈L∝(G)be a weight on G with w?1∈L∝(G).Then,there does not exist recurrentweighted translation operator Ta,won L∝(G).

    ProofSuppose that Ta,wis recurrent.Let M>1.Given a non-null compact set K,we define g(x)=M if x∈K;otherwise,g(x)=3.As Ta,wis recurrent,there exist a recurrent vector f and a positive integer n>1 such that=?from n onwards,‖f?g‖∝

    and

    Hence,2<|f(x)|<4 a.e.on GK.Moreover,we have

    Let E=KKa?1,then λ(E)>0.Otherwise,K?Ka?1a.e.,and then Kan?Kan?1?···?K,which is impossible.Hence,

    which implies

    we arrive at

    a.e.on E,where m=ess inf{w(xa):x∈K}>0 by w?1∈L∝(G).As M can be chosen to arbitrarily large,we conclude w 6∈L∝(G).Hence,Ta,wis not recurrent.

    Example 3.2Let G=Z,a=?1∈Z and let w?δ?1be a weight on Z.Then,is the bilateral weighted backward shift on ?∝(Z).By Theorem above,there is no recurrent bilateral weighted backward shifton ?∝(Z).Hence,a result in[9,Theorem 5.1]is recovered.

    A well known result of Salas in[8]says that the operator I+T is hypercyclic whenever T is any unilateral weighted backward shift on ?2(N).In the non-separable space L∝(G),the operator I+Ta,wcan never be recurrent on L∝(G).

    Theorem 3.3Let G be a locally compact group and a∈G.Let w∈L∝(G)be a weight on G with w?1∈L∝(G).Let Ta,wbe a weighted translation operator on L∝(G).Then,the operator I+Ta,wis not recurrent on L∝(G).

    ProofSuppose that I+Ta,wis recurrent.Let g(x)=1 for x∈G.Then,there exist a recurrent vector f and an arbitrarily large integer N with Nm>2,where m=essinf{w(x):

    Taking real parts in the inequalities above,we have Re(f(xa?1))>and

    a.e.on G,which implies

    We conclude that Nm<2,which is a contradiction.Hence,I+Ta,wis not recurrent.

    Example 3.4Let G=Z and a=0∈Z.Let w be a weight on Z.Then,the operator I+T0,wis not recurrent on ?∝(Z).

    References

    [1]Chen C C.Chaotic weighted translations on groups.Arch Math,2011,97:61-68

    [2]Chen C C.Supercyclic and Ces`aro hypercyclic weighted translations on groups.Taiwanese J Math,2012,16:1815-1827

    [3]Chen C C.Hypercyclic weighted translations generated by non-torsion elements.Arch Math,2013,101:135-141

    [4]Chen C C,Chu C H.Hypercyclic weighted translations on groups.Proc Amer Math Soc,2011,139:2839-2846

    [5]Costakis G,Sambarino M.Topologically mixing hypercyclic operators.Proc Amer Math Soc,2004,132:385-389

    [6]Grosse-Erdmann K G.Hypercyclic and chaotic weighted shifts.Studia Math,2000,139:47-68

    [7]Le′on-Saavedra F.Operators with hypercyclic Ces`aro means.Studia Math,2002,152:201-215

    [8]Salas H.Hypercyclic weighted shifts.Trans Amer Math Soc,1995,347:993-1004

    [9]Costakis G,Manoussos A,Parissis I.Recurrent linear operators.Complex Anal Oper Th,2014,8:1601-1643

    [10]Costakis G,Parissis I.Szemer`edi’s theorem,frequent hypercyclicity and multiple recurrence.Math Scand,2012,110:251-272

    [11]Bayart F,Matheron′E.Dynamics of linear operators.Cambridge:Cambridge University Press,2009

    [12]Grosse-Erdmann K G,Peris A.Linear Chaos.London:Springer,2011

    [13]Bayart F,Grivaux S.Invariant Gaussian measures for operators on Banach spaces and linear dynamics. Proc Lond Math Soc,2007,94:181-210

    [14]Ansari S I.Existence of hypercyclic operators on topological vector spaces.J Funct Anal,1997,148:384-390

    [15]Bernal-Gonz′alez L.On hypercyclic operators on Banach spaces.Proc Amer Math Soc,1999,127:1003-1010

    May 9,2014;revised June 17,2015.The author is supported by MOST of Taiwan(MOST 104-2115-M-142-002-).

    猜你喜歡
    中川
    孫中川:“生命禁區(qū)”的守衛(wèi)者
    派出所工作(2023年9期)2023-09-21 18:08:21
    點(diǎn)晴
    鐵路接軌站信號系統(tǒng)設(shè)計方案研究
    關(guān)于商業(yè)街中的仿古建筑設(shè)計探討以蘭州中川小鎮(zhèn)項(xiàng)目為例
    景泰至中川高速公路路線方案論證
    上海公路(2018年4期)2018-03-21 05:57:26
    中川政七 幸福の覺醒
    鳳凰生活(2016年7期)2016-07-05 16:05:19
    中川美術(shù)館秘蔵·中國の硯
    中川美術(shù)館秘蔵·中國の硯
    醉生夢死中川昭一
    日本前財相又爆丟人事
    18禁观看日本| 成人国产av品久久久| 午夜av观看不卡| 男女边摸边吃奶| 久久久久久人人人人人| svipshipincom国产片| 9色porny在线观看| 黄色怎么调成土黄色| 亚洲欧美成人综合另类久久久| 日韩,欧美,国产一区二区三区| 1024香蕉在线观看| 国产免费又黄又爽又色| 狂野欧美激情性bbbbbb| www日本在线高清视频| 欧美 亚洲 国产 日韩一| 自线自在国产av| 黄色一级大片看看| 亚洲欧洲国产日韩| 好男人视频免费观看在线| 国产精品久久久久久精品古装| 欧美变态另类bdsm刘玥| a级毛片在线看网站| 久久久国产一区二区| 亚洲色图综合在线观看| 18禁观看日本| 一级毛片黄色毛片免费观看视频| 成人国产av品久久久| 成人免费观看视频高清| 最黄视频免费看| 亚洲国产精品一区三区| 丝袜在线中文字幕| 夫妻性生交免费视频一级片| 国产国语露脸激情在线看| 国产日韩一区二区三区精品不卡| 亚洲精品第二区| 秋霞伦理黄片| 大香蕉久久成人网| 国产高清国产精品国产三级| 飞空精品影院首页| 国产一区二区激情短视频 | 国产精品久久久久久人妻精品电影 | 久久狼人影院| 日日啪夜夜爽| 80岁老熟妇乱子伦牲交| 免费少妇av软件| 黑人巨大精品欧美一区二区蜜桃| 欧美成人午夜精品| 美女国产高潮福利片在线看| 午夜福利影视在线免费观看| 妹子高潮喷水视频| 九九爱精品视频在线观看| 久久精品国产亚洲av涩爱| 国产免费福利视频在线观看| 亚洲国产毛片av蜜桃av| 精品酒店卫生间| 伦理电影大哥的女人| 亚洲精品成人av观看孕妇| 9热在线视频观看99| 亚洲精品日本国产第一区| 日韩免费高清中文字幕av| 亚洲欧美清纯卡通| 一级a爱视频在线免费观看| 亚洲国产成人一精品久久久| 18禁观看日本| 日韩电影二区| 亚洲第一青青草原| 肉色欧美久久久久久久蜜桃| 观看av在线不卡| 9色porny在线观看| 国产无遮挡羞羞视频在线观看| 1024香蕉在线观看| 欧美日韩视频精品一区| 久久精品久久精品一区二区三区| 黄色 视频免费看| 精品少妇黑人巨大在线播放| 日本vs欧美在线观看视频| 大片免费播放器 马上看| 国产在线一区二区三区精| 亚洲成色77777| 一区二区av电影网| 亚洲自偷自拍图片 自拍| 久久久久久人妻| 亚洲精品美女久久av网站| 看非洲黑人一级黄片| 日日摸夜夜添夜夜爱| 亚洲专区中文字幕在线 | 精品少妇久久久久久888优播| 亚洲国产欧美日韩在线播放| 精品国产一区二区三区久久久樱花| 国产成人91sexporn| 国语对白做爰xxxⅹ性视频网站| 亚洲成人免费av在线播放| 黄频高清免费视频| 国产一区二区 视频在线| 建设人人有责人人尽责人人享有的| 欧美老熟妇乱子伦牲交| 两性夫妻黄色片| 成人影院久久| 久久人人爽人人片av| 亚洲,欧美精品.| 91国产中文字幕| 黄色怎么调成土黄色| 久久久久久人妻| 美女脱内裤让男人舔精品视频| 少妇的丰满在线观看| 国产片特级美女逼逼视频| 成年动漫av网址| a级毛片在线看网站| 亚洲av电影在线观看一区二区三区| 啦啦啦啦在线视频资源| 亚洲人成77777在线视频| 国产成人欧美在线观看 | 一级爰片在线观看| 亚洲精品自拍成人| 精品一区二区三区av网在线观看 | 一级,二级,三级黄色视频| 中国国产av一级| 国产精品久久久久久精品古装| 黄色一级大片看看| 国产97色在线日韩免费| 日韩一区二区三区影片| 久久久国产精品麻豆| av片东京热男人的天堂| 欧美人与性动交α欧美软件| 女的被弄到高潮叫床怎么办| 99久久人妻综合| avwww免费| 男女免费视频国产| 亚洲av男天堂| 一区二区三区四区激情视频| 丝袜脚勾引网站| 亚洲欧美中文字幕日韩二区| 飞空精品影院首页| 男女无遮挡免费网站观看| 午夜福利免费观看在线| 国产成人精品无人区| 亚洲人成电影观看| www.精华液| 国产乱来视频区| 日本黄色日本黄色录像| 中文字幕色久视频| 亚洲欧美一区二区三区国产| 九草在线视频观看| av网站在线播放免费| 最近的中文字幕免费完整| 亚洲在久久综合| 一区二区av电影网| 久久人人爽人人片av| 黄色一级大片看看| 欧美少妇被猛烈插入视频| 美女视频免费永久观看网站| 免费女性裸体啪啪无遮挡网站| 国产成人啪精品午夜网站| 亚洲精品国产区一区二| 久久人妻熟女aⅴ| 中文字幕最新亚洲高清| 丁香六月天网| 汤姆久久久久久久影院中文字幕| 国产99久久九九免费精品| 男女午夜视频在线观看| 亚洲美女黄色视频免费看| 卡戴珊不雅视频在线播放| 波多野结衣av一区二区av| 成人毛片60女人毛片免费| 一本—道久久a久久精品蜜桃钙片| a级毛片黄视频| 亚洲视频免费观看视频| 国产成人欧美在线观看 | 宅男免费午夜| 日本vs欧美在线观看视频| 777久久人妻少妇嫩草av网站| 人妻一区二区av| 色婷婷av一区二区三区视频| 最近的中文字幕免费完整| 岛国毛片在线播放| 大码成人一级视频| 久久久久久免费高清国产稀缺| 美女高潮到喷水免费观看| 在线观看三级黄色| 亚洲专区中文字幕在线 | 老汉色∧v一级毛片| 亚洲av日韩精品久久久久久密 | 在线观看国产h片| 亚洲av成人不卡在线观看播放网 | 精品国产一区二区三区久久久樱花| www.精华液| 女的被弄到高潮叫床怎么办| 亚洲av中文av极速乱| 一二三四中文在线观看免费高清| 久热这里只有精品99| 波多野结衣一区麻豆| 国产在视频线精品| 中文字幕人妻丝袜一区二区 | 亚洲成人国产一区在线观看 | 亚洲自偷自拍图片 自拍| 熟女av电影| bbb黄色大片| 国产片特级美女逼逼视频| 亚洲久久久国产精品| 少妇人妻久久综合中文| 国产黄色视频一区二区在线观看| 亚洲人成77777在线视频| 激情五月婷婷亚洲| 丝袜喷水一区| 精品国产乱码久久久久久小说| av电影中文网址| 亚洲,欧美精品.| 国产97色在线日韩免费| 亚洲精品国产av蜜桃| 亚洲七黄色美女视频| 欧美久久黑人一区二区| 久久狼人影院| 一区二区av电影网| 美女视频免费永久观看网站| 又大又爽又粗| av女优亚洲男人天堂| 啦啦啦 在线观看视频| 啦啦啦在线观看免费高清www| 精品国产超薄肉色丝袜足j| 叶爱在线成人免费视频播放| 两个人看的免费小视频| 男人添女人高潮全过程视频| 精品一区二区免费观看| 久久久久久人人人人人| 久久精品亚洲av国产电影网| av女优亚洲男人天堂| 性高湖久久久久久久久免费观看| 9色porny在线观看| 欧美精品高潮呻吟av久久| 久久性视频一级片| 少妇 在线观看| 最近中文字幕2019免费版| av天堂久久9| 精品亚洲乱码少妇综合久久| 两性夫妻黄色片| 五月天丁香电影| 成人免费观看视频高清| 午夜免费鲁丝| 亚洲第一青青草原| 久久久精品94久久精品| 精品一区二区三卡| 日韩伦理黄色片| 侵犯人妻中文字幕一二三四区| 成人亚洲精品一区在线观看| 黄片播放在线免费| 欧美黑人精品巨大| 久久这里只有精品19| 亚洲精品成人av观看孕妇| 香蕉丝袜av| 人人妻人人添人人爽欧美一区卜| h视频一区二区三区| 麻豆av在线久日| 午夜91福利影院| 午夜福利,免费看| 国产亚洲欧美精品永久| 亚洲图色成人| 街头女战士在线观看网站| 国产精品久久久久成人av| 91精品三级在线观看| √禁漫天堂资源中文www| 精品亚洲成国产av| 69精品国产乱码久久久| 久久国产亚洲av麻豆专区| 免费久久久久久久精品成人欧美视频| 免费不卡黄色视频| 久久精品国产综合久久久| av线在线观看网站| 捣出白浆h1v1| 久久免费观看电影| 亚洲精品aⅴ在线观看| 欧美中文综合在线视频| 日韩一区二区三区影片| 老汉色av国产亚洲站长工具| 日韩伦理黄色片| av电影中文网址| 午夜免费观看性视频| 18在线观看网站| 啦啦啦中文免费视频观看日本| 涩涩av久久男人的天堂| 一级片免费观看大全| 中国国产av一级| 九九爱精品视频在线观看| 免费高清在线观看日韩| 色吧在线观看| 狂野欧美激情性bbbbbb| 亚洲av电影在线进入| 久久热在线av| 人妻 亚洲 视频| 少妇人妻久久综合中文| 亚洲伊人色综图| 亚洲美女黄色视频免费看| 最近的中文字幕免费完整| 亚洲欧美精品自产自拍| 国产免费视频播放在线视频| 99国产精品免费福利视频| 国产成人啪精品午夜网站| av在线老鸭窝| 少妇的丰满在线观看| 乱人伦中国视频| 别揉我奶头~嗯~啊~动态视频 | 精品一区在线观看国产| 另类亚洲欧美激情| 亚洲综合色网址| 在线亚洲精品国产二区图片欧美| 午夜av观看不卡| 国产亚洲av高清不卡| 欧美日韩亚洲综合一区二区三区_| 久久国产亚洲av麻豆专区| 欧美人与善性xxx| 国产成人欧美在线观看 | 久久精品人人爽人人爽视色| 免费不卡黄色视频| 老司机深夜福利视频在线观看 | 午夜91福利影院| 一区二区日韩欧美中文字幕| 国产精品一国产av| 好男人视频免费观看在线| 一区二区日韩欧美中文字幕| 久久性视频一级片| e午夜精品久久久久久久| 亚洲精品视频女| 久久国产亚洲av麻豆专区| 免费看av在线观看网站| 午夜福利,免费看| 国产熟女午夜一区二区三区| 亚洲av福利一区| 成年人午夜在线观看视频| 亚洲精品美女久久久久99蜜臀 | 制服诱惑二区| 激情五月婷婷亚洲| 欧美成人精品欧美一级黄| 成人亚洲欧美一区二区av| 精品午夜福利在线看| 国产精品国产三级国产专区5o| 亚洲成色77777| 男女边吃奶边做爰视频| 中文字幕制服av| 美女大奶头黄色视频| 啦啦啦中文免费视频观看日本| 精品一区二区三卡| 中文字幕人妻熟女乱码| 老司机深夜福利视频在线观看 | 曰老女人黄片| 国产精品.久久久| 国产精品欧美亚洲77777| 国产精品蜜桃在线观看| 最近最新中文字幕大全免费视频 | 下体分泌物呈黄色| 亚洲国产日韩一区二区| 伦理电影免费视频| 精品亚洲成国产av| 三上悠亚av全集在线观看| 丝袜喷水一区| 大话2 男鬼变身卡| 多毛熟女@视频| 亚洲国产欧美日韩在线播放| 午夜福利免费观看在线| 欧美少妇被猛烈插入视频| 黑人巨大精品欧美一区二区蜜桃| 老鸭窝网址在线观看| 色播在线永久视频| 欧美老熟妇乱子伦牲交| 大片电影免费在线观看免费| 国产成人欧美| 天堂中文最新版在线下载| 色视频在线一区二区三区| 亚洲第一av免费看| 男人操女人黄网站| 又黄又粗又硬又大视频| 十八禁网站网址无遮挡| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕亚洲精品专区| 永久免费av网站大全| 在线观看免费高清a一片| 秋霞伦理黄片| 成人黄色视频免费在线看| 亚洲第一区二区三区不卡| 久久精品久久久久久噜噜老黄| 老司机深夜福利视频在线观看 | 国产男人的电影天堂91| 一个人免费看片子| 精品国产一区二区久久| 久久久久久人妻| 久久精品亚洲av国产电影网| 最近的中文字幕免费完整| 性高湖久久久久久久久免费观看| 亚洲伊人久久精品综合| 久热爱精品视频在线9| 国产又爽黄色视频| 国产精品偷伦视频观看了| 99久久99久久久精品蜜桃| 欧美变态另类bdsm刘玥| 亚洲av男天堂| 悠悠久久av| 亚洲av国产av综合av卡| 老司机深夜福利视频在线观看 | 久久久久久久大尺度免费视频| 欧美日韩福利视频一区二区| www.自偷自拍.com| 又大又黄又爽视频免费| 日日啪夜夜爽| 一边亲一边摸免费视频| h视频一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 亚洲成人av在线免费| 国产成人免费观看mmmm| 丁香六月天网| 久久久国产一区二区| 考比视频在线观看| 两个人看的免费小视频| 成年人免费黄色播放视频| 嫩草影院入口| 欧美日韩综合久久久久久| 咕卡用的链子| 亚洲av日韩在线播放| 老司机在亚洲福利影院| 一级片免费观看大全| 亚洲熟女毛片儿| 欧美日韩视频精品一区| 自线自在国产av| 日韩大片免费观看网站| 美女中出高潮动态图| √禁漫天堂资源中文www| 18禁国产床啪视频网站| 最近中文字幕高清免费大全6| 九草在线视频观看| 午夜91福利影院| 亚洲国产精品一区二区三区在线| 午夜福利影视在线免费观看| 国产成人精品福利久久| 18禁国产床啪视频网站| 七月丁香在线播放| 精品国产超薄肉色丝袜足j| 精品免费久久久久久久清纯 | 大码成人一级视频| 如何舔出高潮| 亚洲色图 男人天堂 中文字幕| 国产老妇伦熟女老妇高清| 看免费成人av毛片| 一级片'在线观看视频| 欧美成人精品欧美一级黄| 满18在线观看网站| 一本久久精品| 一级毛片黄色毛片免费观看视频| 我要看黄色一级片免费的| 久久女婷五月综合色啪小说| 亚洲色图综合在线观看| av视频免费观看在线观看| 日日撸夜夜添| 18禁动态无遮挡网站| 男人操女人黄网站| 建设人人有责人人尽责人人享有的| 久久久亚洲精品成人影院| 中文字幕精品免费在线观看视频| 久久国产精品大桥未久av| 欧美久久黑人一区二区| 午夜免费观看性视频| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 这个男人来自地球电影免费观看 | 中文字幕另类日韩欧美亚洲嫩草| 中文字幕高清在线视频| 美女高潮到喷水免费观看| 人人妻人人添人人爽欧美一区卜| 亚洲视频免费观看视频| 国产成人啪精品午夜网站| 热99久久久久精品小说推荐| 黄色毛片三级朝国网站| 男女之事视频高清在线观看 | 黄片无遮挡物在线观看| 国产 精品1| 久久精品亚洲av国产电影网| 国产精品久久久久久久久免| av片东京热男人的天堂| 久久毛片免费看一区二区三区| 精品一区二区三区av网在线观看 | 精品少妇久久久久久888优播| 国产男女超爽视频在线观看| 色婷婷久久久亚洲欧美| 如日韩欧美国产精品一区二区三区| 女的被弄到高潮叫床怎么办| xxx大片免费视频| 亚洲第一青青草原| 日韩欧美精品免费久久| 亚洲激情五月婷婷啪啪| 亚洲美女搞黄在线观看| 精品久久蜜臀av无| 中文字幕人妻丝袜一区二区 | 亚洲精品自拍成人| 亚洲美女搞黄在线观看| 亚洲欧洲日产国产| 精品酒店卫生间| 我要看黄色一级片免费的| 亚洲精品久久久久久婷婷小说| 黄色 视频免费看| 国产精品亚洲av一区麻豆 | 好男人视频免费观看在线| 国产精品久久久久久人妻精品电影 | 欧美日韩一区二区视频在线观看视频在线| 九色亚洲精品在线播放| 99香蕉大伊视频| 无遮挡黄片免费观看| 久久久精品94久久精品| 成人亚洲精品一区在线观看| 水蜜桃什么品种好| 日韩不卡一区二区三区视频在线| 日韩一区二区视频免费看| 久久97久久精品| 在线看a的网站| 久久久精品区二区三区| 亚洲一级一片aⅴ在线观看| 午夜福利乱码中文字幕| av在线播放精品| 满18在线观看网站| 悠悠久久av| 自拍欧美九色日韩亚洲蝌蚪91| 男女床上黄色一级片免费看| av电影中文网址| 麻豆av在线久日| 黑人巨大精品欧美一区二区蜜桃| 欧美少妇被猛烈插入视频| 成人免费观看视频高清| 国产精品免费视频内射| bbb黄色大片| 久热这里只有精品99| 久久国产亚洲av麻豆专区| 精品福利永久在线观看| 女的被弄到高潮叫床怎么办| 国产精品免费大片| av有码第一页| 男人爽女人下面视频在线观看| 制服诱惑二区| 精品一区二区三卡| 国精品久久久久久国模美| 交换朋友夫妻互换小说| 熟妇人妻不卡中文字幕| 精品一区在线观看国产| 99国产综合亚洲精品| 青春草国产在线视频| 国产成人91sexporn| 18禁国产床啪视频网站| 婷婷色综合www| 国产精品一国产av| 国产成人系列免费观看| 久久精品久久精品一区二区三区| 人成视频在线观看免费观看| 免费黄网站久久成人精品| 国产精品 欧美亚洲| 波野结衣二区三区在线| 国产日韩欧美视频二区| 操美女的视频在线观看| a级片在线免费高清观看视频| 99九九在线精品视频| 丝袜人妻中文字幕| av在线app专区| 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av高清一级| 国产精品蜜桃在线观看| 夫妻午夜视频| 精品国产一区二区三区久久久樱花| 国产精品一二三区在线看| 日韩中文字幕视频在线看片| 十八禁网站网址无遮挡| 欧美日韩av久久| 国产精品秋霞免费鲁丝片| kizo精华| 不卡av一区二区三区| 成人黄色视频免费在线看| 日韩精品免费视频一区二区三区| 午夜免费鲁丝| 国产精品一区二区在线观看99| 我要看黄色一级片免费的| 国产成人一区二区在线| 视频在线观看一区二区三区| 亚洲精品第二区| 两性夫妻黄色片| 国产欧美日韩一区二区三区在线| 亚洲国产av影院在线观看| 久久久国产欧美日韩av| 亚洲综合色网址| av视频免费观看在线观看| 国产成人av激情在线播放| 国产欧美亚洲国产| 女人爽到高潮嗷嗷叫在线视频| 制服丝袜香蕉在线| 黄色视频在线播放观看不卡| 两性夫妻黄色片| 嫩草影视91久久| 99久久99久久久精品蜜桃| av.在线天堂| 9热在线视频观看99| 青草久久国产| 久久精品国产a三级三级三级| 又粗又硬又长又爽又黄的视频| 国产av一区二区精品久久| 国产精品 欧美亚洲| 亚洲国产日韩一区二区| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久久久久久大奶| 蜜桃国产av成人99| 七月丁香在线播放| 国产精品久久久人人做人人爽| av国产精品久久久久影院| 在线天堂最新版资源| 九色亚洲精品在线播放| 国产一区二区三区av在线| 涩涩av久久男人的天堂| av国产精品久久久久影院| 国产黄色免费在线视频| 巨乳人妻的诱惑在线观看| 99久久综合免费| 制服诱惑二区| 考比视频在线观看| 亚洲四区av| 人人妻人人澡人人看|