• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic Structures and Thermoelectric Properties of Two-Dimensional MoS2/MoSe2Heterostructures

    2016-09-23 06:06:19Tian-minWu,Rui-xueXu,XiaoZheng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期
    關鍵詞:異丁烷對二甲苯戊烷

    ?

    Electronic Structures and Thermoelectric Properties of Two-Dimensional MoS2/MoSe2Heterostructures

    I.INTRODUCTION

    Thermoelectric materials are considered to have great potential for power generation,energy saving,and environmental protection[1-5].Various thermoelectric semiconductor materials,such as chalcogenides[6,7],zintl phases[8],clatharates[9],complex oxides[10],and skutterudites[11,12]have been developed to convert the waste heat into electricity.The efficiency of thermoelectric device is measured by the material-dependent figure of merit(ZT=S2σT/κ)[13].Here,S is the Seebeck coefficient,σ is the electrical conductivity,and κ=κe+κlatis the thermal conductivity(κeand κlatrepresent the electronic and lattice thermal conductivity contributions,respectively).Ⅰn general,the figure of merit(ZT)can be enhanced by improving the power factor(S2σ)or decreasing the thermal conductivity(κ) of material.The search of materials of high thermoelectric performance is confronted with the challenge that electronic conductivity and Seebeck coefficient have opposite dependencies on the materials parameters:electronic conductivity(σ)increases as the doping level is improved,but higher doping level leads to lower Seebeck coefficient.Various theoretical and experimental methods have been introduced to enhance the value of ZT[14-26].For instance,rattler atoms implanted into open structures like clatharates[27]and skutturides[28] have been introduced to have low-frequency phonons near the acoustic branches,thus enhancing the phonon scattering to reduce the lattice thermal conductivity of the materials.

    Two-dimensional(2D)transition-metaldichalcogenide semiconductors such as MoS2and MoSe2have significant potential as the ideal thermoelectric materials,since they possess low thermal conductivity along the direction perpendicular to the lattice layers[29-33]. Despite this advantage,ZT values of transition-metal dichalcogenides(TMDCs)are still low due to the difficulty of enhancing the power factor[34-37].To solve this problem,we propose the use of 2D heterostructures systems such as MoS2/MoSe2,which are formed by stacking two different TMDCs layers together.Based on density functional theory(DFT)calculations,we demonstrate that such 2D heterostructures materials possess many improved thermoelectric properties as compared with their parental pristine materials.

    II.COMPUTATIONAL METHODS

    First-principlescalculationsofbulkandbilayer MoS2/MoSe22D heterostructures system are conducted using DFT methods implemented in the Vienna ab initio simulation package(VASP)[38].The projector-augmented-wave pseudopotentials and the generalized gradient approximation of Perdew,Burke,and Ernzerhof(PBE)for exchange-correlation functional are adopted in our simulations[39].Furthermore,van der Waals interactions are taken into account by us-ing the semiempirical correction of Grimme(DFT-D3) [40].The energy cutoff for a plane-wave expansion is set to 500 eV.All atomic coordinates are relaxed until the atomic forces have declined to 0.01 eV/?A,enforcing a total energy convergence criterion of 1×10-5eV.A vacuum slab larger than 15?A is added to avoid interaction between adjacent images of the bilayer structure.

    Temperature-and doping-dependent electronic transport properties,including electronic conductivity and Seebeck coefficient,are computed by using the semiclassical Boltzmann transport theory[41,42].The constant scattering time approximation is adopted,which is valid if the electron relaxation time does not very strongly with the energy on a scale of kBT,and the rigid band approaches as implemented in the BoltzTraP code [43].By using a Fourier expansion[44,45],while maintaining the crystal symmetry[46],the BoltzTrap code fits the ab initio electronic band structure to an analytic function.Since the transport properties can be very sensitive to the Brillouin zone(BZ)sampling,especially for low doping levels and low temperatures,we calculate the electronic structures required for the transport calculations with very dense k-meshes(43×43×11 for the hexagonal BZ of bulk 2D heterostructures,and 43×43×5 for the trigonal BZ of the bilayer structure).

    Thetemperature-dependentanddoping-leveldependent thermoelectric transport tensors,such as electronic conductivity σαβ(T,μ),Seebeck coefficient Sαβ(T,μ),and thermal conductivity(electronic part κel

    αβ)tensors are calculated as follows[43]:

    Here,α and β are the tensor indices,? is the volume of the unit cell,e is the charge of the electron,f0(T,ε,μ) is the Fermi distribution function,andμis the Fermi level.The conductivity tensor σαβ(ε)(transport distributions)can be expressed analytically as[43]:

    which can be expressed using k-depedent conductivity tensor as[43]:

    where i is the band index,k is the reciprocal vector,N is a normalization depending on the number of k points sampled in the BZ,τi,kis the electronic relaxation time,and υα(i,k)is the i component of band velocity▽kε(k)with ε being the band energies.As demonstrated in the above formula,temperature-dependent transport properties can be calculated from the Fermi distribution function,and one can achieve the dopinglevel dependent transport properties by adjusting the Fermi levelμwhich is directly associated with doping concentration[43].

    The electron relaxation time τ characterizing the average time between two consecutive electron scattering events is a crucial parameter for calculating the thermoelectric properties,such as the electrical conductivity(σ)and the electronic thermal conductivity(κe),since just the ratio of these conductivity to the relaxation time(σ/τ and κe/τ)can be achieved by using the BoltzTrap code.The value of τ is usually obtained by fitting the calculated ratio of σ/τ to measure electrical conductivity data.However,such experimental data for the MoS2/MoSe22D heterostructures have so far remained unavailable.Therefore,in this work we focus on the ratio of thermal properties to the electron relaxation time rather than on the properties themselves.

    III.RESULTS AND DISCUSSION

    A.Crystal structure

    The monolayer structure of MoS2and MoSe2,consists of a single(S/Se)-Mo-(S/Se)layer with space group P6m2(187),which has no inversion symmetry. While the bulk MoS2and MoSe2has a 2H-polytype structure in the P63/mmc space group(194).Ⅰts supercell consists of two(S/Se)-Mo-(S/Se)layers separated along the z axis,and the two layers are bound by van der Waals interactions.Furthermore,due to the increasing radius of the chalcogen atoms,the optimized values of lattice constants for mo?nolayer alongin-plan?e direction increase from a=3.162A in MoS2to3.320A in MoSe2.Ⅰn general the lattice mismatch may lead to stacking disorder or Moir′e Pattern superstructures.However,the intrinsic lattice mismatch between the layer of MoS2and MoSe2is as small as 0.158?A. Moreover,the explicit consideration of such a small lattice mismatch would require the use of very large supercell and thus make the calculation rather expensive. Therefore,in our simulations for the 2D heterostructures,the same lattice constant is adopted for the both types of layers(MoS2and MoSe2).

    The optimized MoS2/MoSe22D heterostructures for bulk system in our calculation has the lattice parameter of a=3.248 and 3.250?A for bilayer,which is consistent with the other theoretical results[47-49].As in Fig.1,the Mo atoms of MoSe2monolayer sit on the top of the chalcogen atoms S of MoS2monolayer,and those monolayer which constructs the heterostructures shows a lateral shift.Due to the van der Waals binding,the Moatoms between different layers are separated by 6.36?A in both bulk and bilayer systems.To further study the electronic properties and thermoelectric properties of bulk and bilayer MoS2/MoSe2heterostructures,their band structures and density of states(DOS)are calculated.woqujieninmen

    FⅠG.1 Atomic structure of bulk and bilayer MoS2/MoSe22D heterostructures.The Se,Mo,and S atoms are represented by orange,blue,and yellow colors,respectively.The red box represents the unit cell used in our simulations.

    FⅠG.2 Electronic band structures(left)and DOS(right) calculated by using PBE along the high-symmetry lines for (a)bulk and(b)bilayer MoS2/MoSe2heterostructures.

    B.Electronic structure

    Electronic band structures and DOS for bulk and bilayer MoS2/MoSe22D heterostructures are presented in Fig.2.For the bulk 2D heterostructures,as demonstrated in Fig.2(a),an indirect band gap of 0.546 eV is observed with the valence band maximum at the Γ point and the conduction band minimum at the K point,which is consistent with the theoretical results reported by Changhoon et al.[47].The electronic band structure along high symmetry point of in-plane and crossplane direction shows a great anisotropy due to the 2D heterostructures constructed by van der Waals binding,and the band gap of the in-plane bands(Γ-M-K-Γ)is much smaller than cross-plane one(Γ-A).Bilayer 2D heterostructures,on the other hand,also show an indirect band gap of 0.695 eV with both the valance band maximum at the Γ point and conduction band minimum at the high symmetry K point,which is consistent with other theoretical results[49].Furthermore,both the bulk and bilayer systems show a strong asymmetric feature between the valence and conduction bands. Although GGA-PBE is known to underestimate band gaps of semiconductors,the resulting electronic structure are considered to be reasonably accurate for subsequent computation of thermoelectric properties.

    C.Thermoelectric properties

    To enlarge ZT,the material should have a larger power factor S2σ and smaller κ(κ=κe+κlat).Figure 3 depict the in-plane and cross-plane power factor divided by the relaxation time τ,S2σ/τ,of the bulk MoS2/MoSe2heterostructures under doping(both pand n-type),with the temperature ranging from 300 K to 1200 K.Here,τ is the relaxation time that is not directly determined by the band structure,but depends on the temperature,the doping level,and also the sample details(such as defect types and concentrations) [43].Note that we compare S2σ/τ instead of S2σ,because the relaxation time is difficult to calculate and the electronic conductivity has not been measured experimentally.As demonstrated in Fig.3,S2σ/τ is enhanced as the carrier concentration increases at each temperature.Ⅰts maximum value is nearly within the carrier concentration range of 1020-1021cm-3for each temperature,which also implies that high carrier concentration could enhance the power factor.As shown in Fig.3,for bulk heterostructures,the p-type doping at in-plane direction shows the largest power factor S2σ/τ at temperature 1200 K.To better reflect the thermoelectric performance of bulk 2D MoS2/MoSe2heterostructures,the theoretical results of pristine bulk MoSe2at the hole carrier concentration of 5×1020cm-3are adopted [36].As demonstrated in TableⅠ,although the pristine MoSe2shows a slightly higher S2σ/τ at 1200 K,the bulk MoS2/MoSe2heterostructures shows an overall better thermoelectric performance along the in-plane direction.Despite the difference in relaxation time between these two crystals,such a comparison provides an overall assessment for their thermoelectric performances.

    Along the cross-plane direction,the n-type doping shows a greater power factor S2σ/τ than p-type one. However,since in TMDCs the relaxation time of inplane direction is two orders of magnitude larger than the cross-plane one[36,37],the in-plane electrical conductivity is typically two orders magnitude larger than the cross-plane electrical conductivity.Then,the power factor along in-plane direction is expected to be two orders of magnitude larger than the cross-plane counterpart,since both of them have similar Seebeck coefficient values.Additionally,the DOS close to the valence band edge is much larger than those near the conduction band edge,which suggests that p-type doping could have a better thermoelectric performance[50].Therefore,we will focus on the p-type doping bulk heterostructures,and discuss the temperature-dependent and dopinglevel-dependent Seebeck coefficient,the electric conductivity and the thermal conductivity individually.

    FⅠG.3Ⅰn-plane(a,c)and cross-plane(b,d)temperature-dependent power factor divided by the scattering time(PF/τ)as a function of p-and n-type doping concentration for bulk MoS2/MoSe22D heterostructures.

    TABLEⅠTemperaturedependentpowerfactordivided with relaxation time(S2σ/τ)for bulk MoSe2and MoS2/MoSe22D heterostructures along the in-plane direction at the hole carrier concentration of 5×1020cm-3.

    The p-type doping in-plane and cross-plane Seebeck coefficients as functions of carrier concentration are shown in Fig.4(a)and(b).Similar to the other TMDCs [36,37],the bulk 2D heterostructures has a large Seebeck coefficient.At a fixed carrier concentration,for both in-plane and cross-plane directions,the Seebeck coefficient of bulk 2D heterostructures slightly increases as the temperature is increasing.This phenomenon mainly originates from the Fermi broadening as the temperature rises,and then it leads to an increasing effective density of states at the top of valence band [51].Consistent with the known thermoelectric behavior for the other TMDCs[36,37],the maximum value of Seebeck coefficient for each temperature shifts to high doping level and decrease as temperature is increased for both cross-and in-plane direction.The calculated tiny band gap for bulk 2D heterostructures(0.546 eV),as mentioned above,likely lead to the bipolar effect at low doping carrier concentration which make the Seebeck coefficient decreases with decreasing doping concentration,opposite to the usual situation[52].As temperature is higher than 900 K,the Seebeck coefficient along the in-plane direction presents a sign reversal at low doping level,which is attributed to the increasing negative contribution of thermally excited electrons to the Seebeck coefficient under the bipolar-transport conditions[53].While the Seebeck coefficient along the cross-plane direction does not show a sign reversal and more stable with the doping concentration increasing at low doping level,indicating that the system along cross-plane direction shows a weak bipolar effect originated by the large band gap along this direction.This anisotropy can also be observed by the electrical conductivity divided by the relaxation time(σ/τ)as a function of doping concentration.As demonstrated in Fig.4 (c)and(d),the conductivity divided by the relaxation time(σ/τ)of in-plane is about one order higher than the cross-plane one,revealing that the thermally excited carrier concentration along the in-plane direction is significantly higher than cross-plane one.Furthermore,in the 900-1200 K temperature range,the electrical conductivity divided by the relaxation time(σ/τ) does not depend strongly on the doping concentration at low doping level,since the thermally excited carriers dominate transport[53].To overcome the contribution by the thermally excited carrier concentration,the higher doping concentration is required as temperature is higher.As the doping concentration above the onset of bipolar transport,the electrical conductivity divided by the relaxation time(σ/τ)increases substantially with the increasing doping concentration.

    The electronic band structure also supports this viewpoint,as the band gap of in-plane(along high symmetry point Γ-M-K-Γ)is much smaller than the crossplane one(Γ-A).The electrical thermal conductivities divided by the relaxation time(κe/τ)along the in-plane and cross-plane directions are depicted in Fig.4(e)and (f),respectively.Although the electronic contribution to the thermal conductivity is small,compared with the lattice thermal conductivity,the electronic thermal conductivity also illustrates the anisotropy of thermal conductivity between cross-plane and in-plane.The power factor of in-plane is considerably larger than the crossplane one,especially since the relaxation time of crossplane is much smaller than the in-plane one.Furthermore,the electronic thermal conductivity divided by the relaxation time(κe/τ)at a fixed carrier concentrations for both in-plane and cross-plane increases as temperature rising,mainly because of more intense electron scattering as temperature increasing.According to the Wiedemann-Franz law[43],

    FⅠG.4Ⅰn-plane(a,c,e)and cross-plane(b,d,f)temperature-and p-type doping concentration-dependent Seebeck coefficient,electronic conductivity divided by the scattering time(σ/τ),and electronic thermal conductivity divided by the scattering time(κe/τ)of bulk MoS2/MoSe2heterostructures,respectively.

    the electronic thermal conductivity is proportional to the temperature of system.Meanwhile,since thermal conductivity is proportional to the electronic conductivity that is highly anisotropic,there is a significantdifference between the in-plane and cross-plane components.

    Compared with the bulk heterostructures,the bilayer heterostructures show a much lower power factor (S2σ/τ)as demonstrated in Fig.5.Since the band gap of bilayer 2D heterostructures is larger than the bulk one,the electronic conductivity of bilayer heterostructures is much smaller than that of the bulk,see Fig.6 (a)and(b).Furthermore,since the bulk and bilayer heterostructures have similar Seebeck coefficients,as demonstrated in Fig.6(c)and(d),the bulk heterostructures should have a better thermoelectric performance than those of bilayer one.While the electrical thermal conductivity is smaller than the bulk one,as presented in Fig.6(e)and(f).For p-type doping,the bilayer heterostructures show a similar thermoelectric performance to the monolayer one[36].

    FⅠG.5 Temperature-dependent power factor divided by the scattering time(PF/τ)of bilayer MoS2/MoSe22D heterostructures as function of n-and p-type doping concentration.

    FⅠG.6 Temperature dependent Seebeck coefficient(a,b),electronic conductivity divided by the scattering time σ/τ(c,d),and electronic thermal conductivity divided by the scattering time κe/τ(e,f)of bilayer MoS2/MoSe2heterostructures as a function of n-and p-type doping concentration,respectively.

    IV.CONCLUSION

    Based on the electrical band structure calculated from first principles,the thermoelectric properties of bulk and bilayer 2D MoS2/MoSe2heterostructures have been analyzed by using the semi-classical Boltzmann transport theory.Both n-type and p-type doping have been addressed for bulk and bilayer heterostructures,employing the rigid band approximation and constant scattering time approximation.Due to a smaller band gap and more dense DOS close to the valence band edgethan those near the conduction band edge,the thermoelectric performance of bulk 2D MoS2/MoSe2heterostructures turns out to be superior to pristine bulk MoSe2along the in-plane direction for p-type doping at a wide temperature range.Furthermore,with a larger band gap,the bilayer heterostructures show a much lower electronic conductivity than those of bulk heterostructures,which also induces that it shows a weaker thermoelectric performance than bulk one.Although the power factor of bilayer heterostructures is lower than those of bulk heterostructures,it shows a similar thermoelectric performance to the monolayer MoSe2for p-type doping at each temperature.Therefore,we safely conclude that such 2D heterostructures materials possess much improved thermoelectric properties as compared with their parental pristine materials,especially for bulk one.As reported by Li et al.[54],the thermal lattice conductivity considered the spin-orbit coupling(SOC)effect is higher than those value not considered.Furthermore,the band shape and the band gap which make a great influence on the calculation of thermoelectric properties could be changed as the SOC effect is introduced,thus the SOC effect should be taken into account.However,the SOC is not considered in the present work,because of the limited computational resources at our disposal.The influence of the SOC on the thermoelectric properties is to be addressed in our future work.

    V.ACKNOWLEDGMENTS

    This work was supported by the National NaturalScienceFoundationofChina(No.21203178,No.21373201,No.21433014,No.21233007,No.21303175,and No.21322305),the Science and Technological Ministry of China(No.2011YQ09000505),the“Strategic Priority Research Program”of the Chinese Academy of Sciences(No.XDB10040304 and No.XDB100202002),and the Fundamental Research Funds for the Central Universities(No.2340000074).The computational resources are provided by the Supercomputing Center of University of Science and Technology of China.

    [1]M.S.Dresselhaus,G.Chen,M.Y.Tang,R.G.Yang,H.Lee,D.Z.Wang,Z.F.Ren,J.P.Fleurial,and P. Gogna,Adv.Mater.19,1043(2007).

    [2]K.Biswas,J.He,Ⅰ.D.Blum,C.Wu,T.Hogan,D.N. Seidman,V.P.Dravid,and M.G.Kanatzidis,Nature 489,414(2012).

    [3]K.P.Pernstich,B.R¨ossner,and B.Batlogg,Nat. Mater.7,321(2008).

    [4]W.J.Liang,A.Ⅰ.Hochbaum,M.Fardy,O.Rabin,M. J.Zhang,and P.D.Yang,Nano Lett.9,1689(2009).

    [5]G.J.Snyder and E.S.Toberer,Nat.Mater.7,105 (2008).

    [6]C.Wood,Rep.Prog.Phys.51,459(1988).

    [7]L.E.Shelimova,O.G.Karpinskii,P.P.Konstantinov,E.S.Avilov,M.A.Kretova,and V.S.Zemskov,Ⅰnorg. Mater.40,451(2004).

    [8]S.M.Kauzlarich,S.R.Brown,and G.J.Snyder,Dalton Trans.2099(2007).

    [9]G.S.Nolas,G.A.Slack,and S.B.Schujman,In Recent Trends in Thermoelectric Materials Research I,T.M. Tritt,Ed.,Semiconductors and Semimetals,San Diego,CA:Academic Press,255(2001).

    [10]K.Koumoto,Ⅰ.Terasaki,and R.Funahashi,MRS Bull. 31,206(2006).

    [11]G.S.Nolas,D.T.Morelli,and T.M.Tritt,Annu.Rev. Mater.Sci.29,89(1999).

    [12]C.Uher,In Recent Trends in Thermoelectric Materials Research I,T.M.Tritt,Ed.,Semiconductors and Semimetals,San Diego,CA:Academic Press,139 (2001).

    [14]G.A.Slack and D.M.Rowe,CRC Handbook of Thermoelectrics.Boca Raton:CRC Press,40(1995).

    [15]L.D.Hicks and M.S.Dresselhaus,Phys.Rev.B 47,12727(1993).

    [16]L.D.Hicks and M.S.Dresselhaus,Phys.Rev.B 47,16631(1993).

    [17]Y.Wu,R.Fan,and P.Yang,Nano Lett.2,83(2002).

    [18]R.Yang,G.Chen,and M.S.Dresselhaus,Phys.Rev. B 72,125418(2005).

    [19]C.J.Vineis,A.Shakouri,A.Majumdar,and M.G. Kanatzidis,Adv.Mater.22,3970(2010).

    [20]A.Ⅰ.Boukai,Y.Bunimovich,J.Tahir-Kheli,J.K.Yu,W.A.GoddardⅠⅠⅠ,and J.R.Heath,Nature 451,168 (2008).

    [21]X.Tang,W.Xie,H.Li,W.Zhao,Q.Zhang,and M. Niino,Appl.Phys.Lett.90,012102(2007).

    春節(jié)期間,該站點的VOCs關鍵活性物種主要為丙烯、乙烯、間/對二甲苯、甲苯、正丁烷、異戊烷、異丁烷、反-2-丁烯、丙烷和1-丁烯。

    [22]B.Poudel,Q.Hao,Y.Ma,Y.Lan,A.Minnich,B.Yu,X.Yan,D.Wang,A.Muto,D.Vashaee,X.Chen,J. Liu,M.S.Dresselhaus,G.Chen,and Z.Ren,Science 320,634(2008).

    [23]T.Ⅰkeda,L.A.Collins,V.A.Ravi,F.S.Gascoin,S.M. Haile,and G.J.Snyder,Chem.Mater.19,763(2007).

    [24]R.Venkatasubramanian,E.Siivola,T.Colpitts,and B. O’Quinn,Nature 413,597(2001).

    [25]T.Ⅰkeda,S.M.Haile,V.A.Ravi.,H.Azizgolshani,F.Gascoin,and G.J.Snyder,Acta Mater.55,1227 (2007).

    [26]T.C.Harman,P.J.Taylor,M.P.Walsh,and B.E. LaForge,Science 297,2229(2002).

    [27]J.Dong,O.F.Sankey,and C.W.Myles,Phys.Rev. Lett.86,2361(2001).

    [28]V.Keppens,D.Mandrus,B.C.Sales,B.C.Chakoumakos,P.Dai,R.Coldea,M.B.Maple,D.A.Gajewski,E.J.Freeman,and S.Bennington,Nature 395,876 (1998).

    [29]L.H.Brixner,J.Ⅰnorg.Nucl.Chem.24,257(1962).

    [30]S.H.El-Mahalawy and B.L.Evans,Phys.Status Solidi B 79,713(1977).

    [31]E.Revolinsky and D.Beerntsen,J.Appl.Phys.35,2086(1964).

    [32]C.Muratore,V.Varshney,J.J.Gengler,J.J.Hu,J.E.Bultman,T.M.Smith,P.J.Shamberger,B.Qiu,X.Ruan,A.K.Roy,and A.A.Voevodin,Appl.Phys. Lett.102,081604(2013).

    [33]A.Mavrokefalos,N.T.Nguyen,M.T.Pettes,D.C. Johnson,and L.Shi,Appl.Phys.Lett.91,171912 (2007).

    [34]M.Kayyalha,L.Shi,andY.P.Chen,arXiv: 1505.05891(2015).

    [35]H.Kedar,W.Ying,Y.Yu,Z.Hanyu,W.Yuan,M. Joel,and Z.Xiang,arXiv:1505.06779(2015).

    [36]S.Kumar and U.Schwingenschl¨ogl,Chem.Mater.27,1278(2015).

    [37]A.N.Gandi and U.Schwingenschl¨ogl,Chem.Mater. 26,6628(2014).

    [38]G.Kresse and J.Furthm¨uller,Phys.Rev.B 54,11169 (1996).

    [39]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [40]S.Grimme and G.G.Semiempirical,J.Comput.Chem. 27,1787(2006).

    [41]J.M.Ziman,Principles of the Theory of Solids,Cambridge:Cambridge University Press(1972).

    [42]P.B.Allen,W.E.Pickett,and H.Krakauer,Phys.Rev. B 37,7482(1988).

    [43]G.Madsen and D.Singh,Comput.Phys.Commun. 175,67(2006).

    [44]R.N.Euwema,D.J.Stukel,T.C.Collins,J.S.Dewitt,and D.G.Shankland,Phys.Rev.178,1419(1969).

    [45]W.Jones and N.March,Theoretical Solid State Physics:Perfect Lattices in Equilibrium,Dover Books on Physics,New York:John Wiley&Sons,Ltd.,(1973).

    [46]D.D.Koelling and J.H.Wood,J.Comput.Phys.67,253(1986).

    [47]L.Changhoon,H.Jisook,W.Myung-Hwan,and H.S. Ji,Chem.Mater.25,3745(2013).

    [48]T.Humberto,L.Florentino,and T.Mauricio,Sci.Rep. 3,1549(2013).

    [49]N.Lu,H.Guo,L.Lei,J.Dai,L.Wang,W.N.Mei,X. Wu,and X.C.Zeng,Nanoscale 6,2879(2014).

    [50]Z.Lijun and J.S.David,Phys.Rev.B 81,245119 (2010).

    [51]Z.Gang and W.Dong,Sci.Rep.5,8099(2015).

    [52]S.Bao-Zhen,M.Zuju,H.Chao,and W.Kechen,RSC Adv.5,56382(2015).

    [53]G.Shi and E.Kioupakis,J.Appl.Phys.117,065103 (2015).

    [54]R.Li,X.Cheng,Q.Xie,Y.Sun,D.Li,Y.Li,and X. Chen,Sci.Rep.5,8466(2015).

    Tian-min Wua,Rui-xue Xua,Xiao Zhenga?,Wei Zhuangb?
    a.Hefei National Laboratory for Physical Sciences at the Microscale&Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China
    b.State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China
    (Dated:Received on December 30,2015;Accepted on March 15,2016)
    Thermoelectric properties of bulk and bilayer two-dimensional(2D)MoS2/MoSe2heterostructures are investigated using density functional theory in conjunction with semiclassical Boltzmann transport theory.Ⅰt is predicted that the bulk 2D heterostructures could considerably enhance the thermoelectric properties as compared with the bulk MoSe2.The enhancement originates from the reduction in the band gap and the presence of interlayer van der Waals interactions.We therefore propose the 2D MoS2/MoSe2heterostructures as a possible candidate material for thermoelectric applications.
    Key words:Heterostructures,Thermoelectric property,Density functional theory,Boltzmann transport theory

    ?Authors to whom correspondence should be addressed.E-mail: xz58@ustc.edu.cn,wzhuang@fjirsm.ac.cn

    猜你喜歡
    異丁烷對二甲苯戊烷
    環(huán)戊烷產品萃取精餾及提純工藝分析
    碳五烷烴裂解制低碳烯烴反應性能的分析
    化工學報(2021年10期)2021-10-31 23:36:50
    C3/C4分離裝置異丁烷硫含量超標原因及對策
    煉油與化工(2021年3期)2021-07-06 11:12:52
    UOP公開一種生產高純度甲苯和對二甲苯的方法
    烷基化裝置中分餾塔的模擬計算與分析
    化工管理(2020年19期)2020-07-28 03:05:34
    2014—2019年我國對二甲苯回顧與展望
    LNG脫苯回收再利用異戊烷的應用探討
    和利時海南60萬噸/年對二甲苯(PX)項目
    自動化博覽(2017年2期)2017-06-05 11:40:39
    輕烴分離裝置混合戊烷深加工探索
    對二甲苯依賴進口與擴產困難之間的矛盾
    人妻系列 视频| 综合色丁香网| 只有这里有精品99| 亚洲经典国产精华液单| 国产精品麻豆人妻色哟哟久久| 人妻系列 视频| av在线播放精品| 亚洲欧美日韩卡通动漫| 久久午夜综合久久蜜桃| 99久久中文字幕三级久久日本| 观看av在线不卡| av免费观看日本| 国产黄频视频在线观看| 亚洲精品日韩在线中文字幕| 大话2 男鬼变身卡| 香蕉丝袜av| 久久久久国产网址| 黄色一级大片看看| 亚洲欧美成人精品一区二区| 久热这里只有精品99| 国产一区有黄有色的免费视频| 午夜福利视频在线观看免费| 国产乱来视频区| 久久人人爽人人片av| 97精品久久久久久久久久精品| 人妻少妇偷人精品九色| 狂野欧美激情性bbbbbb| 一级黄片播放器| 曰老女人黄片| a 毛片基地| 国精品久久久久久国模美| 欧美精品av麻豆av| 亚洲国产精品一区三区| 久久影院123| 久久午夜综合久久蜜桃| 狂野欧美激情性xxxx在线观看| 亚洲少妇的诱惑av| 热re99久久精品国产66热6| 免费日韩欧美在线观看| 丝袜脚勾引网站| 人妻少妇偷人精品九色| 下体分泌物呈黄色| 人妻系列 视频| 建设人人有责人人尽责人人享有的| 秋霞在线观看毛片| 啦啦啦啦在线视频资源| 国产无遮挡羞羞视频在线观看| 丰满饥渴人妻一区二区三| 国产精品国产三级国产专区5o| 男人舔女人的私密视频| 精品国产一区二区三区四区第35| 久久久久精品人妻al黑| 精品国产露脸久久av麻豆| 在线观看免费日韩欧美大片| 精品国产乱码久久久久久小说| 亚洲av男天堂| 国产高清国产精品国产三级| 国精品久久久久久国模美| 又黄又粗又硬又大视频| 99热全是精品| 三上悠亚av全集在线观看| 精品一区二区三卡| av有码第一页| 国产免费福利视频在线观看| 国产精品 国内视频| 搡女人真爽免费视频火全软件| 有码 亚洲区| 国产av国产精品国产| 久久久久网色| 飞空精品影院首页| 国产成人精品一,二区| 18禁国产床啪视频网站| 一级毛片黄色毛片免费观看视频| 汤姆久久久久久久影院中文字幕| 国产熟女午夜一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 激情五月婷婷亚洲| 精品少妇久久久久久888优播| 美国免费a级毛片| 最近的中文字幕免费完整| 国产在线一区二区三区精| 午夜视频国产福利| 国产免费现黄频在线看| 男女免费视频国产| 看非洲黑人一级黄片| 国产精品人妻久久久影院| 一级毛片电影观看| 大片免费播放器 马上看| 天堂俺去俺来也www色官网| av在线app专区| 18+在线观看网站| 亚洲精品美女久久av网站| 国产免费一级a男人的天堂| 日本午夜av视频| 日本猛色少妇xxxxx猛交久久| 久久精品久久精品一区二区三区| 精品一区二区三区视频在线| 中文字幕免费在线视频6| 欧美97在线视频| 日韩熟女老妇一区二区性免费视频| 国产黄色免费在线视频| 七月丁香在线播放| 久久99热这里只频精品6学生| 老司机影院成人| 久久精品久久久久久久性| 国产亚洲一区二区精品| 在线观看人妻少妇| 九草在线视频观看| 一级片免费观看大全| 女人精品久久久久毛片| 91久久精品国产一区二区三区| 亚洲高清免费不卡视频| 国产精品一二三区在线看| 91成人精品电影| 在线精品无人区一区二区三| 午夜福利网站1000一区二区三区| 免费在线观看黄色视频的| 黑人高潮一二区| 啦啦啦视频在线资源免费观看| 韩国av在线不卡| 又黄又爽又刺激的免费视频.| 国产一区二区三区综合在线观看 | 91国产中文字幕| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区四区激情视频| 少妇 在线观看| 国产色爽女视频免费观看| 尾随美女入室| 伊人亚洲综合成人网| 最新中文字幕久久久久| 青春草亚洲视频在线观看| 一本久久精品| 国产成人aa在线观看| av在线老鸭窝| 欧美激情极品国产一区二区三区 | 午夜福利影视在线免费观看| 女的被弄到高潮叫床怎么办| 久久久国产欧美日韩av| 午夜视频国产福利| 婷婷成人精品国产| 亚洲三级黄色毛片| 中文字幕另类日韩欧美亚洲嫩草| 制服诱惑二区| 成人漫画全彩无遮挡| 97精品久久久久久久久久精品| 看免费av毛片| 一区二区av电影网| 久久综合国产亚洲精品| 99热全是精品| 蜜桃在线观看..| 91午夜精品亚洲一区二区三区| 高清av免费在线| 国产精品熟女久久久久浪| 十八禁高潮呻吟视频| 久久鲁丝午夜福利片| 成人黄色视频免费在线看| 青春草亚洲视频在线观看| 最近的中文字幕免费完整| 精品一品国产午夜福利视频| 国产免费福利视频在线观看| av又黄又爽大尺度在线免费看| av电影中文网址| 水蜜桃什么品种好| 国产免费又黄又爽又色| 香蕉丝袜av| av免费在线看不卡| 欧美人与性动交α欧美软件 | 成人毛片a级毛片在线播放| av又黄又爽大尺度在线免费看| 春色校园在线视频观看| 欧美成人午夜免费资源| 亚洲中文av在线| 99香蕉大伊视频| 久久影院123| 在线观看www视频免费| 色5月婷婷丁香| 亚洲美女黄色视频免费看| 久久午夜综合久久蜜桃| 欧美成人午夜精品| 亚洲欧美成人精品一区二区| 成人手机av| av国产精品久久久久影院| 飞空精品影院首页| 久久久久精品人妻al黑| 美女主播在线视频| 91精品国产国语对白视频| 久久久久久人人人人人| www.av在线官网国产| 国产精品秋霞免费鲁丝片| 大片免费播放器 马上看| 伊人久久国产一区二区| 国产白丝娇喘喷水9色精品| 亚洲国产av新网站| av国产久精品久网站免费入址| 九九爱精品视频在线观看| 国产成人精品在线电影| 久久这里只有精品19| 精品国产国语对白av| 精品人妻一区二区三区麻豆| www.av在线官网国产| 蜜臀久久99精品久久宅男| 久久久久人妻精品一区果冻| 51国产日韩欧美| 久久这里有精品视频免费| 全区人妻精品视频| 久久人人爽人人爽人人片va| 精品一区二区三区视频在线| 男人添女人高潮全过程视频| 中文天堂在线官网| 色哟哟·www| 黄网站色视频无遮挡免费观看| 国产成人一区二区在线| 亚洲熟女精品中文字幕| 看免费av毛片| av线在线观看网站| 满18在线观看网站| 男女高潮啪啪啪动态图| 久久久久国产精品人妻一区二区| kizo精华| 免费观看a级毛片全部| 91在线精品国自产拍蜜月| 飞空精品影院首页| 久久精品人人爽人人爽视色| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美中文字幕日韩二区| 日韩视频在线欧美| 最近最新中文字幕大全免费视频 | 日本欧美国产在线视频| 天天影视国产精品| 天天操日日干夜夜撸| www.熟女人妻精品国产 | 欧美精品一区二区免费开放| 亚洲 欧美一区二区三区| 熟妇人妻不卡中文字幕| 色94色欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久精品电影小说| 久热这里只有精品99| 婷婷色麻豆天堂久久| 激情五月婷婷亚洲| 亚洲高清免费不卡视频| 自拍欧美九色日韩亚洲蝌蚪91| 91精品国产国语对白视频| 蜜桃国产av成人99| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | h视频一区二区三区| 一级毛片黄色毛片免费观看视频| 高清av免费在线| 久久精品久久久久久久性| 波野结衣二区三区在线| 国产亚洲欧美精品永久| 亚洲精品成人av观看孕妇| 免费少妇av软件| 国产女主播在线喷水免费视频网站| 午夜激情久久久久久久| 麻豆乱淫一区二区| 亚洲成色77777| 久久久久久伊人网av| 免费日韩欧美在线观看| 深夜精品福利| 亚洲综合色惰| 欧美成人午夜精品| 亚洲在久久综合| 亚洲精品乱久久久久久| 国产精品99久久99久久久不卡 | 精品国产一区二区久久| 在线观看免费高清a一片| 侵犯人妻中文字幕一二三四区| 欧美精品高潮呻吟av久久| 免费观看av网站的网址| 亚洲成国产人片在线观看| 免费黄频网站在线观看国产| 男女午夜视频在线观看 | 大片免费播放器 马上看| 一个人免费看片子| 制服丝袜香蕉在线| 国产男女内射视频| 久热久热在线精品观看| 波野结衣二区三区在线| av又黄又爽大尺度在线免费看| 秋霞在线观看毛片| 成人免费观看视频高清| 十八禁网站网址无遮挡| 亚洲精品一二三| 国产女主播在线喷水免费视频网站| 国产成人av激情在线播放| 成年av动漫网址| 在线看a的网站| 国产激情久久老熟女| 建设人人有责人人尽责人人享有的| 精品人妻熟女毛片av久久网站| 欧美日韩精品成人综合77777| xxxhd国产人妻xxx| 丝袜喷水一区| 亚洲精品乱码久久久久久按摩| 两个人看的免费小视频| 欧美 日韩 精品 国产| 国产高清不卡午夜福利| 成人国产av品久久久| 夜夜骑夜夜射夜夜干| 黄色 视频免费看| 99精国产麻豆久久婷婷| 啦啦啦在线观看免费高清www| 最近2019中文字幕mv第一页| 免费看不卡的av| 免费人妻精品一区二区三区视频| 美女内射精品一级片tv| 久久久国产欧美日韩av| 国产极品天堂在线| 欧美人与性动交α欧美软件 | 有码 亚洲区| 亚洲av综合色区一区| 色94色欧美一区二区| 国产亚洲欧美精品永久| 久久久久久久国产电影| 高清黄色对白视频在线免费看| 久久99热这里只频精品6学生| 成人综合一区亚洲| 如日韩欧美国产精品一区二区三区| 9191精品国产免费久久| 成年动漫av网址| 亚洲一区二区三区欧美精品| 久久精品国产自在天天线| 视频在线观看一区二区三区| 国产激情久久老熟女| 人妻系列 视频| 国产精品不卡视频一区二区| 国产一区亚洲一区在线观看| 国产精品久久久久久久久免| 高清黄色对白视频在线免费看| 久久综合国产亚洲精品| 男女无遮挡免费网站观看| 制服诱惑二区| 我要看黄色一级片免费的| 80岁老熟妇乱子伦牲交| 看非洲黑人一级黄片| 亚洲欧美中文字幕日韩二区| 国产在线免费精品| 黑人猛操日本美女一级片| 高清在线视频一区二区三区| 伊人亚洲综合成人网| av卡一久久| 国产色婷婷99| 街头女战士在线观看网站| 啦啦啦视频在线资源免费观看| 丰满饥渴人妻一区二区三| 国产伦理片在线播放av一区| 男女免费视频国产| 欧美性感艳星| 高清在线视频一区二区三区| 欧美 日韩 精品 国产| 91成人精品电影| 天天躁夜夜躁狠狠久久av| 久久久精品94久久精品| 丝袜喷水一区| 国产欧美日韩综合在线一区二区| 国产精品久久久久久精品电影小说| 人妻 亚洲 视频| av片东京热男人的天堂| 国产成人aa在线观看| 免费av不卡在线播放| 激情五月婷婷亚洲| 巨乳人妻的诱惑在线观看| 国产麻豆69| 国产精品久久久久久精品古装| 男女下面插进去视频免费观看 | 乱码一卡2卡4卡精品| 超色免费av| 一本久久精品| 97超碰精品成人国产| 日本色播在线视频| 一级毛片我不卡| 欧美激情 高清一区二区三区| 国产成人91sexporn| 建设人人有责人人尽责人人享有的| 最近中文字幕2019免费版| 欧美精品av麻豆av| 91成人精品电影| 男女免费视频国产| 免费av不卡在线播放| 女人精品久久久久毛片| 久久精品久久久久久久性| 色94色欧美一区二区| 成人影院久久| 国产日韩欧美视频二区| 欧美日韩一区二区视频在线观看视频在线| 最近中文字幕高清免费大全6| 蜜桃在线观看..| 男女边吃奶边做爰视频| 一个人免费看片子| 久久久久久伊人网av| 在线亚洲精品国产二区图片欧美| 天天操日日干夜夜撸| 午夜老司机福利剧场| 人人妻人人爽人人添夜夜欢视频| 国产成人91sexporn| 国产欧美日韩一区二区三区在线| 这个男人来自地球电影免费观看 | 人成视频在线观看免费观看| 亚洲婷婷狠狠爱综合网| 亚洲国产日韩一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久国产精品人妻一区二区| 国产毛片在线视频| 18禁国产床啪视频网站| 久久99精品国语久久久| 午夜福利影视在线免费观看| 大香蕉久久网| 欧美另类一区| 久久精品国产a三级三级三级| 国产精品一国产av| 美女内射精品一级片tv| 欧美激情极品国产一区二区三区 | 十八禁高潮呻吟视频| 国产国语露脸激情在线看| 香蕉精品网在线| 婷婷色麻豆天堂久久| 在现免费观看毛片| videosex国产| 国产高清国产精品国产三级| 久久狼人影院| 亚洲av男天堂| 高清在线视频一区二区三区| 少妇人妻 视频| 女人被躁到高潮嗷嗷叫费观| 久久99精品国语久久久| 久久久久国产精品人妻一区二区| 日本免费在线观看一区| 人人澡人人妻人| 久久婷婷青草| 女人精品久久久久毛片| 亚洲精品中文字幕在线视频| 国产成人精品久久久久久| 中文字幕av电影在线播放| 日韩在线高清观看一区二区三区| 亚洲av.av天堂| 亚洲精品成人av观看孕妇| 一级毛片黄色毛片免费观看视频| 久久这里有精品视频免费| 蜜臀久久99精品久久宅男| 2021少妇久久久久久久久久久| 精品酒店卫生间| 亚洲情色 制服丝袜| 国产在线一区二区三区精| 男人操女人黄网站| 在线免费观看不下载黄p国产| 在线天堂最新版资源| 欧美日韩视频高清一区二区三区二| 中文字幕亚洲精品专区| 午夜福利影视在线免费观看| 久久av网站| 国产精品人妻久久久影院| 三级国产精品片| 性高湖久久久久久久久免费观看| 精品一区二区免费观看| 中文字幕制服av| av播播在线观看一区| 少妇 在线观看| 母亲3免费完整高清在线观看 | 一本色道久久久久久精品综合| 高清毛片免费看| 婷婷色综合大香蕉| 国产精品一二三区在线看| 亚洲精品视频女| 欧美日韩av久久| 男女下面插进去视频免费观看 | 日本-黄色视频高清免费观看| 99九九在线精品视频| 国产免费现黄频在线看| 亚洲精品久久午夜乱码| 亚洲国产精品999| 黑人欧美特级aaaaaa片| 性色avwww在线观看| 纯流量卡能插随身wifi吗| 天天躁夜夜躁狠狠久久av| 最近的中文字幕免费完整| 亚洲激情五月婷婷啪啪| 日韩 亚洲 欧美在线| 国产免费福利视频在线观看| 婷婷色综合www| 天堂中文最新版在线下载| 中文字幕精品免费在线观看视频 | 亚洲高清免费不卡视频| 欧美日韩综合久久久久久| 亚洲综合精品二区| 男女免费视频国产| 97人妻天天添夜夜摸| 国产黄色免费在线视频| 国产日韩欧美视频二区| 成人手机av| 晚上一个人看的免费电影| 亚洲美女黄色视频免费看| 另类精品久久| 人体艺术视频欧美日本| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av成人精品| 久久久久久久久久久免费av| 成人18禁高潮啪啪吃奶动态图| 成年动漫av网址| 高清黄色对白视频在线免费看| 一区在线观看完整版| 国产无遮挡羞羞视频在线观看| 男女边摸边吃奶| 熟女人妻精品中文字幕| av网站免费在线观看视频| 国产在视频线精品| 寂寞人妻少妇视频99o| 久久精品夜色国产| 亚洲激情五月婷婷啪啪| 国产日韩欧美视频二区| 亚洲一区二区三区欧美精品| 9热在线视频观看99| 亚洲av日韩在线播放| 2021少妇久久久久久久久久久| 人体艺术视频欧美日本| 午夜老司机福利剧场| 久久精品人人爽人人爽视色| 性色avwww在线观看| 99国产综合亚洲精品| 一区二区三区四区激情视频| www.av在线官网国产| 欧美日韩国产mv在线观看视频| 一级毛片黄色毛片免费观看视频| 久久国内精品自在自线图片| 免费av不卡在线播放| 久久青草综合色| 人人妻人人澡人人爽人人夜夜| 99九九在线精品视频| 亚洲欧美精品自产自拍| 九色亚洲精品在线播放| 1024视频免费在线观看| a级毛色黄片| 2022亚洲国产成人精品| 欧美亚洲日本最大视频资源| 成人国产麻豆网| 丝袜喷水一区| 午夜久久久在线观看| 熟女av电影| 午夜免费鲁丝| www.av在线官网国产| 高清不卡的av网站| 国产亚洲精品第一综合不卡 | 哪个播放器可以免费观看大片| 欧美3d第一页| 亚洲色图 男人天堂 中文字幕 | 国产毛片在线视频| 黄色怎么调成土黄色| 精品酒店卫生间| videossex国产| 国产高清不卡午夜福利| 亚洲精品国产av成人精品| 亚洲第一区二区三区不卡| 日韩欧美精品免费久久| 精品国产一区二区三区久久久樱花| 亚洲国产最新在线播放| 最新的欧美精品一区二区| 国产日韩欧美视频二区| 欧美日韩成人在线一区二区| 亚洲欧美日韩另类电影网站| 国产精品一国产av| 免费黄网站久久成人精品| 少妇的逼好多水| 国产免费现黄频在线看| 人妻系列 视频| 少妇的丰满在线观看| 久久久久久久久久成人| 欧美国产精品va在线观看不卡| 五月伊人婷婷丁香| 精品人妻在线不人妻| 久久精品国产综合久久久 | 韩国精品一区二区三区 | 99精国产麻豆久久婷婷| 丰满饥渴人妻一区二区三| 大码成人一级视频| 看免费成人av毛片| 亚洲人与动物交配视频| 十分钟在线观看高清视频www| 精品少妇黑人巨大在线播放| 人妻少妇偷人精品九色| www.色视频.com| 国产精品国产av在线观看| 青青草视频在线视频观看| 看十八女毛片水多多多| 人妻人人澡人人爽人人| 亚洲av欧美aⅴ国产| 久久久久国产精品人妻一区二区| 热re99久久精品国产66热6| 国产不卡av网站在线观看| 中国国产av一级| 在线天堂中文资源库| 国产精品久久久久久av不卡| 熟女电影av网| 狂野欧美激情性bbbbbb| 18在线观看网站| 欧美亚洲日本最大视频资源| 国产一区二区在线观看日韩| av在线app专区| 一级片'在线观看视频| 宅男免费午夜| 午夜福利视频精品| 午夜福利在线观看免费完整高清在| 狂野欧美激情性bbbbbb| 波多野结衣一区麻豆| 日韩制服丝袜自拍偷拍| 最近最新中文字幕免费大全7| 午夜视频国产福利| 美女福利国产在线| 大话2 男鬼变身卡| 麻豆精品久久久久久蜜桃| 免费观看a级毛片全部| tube8黄色片| 中国国产av一级| 国产av精品麻豆| 国产日韩欧美视频二区| 99热网站在线观看|