• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electricity Storage With High Roundtrip Efficiency in a Reversible Solid Oxide Cell Stack

    2016-09-23 06:06:26Li-zhenGan,KuiXie
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Electricity Storage With High Roundtrip Efficiency in a Reversible Solid Oxide Cell Stack

    I.INTRODUCTION

    Ⅰn recent years,renewable energies have been attracting a great deal of interests because they have huge potentials to solve the energy and environmental issues[1,2].Reversible solid oxide cell(RSOC)is a device that can efficiently store renewable electricity in the form of chemical fuels through the solid oxide electrolysis cell(SOEC)process and reversibly generate electricity by the solid oxide fuel cell(SOFC)conversion process. SOFC has many advantages including high efficiency,long-term stability,fuel flexibility,low emissions,and low cost[3-5].SOEC is the reverse mode of SOFC and inherits most SOFC advantages.RSOC can operate at higher temperatures with favourable kinetics for energy conversion in a large scale.RSOC combines the SOFC and SOEC and has been considered as an alternative energy storage system and/or a possible system for smart grid[6].

    For a RSOC stack,the roundtrip efficiency has been considered as one of the key factors to evaluate the performance of electricity storage/generation in the reversible system.Ⅰt has been widely accepted that a roundtrip efficiency with 80%is well adapted to the commercialization requirements.Ⅰt has been reported that a roundtrip efficiency in the range of 70%-86%is achieved with LSGM-electrolyte cell stack at low current densities at 600-650?C[7].The system heat significantly changes the operation temperatures in the range of-50?C to 200?C and thermal management is therefore extremely important in the roundtrip cycles.Ⅰt should be noted that the thermal management is a complicated system engineering that can remarkably increase the roundtrip efficiencies.However,the reversible heat storage is still a challenge at 800-1000?C though some thermal managements combining the electricity storage/generation with heating/cooling system.

    Heat storage using phase-change metals with high heat capacity is an attractive option for high temperature thermal energy storage,especially at temperatures above 800?C[8].Under specific circumstances,the heat storage or release can be rapid,efficient and largescale when a phase change material undergoes a phase transition from solid to solid,solid to liquid,or vice versa.Ⅰt can store and release heat when being held constant at the phase transition temperature,and its reversible phase changing processes allow for repeated use.More importantly,the operation temperature can be easily extended to as high as 1000?C to well adapt the operation temperature of solid oxide cell system. These advantages allow phase change metal tanks to be used as an advanced heat storage system for high temperature RSOC stacks.Copper or silver with high heat capacity,as common heat storage metals,can be readily intergraded into RSOC system to increase the roundtrip efficiencies.

    Ⅰn this work,a tubular RSOC stack combined with silver metal tank for heat storage is theoretically dem-onstrated.The charging and discharging processes have been modelled in relation to operation temperatures,system pressure,and state of charge.The roundtrip efficiency of electricity storage/generation is then studied.

    II.THE ELECTROCHEMICAL SIMULATION

    A.Open circuit voltage

    The chemical reaction in RSOC is as follows:

    which indicates the electricity generation/storage with H2/H2O in fuel electrode and air in oxygen electrode. The open circuit voltage(OCV)hence can be calculated by the Nernst equation(Eq.(1)and Eq.(2)):

    Fuel cell mode:

    Electrolysis cell mode:

    where R,T,n,and F correspond to the universal gas constant(8.3145 J/(mol·K)),the system temperature in K,the number of electrons(n=2),and the Faraday constant(96485 C/mol),respectively.pH2O,pH2,and pO2are the partial pressures of steam,hydrogen,and oxygen,respectively.Ⅰt can be seen that a higher stage of charge would be effective to increase the OCV values.The Gibb’s free energy,for the reaction of H2and O2can be calculated via the relationship of EΘand enthalpy and entropy:

    B.Ohmic resistance

    The schematic of the reversible tubular fuel electrodesupported solid oxide cell is shown in Fig.S1(supplementary materials)and the parameters of the components are shown in Table S1.The sequence flow of current through the interconnector,fuel electrode,electrolyte and the air electrode,and the current path of each component are clearly specified in Table S1 and S2 (supplementary materials).The resistance calculation for fuel electrode,air electrode,electrolyte,and interconnector,has been reported elsewhere[9].The total ohmic resistance for RSOC is obtained by Eq.(4):

    C.Activation overpotential

    The activation overpotential is the electrode surface overpotential and controlled by the kinetics at electrode surface.Ⅰt is the external energy required to overcome the maximum activation energy barrier to maintain electrode reaction.The Butler-Volmer equations [10,11]is used in the RSOC system.The activation polarization of the fuel electrode(ηact,f)and that of air electrode(ηact,a)can be expressed via mathematical transformation as indicated in Eq.(5)and(6):

    where J is the current density,and J0,aor J0,fis a crucial parameter and depends on the electrode microstructure and operation conditions.The exchange current density can be calculated by Eq.(7)for the fuel electrode and Eq.(8)for the air electrode.The pre-exponential factors γfand γaare for fuel and air electrodes,respectively[12].Eact,fand Eact,aare the activation energies of fuel electrode and air electrode,respectively.The pO2and pH2Ois the partial pressure of gas O2and H2O,p is the total pressure.

    D.Concentration overpotential

    Ⅰn the reversible process,the concentration polarization simulations are performed both in fuel cell and electrolysis cell modes,respectively.Ⅰn fuel cell mode,the concentration overpotentials of fuel electrode (ηconc,fuel,f)and air electrode(ηconc,fuel,a)can be calculated by Eq.(9)and Eq.(10),respectively[11,12]:

    Here,lfand lastand for the thickness of fuel and air electrode,respectively,pais the gas pressure at theair electrode.DHe

    2ffand DOe2ffare the effective diffusion coefficients for hydrogen and oxygen,respectively [13],while the related parameters are shown in Table S3(supplementary materials).Ⅰn the electrolysis cell mode,the concentration overpotentials of air (ηconc,elec.,a)and fuel electrodes(ηconc,elec.,f),can be calculated by Eq.(11)and Eq.(12),respectively[14,15].

    where DHe2ffOis the effective diffusion coefficients of steam,μis the dynamic viscosity of oxygen and the calculation can be referred with the related data displayed in Table S3 and S4(supplementary materials) [16,17].

    E.Cell voltage

    The types of voltage loss in the RSOC are ohmic loss,activation and concentration polarizations.The ohmic loss for each component is calculated using the Ohm’s law and then the voltage drop is given as:

    Once the ohmic overpotential is known,the cell voltages can be obtained by Eq.(14)for fuel cell mode and Eq.(15)for electrolysis cell mode:

    F.Heat simulation

    Ⅰn this section,the heat simulation was carried out to investigate the system balance.The heat mainly comes from the reaction losses by conduction when the cells work,which,therefore,changes the system temperatures.Using the mathematical method,the dependence of system temperature on time is calculated by Eq.(16)for fuel cell mode and Eq.(17)for electrolysis cell mode[18]:

    where qris the electrochemical heat of the system heat,qohmicis the heat from the ohmic resistance,qlossis the heat loss through the system.mcellis the mass of cell,and the total heat capacity of the cell is Cpcell.Ⅰn the model,the heat storage of the metal phase change is used,so Mheatis the mass of metal and Cpheatis its heat capacity.The values are in Table S5(supplementary materials).Ⅰn this work,the RSOC system is assumed to be in an insulated box in which temperature is fairly constant,

    where A is the surface area of the box in m2,λ is the thermal conductivity in W/(m·K),l is the thickness of the box in m,and Tiand Toare the temperatures of inside and the outside box,respectively.

    The heat capacity of various gases,Cpi,m,in modelling system as a function of temperature can be calculated by Eq.(19),i represents the various gases,and the related data are recorded in Table S6(supplementary materials).Ⅰn the RSOC system,the gas is assumed to be ideal:

    The heat storage,χ,is the percentage of silver metal that has melted of the total metal in the heat storage. The procedures of heat absorption and release are similar and can be calculated as follows:

    When the change of metal phase begins,the χ changes,however,the temperature of the system remain constant.When the time equals 0,χ is 0%,when all the metal has melted,χ equals 100%and the temperature of system rises again.The qr,qohmic,and qlossare the heat generation or loss from reaction,ohmic resistance and system heat loss,respectively.The Eheatis the total energy stored by the metal phase change.On the contrary,when the system is in the electrolysis cell mode,the metal cools down so that the heat is released from it and absorbed by the electrolysis reaction.

    FⅠG.1 The OCV of the RSOC system versus(a)temperature and(b)pressure in the state of charge(1%-99%).

    FⅠG.2 Activation overpotentials in RSOC at 1 atm and 95%state of charge for the(a)fuel electrode and(b)air electrode,respectively.

    Here,Mmetalis the molar mass of silver metal,and Eheatis the total energy stored by the metal phase change.The Hfusion,heatis the enthalpy of fusion for the metal.

    III.RESULTS AND DISCUSSION

    Figure 1(a)shows the OCV of the RSOC system with the state of charge varying from 1%to 99%at different temperatures ranging from 800?C to 1000?C.The state of charge is defined as the mole fraction of hydrogen in the hydrogen/steam mixture at the fuel electrode in the system while the total operation pressure has always been considered as 1.0 atm.As anticipated,the OCV decreases at higher temperatures,which is consistent with results obtained in a previous work[19].However,the OCV is significantly enhanced from 0.8 V to 1.1 V with the state of charge increases from 10%to 90% at 800?C,as shown in Fig.1(b).Ⅰncreasing operation pressure is expected to enhance the OCVs,however,the OCV only improves from 0.8 V to 0.85 V with system pressure increasing from 1 atm to 10 atm at the state of charge of 20%at 800?C.The state of charge is an more important factor that affects the OCV and influences the RSOC system equilibrium.

    Figure S3 shows the ohmic resistance of each component of a single RSOC cell.The main ohmic resistance is from the electrolyte,indicating the ionic transport limitation in reversible cells.Figure 2 illustrates the dependence of activation overpotential on both temperature and current for fuel electrode and air electrode,respectively.A remarkable increase in electrode overpotential is observed against current at 800?C.This implies that a large current significantly increases the electrode overpotentials at lower temperatures.However,a linear relationship is observed between the overpotential and current at 1000?C,which indicates that a higher current is favourable to improve electrode activation.Ⅰn addition,the fuel electrode polarization resistance is larger than that of air electrode.The optimization of fuel electrode to decrease polarization resistance would be therefore effective to enhance fuel electrode performance.

    The pre-exponential factor is proportional to the length of triple phase boundary which can be determined by the size of grain,radius of pore,and porosity[20].The influences of various pre-exponential factors on overpotentials is shown in Fig.S2(supplementary materials).A porous electrode with sufficient triple phase boundary would be beneficial to electrode activity with lower pre-exponential factor.Figures 3 and 4 present the dependence of concentration overpotentials on pressures and temperatures in fuel cell mode and electrolysis mode,respectively.Although,the concentration overpotential is less dependent on temperatureat higher pressure,it still improves at a higher temperature.The higher system pressure makes the concentration gradients smaller and not to be the main factor affecting concentration overpotentials.The concentration overpotential of fuel electrode in electrolysis cell mode is greater than that in fuel cell mode(see Fig.S3 and S4 in supplementary materials).This may be attributed to the larger Knudsen diffusion factor of hydrogen than that of steam under operation conditions.The currents also affect the concentration overpotentials of both electrodes either in fuel cell mode or electrolysis cell mode. The dependence of concentration overpotential on the currents and pressures in fuel cell and electrolysis cell mode at different temperature are also demonstrated in Fig.S5 and S6(supplementary materials),respectively.

    Figure 5 presents the I-V curves in the RSOC system,where the negative currents and the positive currents correspond to electrolysis cell mode and fuel cell mode,respectively.Ⅰt is observed that the activation overpotential is the small primary source of voltage loss due to the thin electrodes.Apparently,the cell voltage losses from ohmic resistance is negligible owing to the low resistivity of materials and short current path. This means the improvement of electrode activity is the main challenge that restricts the cell performances.

    Ⅰn this work,a metal with phase change is utilized to store and reuse the heat generated in reversible system. The heat stored in phase-change metal in fuel cell mode and then reused in electrolysis mode strongly influences the energy storage capability of the RSOC system.The modelling assumed that the reversible system is located in an insulating box at current 1 A and total gas pressure 1 atm.The maximum temperature is set at 962?C,in order to prevent the damage of the system.The temperature slowly increases as the heat generated from the chemical reaction.The generated heat competes with the heat loss in system and finally reaches an optimum at 962?C after 838 s at which the fuel cell mode switches to electrolysis mode to avoid the overheat of the reversible system.The cooling procedure in electrolysis cell mode with 962?C as the starting temperature.The temperature decreases to 800?C after 731 s,and the electrolysis reaction stoped and switched back to fuel cell mode.The temperature change is demonstrated in Fig.S7(supplementary materials),while the metal tank for heat storage is demonstrated in Fig.S8 (supplementary materials).

    FⅠG.4 Relationship between temperature,pressure and concentration overpotential in(a)fuel electrode and(b)air electrode at 1 A current and 95%state of charge in the electrolysis mode.

    FⅠG.5 Voltage of RSOC system versus current at 1 atm,950?C and with the state of charge 95%.

    Figure 6 shows the state of charge,the heat storage percentage and temperature as a function of time in cycling process.The maximum temperature holds constant at 962?C as the phase change of metal absorbs the generated heat.The state of charge decreases from 95%to 5%in fuel cell mode,and then the operation mode switches to electrolysis cell mode.The SOC could not reach 95%anymore because the heat loss is irreversible;however,it gets to 87.5%,which implies that the cycling efficiency is 92.1%.Ⅰn fuel cell mode,the system temperature increases with the hydrogen consumption and reaches 962?C,at which the metal begins to melt and absorbs the generated heat. Subsequently,the state of charge reduces to 5%at which the operation mode switched to electrolysis cell while 72.6%melted metal begins to release the absorbed heat to promote steam electrolysis.The system temperature returns to the initial state when the first cycle is completed with the exothermic steam electrolysis process terminated.The roundtrip efficiency for the first to the fifth cycle are 92.1%,84.2%,76.3%,68.4%,and 60.5%,respectively.The recycle and utilization of exhaust heat is the advantage of solid oxide cells because of the high operation temperature.For example,coupling the solid oxide cell with heat sources like nuclear plants would be a useful way to recycle exhaust heat in addition to the heat storage in the system.

    FⅠG.6 Cycling performance of RSOC for the storage and utilization of electricity at 1 A per cell at the beginning conditions of 1 atm,800?C,and 95%state of charge.

    IV.CONCLUSION

    Ⅰn this work,a phase-change metal has been utilized to reversibly store and use system heat in an oxide conducting solid oxide electrolzyer.The electrochemical energy-conversion process has been modelled versus the operation conditions including temperature,pressure and state of charge.The roundtrip efficiency reaches as high as 92.1%for electricity storage and generation in the RSOC system.Other phase-change metal like copper can be utilized to store heat to enhance roundtrip efficiency while different melting point would affect the temperature equilibrium of solid oxide cell system.The RSOC system is an effective and efficient platform for the storage and generation of renewable electricity.

    Supplementary materials:Tables S1,S2,S3,S4,S5,and S6 show the RSOC component parameters,input parameters,equation parameters,viscosity coefficients,heat simulation parameters and heat capacity coefficients,respectively.Figures S1,S2,S3,S4,S5,S6,S7,and S8 show the RSOC configuration,steam electrolysis energy balance,ohimic resistance of RSOC component,activationoverpotential,concentration overpotential with pressure and temperature,concentration overpotential with pre-exponential factors,system temperature and phase-change metal tank configuration,respectively.

    V.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Foundation of China(No.21303037 and No.91545123).

    [1]K.Barnham,K.Knorr,and M.Mazzer,Nat.Mater. 11,908(2012).

    [2]G.Gahleitner,Ⅰnt.J.Hydrogen.Energy 38,2039 (2013).

    [3]S.Kakac,A.Pramuanjaroenkij,and X.Y.Zhou,Ⅰnt. J.Hydrogen Energy 32,761(2007).

    [4]T.Papadam,G.Goula,andⅠ.V.Yentekakis,Ⅰnt.J. Hydrogen Energy 37,16680(2012).

    [5]M.Andersson,H.Paradis,J.L.Yuan,and B.Sunden,Ⅰnt.J.Energ.Res.35,1340(2011).

    [6]P.Aguiar,C.S.Adjiman,and N.P.Brandon,J.Power Sources 138,120(2004).

    [7]C.H.Wendel,Z.Gao,S.A.Barnett,and R.J.Braun,J.Power Sources 283,329(2015).

    [8]T.Nomura,C.Zhu,N.Sheng,G.Saito,and T. Akiyama,Sci.Rep.5,9117(2015).

    [9]J.R.Ferguson,J.M.Fiard,and R.Herbin,J.Power Sources 58,109(1996).

    [10]S.Campanari and P.Ⅰora,J.Power.Sources 132,113 (2004).

    [11]S.H.Chan and Z.T.Xia,J.Appl.Electrochem.32,339(2002).

    [12]M.Ni,M.K.H.Leung,and D.Y.C.Leung,Energ. Convers.Manage 48,1525(2007).

    [13]E.H.Pacheco,D.Singh,P.N.Hutton,N.Patel,and M.D.Mann,J.Power.Sources 138,174(2004).

    [14]M.Ni,M.K.H.Leung,and D.Y.C.Leung,Chem. Eng.Technol.29,636(2006).

    [15]M.Ni,M.K.H.Leung,and D.Y.C.Leung,J.Power. Sources 163,460(2006).

    [16]B.Todd and J.B.Young,J.Power Sources 110,186 (2002).

    [17]H.Y.Zhu,R.J.Kee,V.M.Janardhanan,O. Deutschmann,and D.G.Goodwin,J.Electrochem. Soc.152,A2427(2005).

    [18]K.Sedghisigarchi and A.Feliachi,ⅠEEE.T.Energy. Conver 19,423(2004).

    [19]X.J.Chen,Q.L.Liu,S.H.Chan,N.P.Brandon,and K.A.Khor,Electrochem.Commun.9,767(2007).

    [20]J.R.Ferguson,J.M.Fiard,and R.Herbin,J.Power Sources 58,109(1996).

    Li-zhen Gana,Kui Xieb?
    a.School of Mechanical and Automotive Engineering,Hefei University of Technology,Hefei 230009,China
    b.Key Lab of Design&Assembly of Functional Nanostructure,F(xiàn)ujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,F(xiàn)uzhou 350002,China
    (Dated:Received on October 10,2015;Accepted on January 6,2016)
    We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack.The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode.The state of charge(H2frication in cathode)effectively enhances the open circuit voltages(OCVs)while the system gas pressure in electrodes also increases the OCVs.On the other hand,a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations.With the aid of recycled system heat,the roundtrip efficiency reaches as high as 92%for the repeated electricity storage and generation.
    Key words:Reversible solid oxide cell,State of charge,Heat storage,Electricity storage,Electricity generation

    ?

    Author to whom correspondence should be addressed.E-mail: kxie@fjirsm.ac.cn

    亚洲精品粉嫩美女一区| 精品国产乱子伦一区二区三区| 成人无遮挡网站| 99国产精品一区二区蜜桃av| 亚洲精品国产精品久久久不卡| av中文乱码字幕在线| 搞女人的毛片| 一级黄色大片毛片| 小蜜桃在线观看免费完整版高清| 观看免费一级毛片| 欧美日韩亚洲国产一区二区在线观看| 天堂影院成人在线观看| 亚洲精品乱码久久久v下载方式 | 一二三四在线观看免费中文在| 精品久久久久久,| 久久久国产精品麻豆| 欧美日韩乱码在线| 午夜激情欧美在线| 18禁裸乳无遮挡免费网站照片| 天堂av国产一区二区熟女人妻| 在线免费观看不下载黄p国产 | 床上黄色一级片| 九色成人免费人妻av| АⅤ资源中文在线天堂| 岛国视频午夜一区免费看| 中文字幕人妻丝袜一区二区| 国产精品免费一区二区三区在线| 日韩欧美 国产精品| 99国产极品粉嫩在线观看| 久久国产乱子伦精品免费另类| 国产野战对白在线观看| 日韩 欧美 亚洲 中文字幕| 草草在线视频免费看| 亚洲av第一区精品v没综合| 欧美色欧美亚洲另类二区| 99国产精品99久久久久| 男人舔奶头视频| 床上黄色一级片| 精品一区二区三区视频在线 | 国产极品精品免费视频能看的| 一进一出好大好爽视频| 国产精品久久视频播放| 国产精品一区二区免费欧美| 两个人的视频大全免费| 视频区欧美日本亚洲| 别揉我奶头~嗯~啊~动态视频| 亚洲在线自拍视频| 免费在线观看影片大全网站| 国产亚洲欧美在线一区二区| 国产精品美女特级片免费视频播放器 | 国产高清视频在线播放一区| 久久久国产欧美日韩av| 男女床上黄色一级片免费看| 国产精品美女特级片免费视频播放器 | 一a级毛片在线观看| 搡老妇女老女人老熟妇| 国产成人啪精品午夜网站| 欧美激情久久久久久爽电影| 欧美午夜高清在线| 国产淫片久久久久久久久 | 亚洲人成电影免费在线| 91在线观看av| 一级a爱片免费观看的视频| 我要搜黄色片| 精品午夜福利视频在线观看一区| 免费av不卡在线播放| 久久精品国产亚洲av香蕉五月| 亚洲精华国产精华精| 欧美国产日韩亚洲一区| 亚洲国产高清在线一区二区三| 18禁国产床啪视频网站| 两性夫妻黄色片| 日韩大尺度精品在线看网址| av天堂在线播放| 国产精品av久久久久免费| 两人在一起打扑克的视频| 搡老熟女国产l中国老女人| 女人高潮潮喷娇喘18禁视频| 欧美在线一区亚洲| 国产在线精品亚洲第一网站| 久久精品亚洲精品国产色婷小说| 99re在线观看精品视频| 精品久久久久久久末码| 99热精品在线国产| 日本与韩国留学比较| 性色av乱码一区二区三区2| 国产精品亚洲av一区麻豆| 国产精品亚洲美女久久久| 男女午夜视频在线观看| 亚洲av成人av| 亚洲成人久久爱视频| 色综合欧美亚洲国产小说| 免费在线观看视频国产中文字幕亚洲| av在线蜜桃| 久久久水蜜桃国产精品网| 成人性生交大片免费视频hd| 老司机深夜福利视频在线观看| 国产一区二区在线观看日韩 | 99精品久久久久人妻精品| 天堂av国产一区二区熟女人妻| 男人舔奶头视频| 免费大片18禁| 一本精品99久久精品77| 亚洲电影在线观看av| 天堂√8在线中文| 亚洲成人久久爱视频| 99久久99久久久精品蜜桃| 亚洲真实伦在线观看| 观看美女的网站| 欧美成人免费av一区二区三区| 国产精品国产高清国产av| 在线永久观看黄色视频| 在线观看免费午夜福利视频| 特级一级黄色大片| 99热只有精品国产| 国产日本99.免费观看| 又黄又粗又硬又大视频| 精品乱码久久久久久99久播| 两个人视频免费观看高清| 中文字幕精品亚洲无线码一区| 看免费av毛片| 成人三级黄色视频| 香蕉国产在线看| 少妇的逼水好多| 国产野战对白在线观看| 青草久久国产| 看黄色毛片网站| 午夜影院日韩av| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美国产在线观看| 人人妻,人人澡人人爽秒播| 观看美女的网站| 欧美国产日韩亚洲一区| 国产精品影院久久| 午夜福利在线观看吧| 久久久精品大字幕| 日韩欧美国产一区二区入口| 一个人观看的视频www高清免费观看 | 一个人看的www免费观看视频| 日韩 欧美 亚洲 中文字幕| a在线观看视频网站| 成人一区二区视频在线观看| 午夜两性在线视频| 国产91精品成人一区二区三区| 嫁个100分男人电影在线观看| 日日夜夜操网爽| 欧美日本亚洲视频在线播放| 国产亚洲av嫩草精品影院| 日日摸夜夜添夜夜添小说| 村上凉子中文字幕在线| 美女cb高潮喷水在线观看 | cao死你这个sao货| 啦啦啦韩国在线观看视频| 最好的美女福利视频网| 午夜福利视频1000在线观看| 日本熟妇午夜| 午夜免费观看网址| 18美女黄网站色大片免费观看| 亚洲在线自拍视频| 巨乳人妻的诱惑在线观看| 丝袜人妻中文字幕| 欧美日韩国产亚洲二区| 长腿黑丝高跟| 国产视频内射| 亚洲中文字幕一区二区三区有码在线看 | 丰满人妻熟妇乱又伦精品不卡| 老汉色∧v一级毛片| 偷拍熟女少妇极品色| 国产激情久久老熟女| 亚洲精品在线美女| 国产精品av久久久久免费| 亚洲第一电影网av| 亚洲真实伦在线观看| 亚洲精华国产精华精| 一级毛片精品| 国产高清激情床上av| 好男人在线观看高清免费视频| 韩国av一区二区三区四区| 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 久久精品亚洲精品国产色婷小说| 亚洲av免费在线观看| 国产成人一区二区三区免费视频网站| 黑人巨大精品欧美一区二区mp4| 19禁男女啪啪无遮挡网站| 欧美中文日本在线观看视频| 一个人看的www免费观看视频| 十八禁网站免费在线| 国产日本99.免费观看| 在线a可以看的网站| 成年女人永久免费观看视频| 欧美日韩亚洲国产一区二区在线观看| 每晚都被弄得嗷嗷叫到高潮| av视频在线观看入口| 精品久久久久久久久久免费视频| 亚洲美女黄片视频| 日韩有码中文字幕| 亚洲欧美精品综合一区二区三区| 久久久久久大精品| 国产又黄又爽又无遮挡在线| 女人高潮潮喷娇喘18禁视频| 99在线视频只有这里精品首页| 99国产精品一区二区三区| 精品乱码久久久久久99久播| 亚洲男人的天堂狠狠| 每晚都被弄得嗷嗷叫到高潮| 又大又爽又粗| 老司机深夜福利视频在线观看| 亚洲精品色激情综合| 亚洲精品456在线播放app | 国产成人欧美在线观看| 1000部很黄的大片| 精品免费久久久久久久清纯| 一级毛片高清免费大全| 亚洲,欧美精品.| 女人被狂操c到高潮| 国产极品精品免费视频能看的| 日韩欧美免费精品| 国产1区2区3区精品| 婷婷六月久久综合丁香| 精品久久蜜臀av无| 久久久久久九九精品二区国产| а√天堂www在线а√下载| 国产精品一区二区免费欧美| av国产免费在线观看| 1024手机看黄色片| 小说图片视频综合网站| 一个人免费在线观看电影 | 国产精品女同一区二区软件 | 亚洲熟妇熟女久久| 亚洲精品美女久久久久99蜜臀| 淫秽高清视频在线观看| 欧美成狂野欧美在线观看| 亚洲成a人片在线一区二区| 特大巨黑吊av在线直播| 99国产精品99久久久久| 精品国产超薄肉色丝袜足j| 国产高清激情床上av| or卡值多少钱| 亚洲人与动物交配视频| 日韩欧美国产在线观看| 国产黄片美女视频| 久久人人精品亚洲av| 精品免费久久久久久久清纯| 一进一出抽搐动态| 成人18禁在线播放| 亚洲精品一卡2卡三卡4卡5卡| 一级a爱片免费观看的视频| 国产黄色小视频在线观看| av片东京热男人的天堂| 日韩精品中文字幕看吧| 亚洲美女视频黄频| 精品久久蜜臀av无| 日本与韩国留学比较| 亚洲欧美日韩高清专用| 国语自产精品视频在线第100页| 国产精品爽爽va在线观看网站| 亚洲天堂国产精品一区在线| 久久精品aⅴ一区二区三区四区| 免费在线观看成人毛片| 好男人电影高清在线观看| 桃红色精品国产亚洲av| 黄色日韩在线| 国产成人精品久久二区二区91| 国产成人精品久久二区二区免费| 日韩三级视频一区二区三区| 亚洲欧洲精品一区二区精品久久久| 亚洲自拍偷在线| 麻豆国产av国片精品| 国产精品一区二区精品视频观看| 岛国在线免费视频观看| 日韩国内少妇激情av| 国产三级黄色录像| 国产 一区 欧美 日韩| 国产成人系列免费观看| 欧美3d第一页| 成人国产一区最新在线观看| 别揉我奶头~嗯~啊~动态视频| 麻豆成人av在线观看| 亚洲av第一区精品v没综合| 亚洲中文日韩欧美视频| 一二三四社区在线视频社区8| 欧美日韩亚洲国产一区二区在线观看| 色在线成人网| 精品无人区乱码1区二区| 国产午夜福利久久久久久| 岛国在线免费视频观看| 国产精品亚洲美女久久久| 女生性感内裤真人,穿戴方法视频| 中文在线观看免费www的网站| 欧美av亚洲av综合av国产av| 一进一出抽搐动态| 99久久久亚洲精品蜜臀av| 色精品久久人妻99蜜桃| 亚洲欧美精品综合一区二区三区| 亚洲欧美日韩卡通动漫| 中文字幕高清在线视频| 床上黄色一级片| 两个人看的免费小视频| 亚洲片人在线观看| 亚洲精品456在线播放app | xxxwww97欧美| 久久久久亚洲av毛片大全| 欧美乱妇无乱码| 变态另类成人亚洲欧美熟女| 嫩草影院入口| 国产精品98久久久久久宅男小说| 国产精品 国内视频| 又黄又粗又硬又大视频| 午夜亚洲福利在线播放| 欧美日韩国产亚洲二区| 91av网站免费观看| 国产免费男女视频| 亚洲av第一区精品v没综合| 9191精品国产免费久久| 90打野战视频偷拍视频| 国产亚洲精品综合一区在线观看| 亚洲av电影在线进入| 啦啦啦韩国在线观看视频| 欧美黄色片欧美黄色片| 淫妇啪啪啪对白视频| 宅男免费午夜| 日本一本二区三区精品| 国产私拍福利视频在线观看| 精品久久久久久久久久久久久| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看| 国产av在哪里看| 国产成人一区二区三区免费视频网站| 亚洲成人久久性| 欧美乱妇无乱码| 国产精品久久久久久久电影 | 国产又黄又爽又无遮挡在线| 黄片小视频在线播放| 丰满人妻熟妇乱又伦精品不卡| 男人舔女人下体高潮全视频| 亚洲精品456在线播放app | 观看免费一级毛片| 岛国视频午夜一区免费看| 级片在线观看| 黄片小视频在线播放| 欧美大码av| 久久天堂一区二区三区四区| 国产毛片a区久久久久| 观看美女的网站| 中文资源天堂在线| 日韩欧美免费精品| 天天一区二区日本电影三级| 亚洲aⅴ乱码一区二区在线播放| 国产精品乱码一区二三区的特点| а√天堂www在线а√下载| 特级一级黄色大片| 国产成人精品无人区| 日本熟妇午夜| 免费搜索国产男女视频| 婷婷精品国产亚洲av| 色播亚洲综合网| 国产精品乱码一区二三区的特点| 日韩av在线大香蕉| 国产精品1区2区在线观看.| 色播亚洲综合网| 老司机在亚洲福利影院| 又大又爽又粗| 亚洲一区二区三区色噜噜| www.www免费av| 熟女电影av网| 好男人在线观看高清免费视频| 亚洲一区二区三区色噜噜| 亚洲色图 男人天堂 中文字幕| 熟女电影av网| 久9热在线精品视频| 日韩欧美 国产精品| 精品熟女少妇八av免费久了| 亚洲精品在线观看二区| 两人在一起打扑克的视频| 国产野战对白在线观看| 老司机福利观看| 色噜噜av男人的天堂激情| 校园春色视频在线观看| 久久婷婷人人爽人人干人人爱| 成人18禁在线播放| 欧美黄色片欧美黄色片| 丁香六月欧美| 国产精品精品国产色婷婷| 国产精品电影一区二区三区| 国产精品av视频在线免费观看| 欧美av亚洲av综合av国产av| 国产高清视频在线观看网站| 亚洲成a人片在线一区二区| 成人高潮视频无遮挡免费网站| 精华霜和精华液先用哪个| 中亚洲国语对白在线视频| 亚洲中文日韩欧美视频| 国产精品,欧美在线| 精品无人区乱码1区二区| 国产成+人综合+亚洲专区| 97超视频在线观看视频| 国产淫片久久久久久久久 | 亚洲国产高清在线一区二区三| 欧美一级a爱片免费观看看| 久久久久国产精品人妻aⅴ院| 一进一出好大好爽视频| 国产三级黄色录像| 男女那种视频在线观看| 日韩欧美一区二区三区在线观看| 免费观看的影片在线观看| 在线国产一区二区在线| 日本精品一区二区三区蜜桃| 色综合欧美亚洲国产小说| 一区二区三区激情视频| 日韩高清综合在线| 亚洲国产欧美网| 丰满人妻一区二区三区视频av | 亚洲欧美日韩卡通动漫| 亚洲中文日韩欧美视频| 草草在线视频免费看| 很黄的视频免费| 1000部很黄的大片| www.www免费av| 激情在线观看视频在线高清| 一夜夜www| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品中文字幕看吧| 欧美日韩中文字幕国产精品一区二区三区| 国产aⅴ精品一区二区三区波| 精品久久久久久,| av片东京热男人的天堂| 久久欧美精品欧美久久欧美| 亚洲色图 男人天堂 中文字幕| 亚洲欧美精品综合一区二区三区| 久久亚洲真实| 婷婷亚洲欧美| 免费大片18禁| 看免费av毛片| 国产一区二区在线av高清观看| 一本精品99久久精品77| 国产欧美日韩一区二区三| 欧美另类亚洲清纯唯美| 精品人妻1区二区| 后天国语完整版免费观看| 全区人妻精品视频| 又大又爽又粗| 老熟妇乱子伦视频在线观看| 美女高潮喷水抽搐中文字幕| 亚洲国产中文字幕在线视频| 国产av在哪里看| 亚洲人成伊人成综合网2020| 一区二区三区高清视频在线| 国产真实乱freesex| 久久国产精品影院| 久久精品综合一区二区三区| 欧美大码av| 久久这里只有精品中国| 色av中文字幕| 国产不卡一卡二| 亚洲av电影不卡..在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 一进一出抽搐动态| 男人舔奶头视频| 日本撒尿小便嘘嘘汇集6| 久久久久亚洲av毛片大全| 给我免费播放毛片高清在线观看| 国产成+人综合+亚洲专区| 19禁男女啪啪无遮挡网站| 国产高清videossex| 亚洲国产看品久久| 精品久久蜜臀av无| 村上凉子中文字幕在线| aaaaa片日本免费| 国产高潮美女av| 亚洲成av人片免费观看| 中文亚洲av片在线观看爽| 天天躁日日操中文字幕| 天天一区二区日本电影三级| 国内毛片毛片毛片毛片毛片| 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密| 精品国内亚洲2022精品成人| 亚洲,欧美精品.| 午夜久久久久精精品| 九九久久精品国产亚洲av麻豆 | 欧美精品啪啪一区二区三区| 免费观看人在逋| 香蕉久久夜色| 免费看美女性在线毛片视频| 9191精品国产免费久久| 日本免费a在线| 黑人巨大精品欧美一区二区mp4| 久99久视频精品免费| 97人妻精品一区二区三区麻豆| 亚洲天堂国产精品一区在线| 国产一区二区三区在线臀色熟女| 一个人看的www免费观看视频| 久9热在线精品视频| 亚洲成人精品中文字幕电影| 国产综合懂色| 欧美性猛交╳xxx乱大交人| 亚洲精品一卡2卡三卡4卡5卡| 99精品久久久久人妻精品| 国产精品久久久av美女十八| xxx96com| av在线天堂中文字幕| 一二三四在线观看免费中文在| 欧美日韩福利视频一区二区| 美女免费视频网站| 国产成人av激情在线播放| 久久中文字幕一级| 成人特级黄色片久久久久久久| 老司机午夜十八禁免费视频| 男女做爰动态图高潮gif福利片| 美女被艹到高潮喷水动态| 亚洲精品中文字幕一二三四区| 成年女人看的毛片在线观看| 首页视频小说图片口味搜索| 美女黄网站色视频| 国产伦在线观看视频一区| 十八禁人妻一区二区| av天堂在线播放| 久久久久精品国产欧美久久久| 久久久久久国产a免费观看| 天天一区二区日本电影三级| 1024手机看黄色片| 99re在线观看精品视频| 99精品在免费线老司机午夜| 国产成人精品无人区| 悠悠久久av| 人妻久久中文字幕网| АⅤ资源中文在线天堂| 成人国产综合亚洲| 亚洲成人久久爱视频| 一区福利在线观看| 中文字幕高清在线视频| 欧美成人一区二区免费高清观看 | 精品午夜福利视频在线观看一区| www.999成人在线观看| 亚洲欧美日韩东京热| 青草久久国产| 97人妻精品一区二区三区麻豆| 亚洲在线观看片| 黄频高清免费视频| 国产午夜福利久久久久久| 国产单亲对白刺激| 天堂√8在线中文| 岛国在线观看网站| 亚洲成人久久爱视频| 久久这里只有精品中国| 日韩欧美在线乱码| 俺也久久电影网| 久久久国产欧美日韩av| 夜夜躁狠狠躁天天躁| 两个人视频免费观看高清| 老熟妇仑乱视频hdxx| 午夜成年电影在线免费观看| or卡值多少钱| 成人特级黄色片久久久久久久| 国产精品亚洲av一区麻豆| 亚洲熟妇中文字幕五十中出| 国产精品一区二区三区四区免费观看 | 国产精品美女特级片免费视频播放器 | 精品无人区乱码1区二区| 国产欧美日韩一区二区三| 欧美乱码精品一区二区三区| 给我免费播放毛片高清在线观看| 美女免费视频网站| 天堂av国产一区二区熟女人妻| 最近最新免费中文字幕在线| 神马国产精品三级电影在线观看| 久久国产精品人妻蜜桃| 制服丝袜大香蕉在线| 1000部很黄的大片| 午夜成年电影在线免费观看| 久久久精品欧美日韩精品| 亚洲 欧美 日韩 在线 免费| 国产v大片淫在线免费观看| 99在线人妻在线中文字幕| 一个人看的www免费观看视频| 很黄的视频免费| 88av欧美| 成年版毛片免费区| 在线看三级毛片| 五月玫瑰六月丁香| 婷婷亚洲欧美| 亚洲欧美激情综合另类| 日本精品一区二区三区蜜桃| 激情在线观看视频在线高清| 很黄的视频免费| 日本精品一区二区三区蜜桃| 欧美不卡视频在线免费观看| 免费在线观看成人毛片| 国产高清视频在线观看网站| 老熟妇乱子伦视频在线观看| 久久久久性生活片| 国产欧美日韩精品亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 色视频www国产| 国产精品亚洲av一区麻豆| 十八禁网站免费在线| 国产黄片美女视频| 国产97色在线日韩免费| 久久精品影院6| av福利片在线观看| 成人鲁丝片一二三区免费| 麻豆国产97在线/欧美| 在线观看免费视频日本深夜| 国产v大片淫在线免费观看| 国产成年人精品一区二区| 成年版毛片免费区| 国产亚洲欧美98| 国产欧美日韩精品亚洲av| av天堂中文字幕网| 久久草成人影院| 淫秽高清视频在线观看| 不卡一级毛片| 亚洲第一电影网av| 亚洲av第一区精品v没综合|