• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple Plasmonic Resonances and Cascade Effect in Asymmetrical Ag Nanowire Homotrimer

    2016-09-23 06:06:22YueLi,GuangTaoFei,Shao-huiXu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Multiple Plasmonic Resonances and Cascade Effect in Asymmetrical Ag Nanowire Homotrimer

    I.INTRODUCTION

    Ⅰnduced by an incident electromagnetic field of a given frequency,metal nanostructures can sustain localized surface plasmon(SP)resonances,arising from the coherent collective oscillation of conduction electrons in metal surfaces[1-5].Generally,only a single resonance peak exists in the individual nanostructure,which is considered as its natural plasmonic dipole mode,while multiple plasmonic resonances can be observed in nanocomplex.For the symmetrical nano-complex,it has been reported that the resulting electromagnetic field displays symmetrical distribution in the approaching area mainly through plasmon coupling[6-8].However,due to the symmetrically distribution,the symmetrical nano-complex can only present homogeneous but limit plasmon modes.As a result,the symmetrical nanocomplex has less extraordinary properties,which limits its wide application in many areas,such as sensing,medicine,catalysis,and optoelectronics.

    Recently,different asymmetric nano-complexes have been theoretically and experimentally studied[9-11]. The absence of symmetry has demonstrated that the spectrum is not solely a linear combination of the plasmonic modes of the individual nanostructures,which is highly beneficial for manipulating the line shapes of the spectrum and the electromagnetic phenomena between the individual nanostructures.As a prototype,in the asymmetric Ag homotrimer with decreasing sizes and separations,it is found that the resulting electric field enhancement is enhanced by orders of magnitude in the gap between the smallest nanospheres,this phenomenon is referred as the cascade effect[4].However,the mechanism of the appearance of the different electric field associated with the plasmonic modes in asymmetric nanosphere homotrimer is not clearly interpreted.

    Metal nanowires with cross sections below the freespace diffraction limit of light support the propagation of surface plasmons that confines light into nano-scale dimensions.Furthermore,compared to the assembly of the nano-complexes with complex nanofabrication process,metal nanowires are relatively easy to prepare in a repeatable and reliable manner,making these nanostructures widely used in sub-wavelength optics,nanoscale optical components and devices[12,13].Most studies have been reported on the surface enhanced Raman scattering,propagation,scattering properties of metal nanowires with symmetrical parameters[14-16].

    Ⅰn this work,we systematically investigate the plasmonic properties of the homotrimers based on the asymmetrical metal nanowires.We find that the asymmetrical homotrimer can present bright or dark modes at the resonance wavelengths.Especially for the homotrimer case,the cascade effect can result in different electric field distributions in the approaching area of the nanowires,depending on the dark or the bright modes appearing between the smaller radii of the nanowires.When the dark mode appears between the smaller nanowires,the corresponding area shows higher electric field than that between the bigger nanowires,which is referred as the cascade effect.Ⅰn contrast,theexistence of the bright mode between the bigger nanowires will result in the restriction of the cascade effect,leading to the higher electric field.Our investigation shows different results from the symmetric case,essentially arising from the appearance of the bright and dark modes while the nanowire homotrimers is symmetry breaking.

    II.MODEL AND NUMERICAL METHOD

    Ⅰn present work,the optical properties of sizeasymmetrical Ag homotrimer nanowires are calculated using 2D finite element method model based on Maxwell’s equations,which has been comprehensively described in Ref.[17].Meanwhile,the proposed perfectly matched layer are placed before the outer boundary to avoid nonphysical reflections of outgoing electromagnetic waves.Throughout this work,the metal in our model is Ag.The permittivity data of Ag are obtained from Johnson and Christy[18].And the whole calculations performed for homotrimer nanowires are immersed in a surrounding medium of air.

    III.RESULTS AND DISCUSSION

    We adopt model morphology of Ag homotrimer nanowires(Fig.1)with different radii and separations to investigate their optical properties,where R1,R1,and R3are the radii,S1and S2are the surface-tosurface separations between the 1st and 2nd,the 2nd and 3rd nanowires,respectively.Ⅰn all the calculations presented here,the direction of the incident wave-vector K is along the y-axis and electric-field polarization vector is parallel to the x-axis(see Fig.1).Besides,the infinitely long wires orients along the z direction.

    Empirically,the plasmonic resonances of homotrimer can be investigated by dividing into two homodimer. Hence we start our investigation on the optical properties of two plasmonic homodimers with radii R1and R2,R2and R3,respectively.Ⅰn addition,for the model with asymmetrical parameters,the calculated curves of extinction cross section(ECS)are not smooth with insignificant kinks as that in the symmetric case.Therefore,the following discussions would focus on the significant resonance peaks to study the multiple coupling,the negligible differences of ECS are outside the discussion range of our interest.

    A.Two asymmetrical homodimers with respective radii R1and R2,R2and R3

    The two homodimers with radii R1=100 nm and R2=50 nm,R1=50 nm and R2=25 nm are referred to homodimer-1(H1)and homodimer-2(H2),respectively. The ECS spectra of H1 and H2 with separation S=2 nm are simulated.For comparison,the ECS of the individual and symmetrical homodimer nanowire is also shown in Fig.2.While an individual nanowire with equal radii to that in our model,namely,25,50,and 100 nm,respectively,it only has one resonance peak arising from a dipole around 342 nm(Fig.2(a)).When the individual nanowire forms the symmetrical homodimer structures(Fig.2(b)-(d)),there exist multiple resonance peaks,which correspond to the dipolar and multiple higher-order modes,arising from the phase retardation effects[19,20].Ⅰn plasmonics,the corresponding charge distributions can be used to clearly verify the involved plasmon modes at resonance wavelengths[1,20],therefore the charge distribution of the homodimer with radii R1=R2=100 nm along x direction at three resonancewavelengths is calculated(Fig.S1 in supplementary materials).Ⅰt can be found that the higher-order modes of the triakontadipolar and quadrupolar(Q)mode correspond to the resonance wavelengths of 359 and 497 nm,respectively,and the dipolar(D)mode corresponds to the resonance wavelengths of 826 nm,which is out of visible light.

    FⅠG.1 Schematic model morphology of the studied asymmetrical Ag nanowire homotrimer with the configurable parameters and the incident polarization parallel to the dimer axis.

    FⅠG.2 The extinction cross sections of(a)single nanowire,(b)-(d)symmetrical homodimer nanowire with separation S=2 nm,(e)and(f)asymmetrically nanowire with separation S=2 nm.

    For the asymmetrical case of H2 and H1 in Fig.2(e) and(f),compared with the symmetrical homodimer case,there also exist the multiple resonance peaks,located at 364,495,and 609 nm for H1,343 and 448 nm for H2,respectively.The charge distributions at resonance peaks of the two asymmetrical homodimers for S=2 nm are shown in Fig.3.For H1 at wavelengths of 364,495,and 609 nm,six,four,and two nodes can be clearly observed in the approaching area,as expected,which is corresponding to higher-order octupolar(O),Q and D modes,respectively(Fig.3(a)-(c)).For H2,surprisingly,both higher-order Q modes appear at the wavelengths of 343 and 448 nm,respectively(Fig.3(d) and(e)).These results are different from that of the symmetrical case,especially for the H2.That is,the symmetrical homodimer(Fig.2(b)and(c))with two resonance peaks shows the O and D modes at 340 and 499 nm(not shown in this work).

    The ECS spectra of the two homodimers with varied separations and radii are shown in Fig.S2(supplementary materials).The corresponding charge distributions at the resonances of H1 and H2 with S=4 nm are highlighted in Fig.S3(supplementary materials).One can note that,when S increases to 4 nm,the charges are less than that of the corresponding S=2 nm(Fig.3),therefore resulting in weakened SP coupling.When S finally increases to 20 nm,there only exists a resonance peak (Fig.S2(a)and(b)in supplementary materials)arising from the weakened SP coupling,which is analogous to the dipole resonance peak of the single nanowire around 342 nm.Different from the results by increasing the separation,the increasing radius of the homodimer generates much higher-order modes with asymmetrical line shapes(Fig.S2(c)in supplementary materials),arising from the phase retardation effects,which is analogous to the asymmetrical Au:Ag heterodimers on increasing the size of dimer size[21].

    Ⅰn the plasmonic nanostructures with symmetry breaking,the bright mode and dark mode are involved. Naturally,the bright mode possesses finite dipole moment,which can be excited by the incident light efficiently.Ⅰn contrast,the dark plasmon mode with nearzero dipole moment,couples to light less effectively[22]. However,the dark mode can be excited by the electric field associated with the bright mode[22,23].Ⅰn addition,the exclusive losses of dark mode are only limited by the intrinsic metal losses,which is much lower than the radiative damping of the bright mode.Therefore,the dark mode will result in enhanced and localized electric field distribution than that of the bright mode[24,25].Ⅰn our models,for the morphology of H1 with asymmetrical radii,it can be clearly observed from the ECS (Fig.2(e)and(f))that the D at 609 nm is much broader than the O and Q at 364 and 495 nm.Combinly this feature with the charge distributions(Fig.3(a)-(c)),we can conclude that the D mode is referred to the superradiant bright mode,and higher-order(O and Q)modes are referred to the subradiant dark mode,respectively. For H2,there is only dark Q mode.However,different from the classic nanostructure with the dark modes directly excited by the bright modes such as the disk-ring plasmonic nanostructures[1,9],the appearance of the so-called dark modes in nanowire arrays arises from the splitting of the dipole modes in the individual nanowire to reduce the Coulomb repulsion energy[26,27].This feature can be confirmed in Fig.S2(a)and(b)(supplementary materials).As the separation increases from 2 nm to 20 nm,owing to reduced mode repulsion,the ECS spectrum of homodimer is comparable with the individual nanowire with a dipole mode.

    Based on the above results,the plasmonic properties of the asymmetrical nanowire homotrimer consisting of H1 and H2 are investigated.The different plasmon modes can be excited in H1 and H2.Ⅰn addition,the bright and dark modes generate distinguished electric field distribution in the approaching areas of the homotrimer consisting of the H1 and H2.

    FⅠG.3 The corresponding charge distribution along the x direction at the resonance wavelengths for(a)-(c):H1,(d) and(e):H2 with the separation S=2 nm.The color bar shows the varied values of the charge density distribution.

    B.Asymmetrical homotrimer with varied separation and radius

    As expected,electromagnetic coupling can be modulated by changing the separation and radii of the homotrimer consisting of the H1 and H2 as investigated above.Here we adopt the configurations with the varied radii and separations simultaneously.

    FⅠG.4 The dependence of the ECS spectra of asymmetrical Ag nanowire homotrimer on the varied separations S=S1=S2with constant R1:R2:R3=100 nm:50 nm:25 nm(a-e)and the radii of the asymmetrical homotrimer with the same scale R1:R2:R3=4:2:1,separations S1=S2=2 nm(f-m).The charge contribution of the resonance peaks along the x direction for the separations 2 nm with R1:R2:R3=100 nm:50 nm:25 nm of homotrimer(n)363 nm,(o)497 nm,(p)497 nm,and(q) 674 nm.The dashed lines with different colors present the variation of the multiple resonance peaks.The color bar shows the varied values of the charge density distribution.

    1.Varied separations S1=S2with R1:R2:R3=4:2:1 nm

    The dependence of the ECS spectra of asymmetrical Ag nanowire homotrimer with uniform R1:R2:R3=100 nm:50 nm:25 nm on the varied separations S1=S2=S is shown in Fig.4(a)-(e),and dependence of the ECS spectra of the homotrimers with R1:R2:R3=4:2:1 and S1=S2=2 nm on the varied radius is shown in Fig.4 (f)-(m).We can note that when S decreases or the radius increases,the multiple resonance peaks can be gradually and clearly observed.For the reference state,we would firstly focus our attention on the homotrimer configuration with S1=S2=2 nm and uniform R1:R2:R3=100 nm:50 nm:25 nm(Fig.4(a))to get insight into the tunability of electromagnetic coupling and multiple resonances.The corresponding charge distribution at the four obvious resonance peaks located at 674,497,426,and 363 nm are plotted in Fig.4(n)-(q),respectively,and the corresponding values of electric field along the x direction are listed in TableⅠ.Here,most part of the electric filed(not shown here)and charge distribution locate around the approaching area. Ⅰt is worth mentioning that the resulting resonance peaks at 363,426,and 497 nm with asymmetrical line shapes are comparable with the Fano resonances originated from the coupling of the super-radiant modes and subradiant modes,which have been found in nanocomplexes with symmetry breaking[9].

    From the charge distributions in Fig.4(n)and(p)for S=2 nm,it can be found clearly that there exist all dark O modes between two homodimers with six charge nodes at 363 nm of the resonance wavelength,all Q modes with four charge nodes at 426 nm of the resonance wavelength,the bright D(50 nm:25 nm homodimer)and dark Q(100 nm:25 nm homodimer)modes with two and four charge nodes in the case of the third resonance at 497 nm,respectively.Different from the appearance of the higher-order modes,the resonance at 674 nm(Fig.4(p))corresponds to the dipolar bright mode,leading to a spectral broadening because of the radiative damping[1,2].

    TABLEⅠThe corresponding near field of the resonance peaks along the x direction for the separations 2,4,and 6 nm,E1is the maximum values between the bigger nanowires,E2is for the smaller nanowires.

    Ⅰn virtue of the existence of the bright and dark modes distributed in the gaps for the model with S=2 nm and varied radii shown in Fig.4(f)-(m),not only the appearance of different plasmon modes,but also the near field distribution of the size-asymmetrical nanowires is greatly influenced.Previous works has been reported that a self-similar linear chain,consisting of three Ag nanospheres with decreasing sizes and separations,can produce local field enhancement in the gaps between the smaller particles due to so-called cascade effect[4].That is,while the external field impinges on the cascaded nanospheres,the local optical field between the large particles is enhanced firstly,and then the enhanced electric field acts on the smaller particles as an excitation field,resulting in higher nanofocusing than that in bigger ones.

    Ⅰn our model,due to the multiple resonance peaks with complex mode distribution,the near field distributions of size-asymmetrical homotrimer nanowires with four resonance peaks(listed in TableⅠfor symmetrical separations 2 nm)present different results.For the wavelengths of 674 and 497 nm,the maximum electric field localizes at the gap between the two larger nanowires(E1).Ⅰn contrast,the maximum electric field localizes at the gap between the two smaller nanowires (E2)for the wavelengths of 426 and 363 nm.These phenomena can be explained as the association of the cascade effect with the different plasmon mode appearing between the smaller radii of the nanowires.Due to the fact that the losses of dark mode with the intrinsic metal losses are much lower than the radiative damping of the bright mode[24,25].When the dark mode,which can be able to store a larger amount of electromagnetic energy than the bright mode,appears between the two smaller nanowires,the cascade effect will results in bigger electric field distributed between the two smaller nanowires.Ⅰn constrast,the appearance of the bright mode,which has radiative damping,will lead to the restriction of the cascade effect,hence the resulting bigger electric field distributed between the two bigger nanowires.

    Based on the above interpretation of the multiple resonances and the different electric field distribution in the separations of S1=S2=2 nm model,now we turn our attention to analyze the plasmon resonance as a function of separations S as shown in Fig.4(b)-(e). One can note that with increasing of separations,the resonance peaks are all blue-shift.This phenomenon can be interpreted that as the separation increases,the resulting splitting of the plasmon modes to reduce the Coulomb repulsion energy between the individual nanowire decreases[26,28,29].For the case of separations of S1=S2=4 nm(Fig.4(b)),there also exist four apparent resonance peaks at 362,403,450,and 634 nm as that for S=2 nm.As S increases,the first resonance(corresponding to 362 nm for the separations of S1=S2=4 nm)keeps almost constant for the S1=S2>4 nm.The charge distribution of the resonance peaks for S1=S2=4 nm are represented in Fig.S4(supplementary materials),presenting that the resonance at 362 nm exhibits the mixture of the dark Q and O modes (Fig.S4(a)in supplementary materials),compared to the pure O modes in homotrimer with S1=S2=2 nm at 363 nm(Fig.4(n)).The resonance at 403 nm for the homotrimer with the separations of S1=S2=4 nm is all dark Q modes(Fig.S4(b)in supplementary materials).The mode distributions of the resonance at 450 nm (Fig.S4(c)in supplementary materials)are comparable with S1=S2=2 nm at 497 nm(Fig.4(p)),resulting in the same electric field distribution between the bigger nanowires,arising from the ineffectively cascade effect.However,for the separations of 4 nm at 362 and 403 nm,due to the disappearance of superradiant bright mode,the SP interaction between the bigger homodimer nanowires generates an excitation field,and then the enhanced near field(E2)(observed in TableⅠ) stays in the gap of the smaller as a result of the cascade effect[4].Furthermore,for the separation of 4 nm,the SP interaction between the nanowires decrease compared with that of the separation of 2 nm,this brings about the decreasing near field of the whole system,especially for E1listed in TableⅠ.Above all,we can conclude that the cascade effect takes effect to confine the near field in the gap of the smaller nanowires,while the pure dark modes exist at the corresponding resonance wavelength.

    Ⅰn Fig.4(f)-(m),one can note that when the radius of the homotrimer increases,together with the same scale R1:R2:R3=4:2:1 and separations S1=S2=2 nm,more resonance peaks and asymmetrical line shapes can be observed,indicating that the higher order resonance modes are excited[19,20].The resonance peak at 343 nm for R1=50 nm homotrimer,which corresponds to dipolar mode.These results are comparable with the size-dependent of the homodimer as shown in Fig.2(f)-(m).Ⅰn summary,we can conclude that,due to the decrement of the separation or the increment of the radii,the resulting increment of the SP coupling between the asymmetrical nanowires generates multiple resonance peaks.At respective resonance peak wavelength,the bright and dark modes modulate the role of the cascade effect,and producs different electric field distributions.

    FⅠG.5 The extinction spectra of asymmetrical Ag homotrimer nanowires with R1=100 nm,R2=50 nm,and R3=25 nm for (a)-(f)different ratios β,(g)β=1/20(S1=5 nm and S2=2.5 nm)for varied radii.(h)-(j)show the charge contribution of the resonance peaks for the ratio β=1/20 in(f).The color bar shows the varied values of the charge density distribution.

    2.Varied ratios of separations S1=2S2with R1:R2:R3=4:2:1

    The influence of asymmetrical separations and radii on the optical properties of homotrimer nanowires as Li’s assumption is investigated[4].We set the quantitative relation of radii and separations as Ri+1=αRi,Si+1,i+2=αSi,i+1,and Si,i+1=βRi,where α=1/2 in current model is constant as the reference state.The ECS spectra of asymmetrical Ag nanowire homotrimer with R1=100,R2=50,and R3=25 nm for different ratios β is shown in Fig.5(a)-(f),β=1/20(S1=5 nm,S2=2.5 nm) for different radii is shown in Fig.5(g),and the corresponding charge distributions at the resonance peaks in Fig.5(f)are highlighted in Fig.5(h)-(j).Meanwhile,the values of the near field at the resonance peaks for β=1/20 and 1/18 are also listed in TableⅠⅠ.For ECS spectrum of the ratio 1/20 in Fig.5(f),one can note that there exist three resonance peaks at 629,418,and 361 nm,respectively.The bright dipolar mode at 629 nm confirmed by the charge contribution in Fig.5(j)is also broadened due to its radiative damping.However,for the resonance at 418 nm,dark Q modes appeared in the gap of the nanowires(Fig.5(i)),when Q and hexapolar modes for the resonance are at 361 nm(Fig.5(h)),which are the same as the modes as stated above with the separations S1=S2=4 nm.Ⅰn addition,the higher near-fields at 418 and 361 nm are distributed significantly in the gap of the smaller homodimer(TableⅠⅠ),indicating that the cascade effect functions effectively in virtue of the asymmetrical sizes and separations due to the absence of the dipolar mode(Fig.5(h)and(i)). However,the cascade effect is less effective at 629 nm because of the damping of dipolar modes as presented in the above discussion.

    TABLEⅠⅠThe corresponding near field of the resonance peaks for the ratios 1/20 and 1/18,E1is the maximum values between the bigger nanowires,E2for the smaller nanowires.

    As shown in Fig.5(a),it is noted here that,as the separation(the ratio β)increases to S1=10 nm and S2=5 nm(β=1/10),the resonance at 418 nm for β=1/20 has blue-shift to 415 nm slightly,and the resonance at 361 nm almost keep unchanged,retaining a significant peak at 389 nm,arising from the weakened SP coupling.Ⅰt indicates that the symmetry-breaking of the sizes and separations of Ag nanowire homotrimer generates more effective cascade effect.

    So far,we have performed the calculations using large nanowires with asymmetrical separations.Next,the homotrimers with simultaneously varied radii and separations are investigated.The optical ECS spectra as a function of the sizes with constant ratio β=1/20,α=1/2 are shown in Fig.5(g),and the corresponding near field of the resonance peaks are listed in TableⅠⅠⅠ.When the sizes and the separations of the nanowires get smaller,the spectrum of the dipolar bright mode becomes narrower,arising from the decreasing radiative damping. Furthermore,due to the cascade effect,the near fieldsbetween the smaller nanowires enhance slightly with the stronger SP coupling at longer wavelength of the resonance peaks.However,for the resonance peak at shorter wavelengths,the electric field enhancement is greatly depressed due to the cancellation of its polarization.Even though the stronger SP coupling and cascade effect exists between the smaller sizes and separations of the homotrimer nanowires,the size effect considerably influences the extinction spectra with lower peak height[30,31].

    To rich and further confirm the calculated results discussed above,the other two sets of homotrimers withradiiR1=225nm,R2=75nm,R3=25 nm (R1:R2:R3=9:3:1)andR1=400nm,R2=100nm,R3=25 nm(R1:R2:R3=16:4:1)are investigated.When the separations are symmetrical and asymmetrical,the resulting ECS spectra,corresponding charge distribution at the multiple resonance peaks and electric field distribution are shown in the supplementary materials (Fig.S5 and S6 and Tables S1 and S2).Ⅰn addition,the comparable homodimers,which are the fundamental elements of the homotrimer,are also investigated as the reference in Fig.S5 and S6(supplementary materials). One can note that the bright and dark modes exist in the homodimer and homotrimer.Ⅰn addition,combined the charge distribution and the electric filed(E1and E2listed in Tables S1 and S2 of the supplementary materials)between the nanowires,the suppression of the cascade effect is confirmed by the appearance of the bright mode in the homotrimer.Ⅰn favor of the dark mode,the cascade effect results in the higher electric field distributed between the smaller nanowires.Furthermore,arising from the increasing of the separations,the weakened SP coupling generally results in decreasing electric field.

    TABLEⅠⅠⅠThe corresponding near field of the resonance peaks for the varied size with constant ratios 1/20,E1/(V/m)is the maximum values between the bigger nanowires,E2/(V/m)for the smaller nanowires.

    IV.CONCLUSION

    Ⅰn this work,we have systematically investigated the plasmonic properties of the asymmetrical silver nanowire homotrimer with asymmetrical separation and radius.Ⅰt is found that,multiple plasmonic prop-erties and different electromagnetic coupling can be generated originated from the coupling between the bright and dark modes,which have been confirmed by the charge distributions at the resonance wavelengths. When the bright mode with radiative damping exists in the homotrimer,the cascade effect is depressed,resulting in the higher electric field distributed in the approaching area of the bigger nanowires.Ⅰn the opposite way,when the plasmon modes have the dark modes between the smaller nanowires,which can store the electromagnetic energy,the cascade effect results in higher electric field in the gap of the smaller nanowires.The above results are confirmed by three sets of homotrimer with different asymmetrical separations and radii.We believe that the simulated results obtained in this work may be useful for the analysis of the optical behaviors of asymmetrical nanowires while the experimental characterization of the non-uniform samples shows different comparison from the ideally simulation adopted the symmetrical models.Ⅰn addition,the appearance of the different coupling plasmon modes between the nanowire arrays may be useful to contribute to overcome the light propagation length,which is of importance in waveguides.Nanowire plasmonic waveguides can be generally served as the miniaturization of optical signal processing,data transmission.

    Supplementary materials:Table S1,S2 show the electric field at the resonance peaks for the nanowire homotrimer with symmetrical and asymmetrical separations with the parameters of R1=225 nm,R2=75 nm,R3=25nm(R1:R2:R3=9:3:1)andR1=400 nm,R2=100 nm,R3=25 nm(R1:R2:R3=16:4:1),respectively.Figure S1 shows the charge distribution of the homodimer with the radii R1=R2=100 nm at the resonance wavelengths 359,497,and 826 nm,respectively.Figure S2 shows the influence of the asymmetrically structural parameters of H1 and H2 on the extinction cross section.Figure S3 shows the corresponding charge distribution at the different resonance wavelengths for H1 and H2 with the separation S=4 nm.Figure S4 shows the charge contribution at the resonance peaks 362,403,450,and 634 nm,respectively,for the separations S1=S2=4 nm as the radii of the homotrimer are R1=100,R2=50,and R3=25 nm. Figure S5 and S6 show the ECS of the nanowire homodimer and homotrimer with asymmetrical separations and radii R1=225 nm,R2=75 nm,R3=25 nm (R1:R2:R3=9:3:1)andR1=400nm,R2=100 nm,R3=25 nm(R1:R2:R3=16:4:1),respectively,and the corresponding charge distributions at the resonance peaks.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Basic Research Program of China(No.2012CB932303),the National Natural Science Foundation of China (No.51171176,No.51471162,and No.11204307),and the CAS/SAFEAⅠnternational Partnership Program for Creative Research Teams.

    [1]W.L.Barnes,A.Dereux,and T.W.Ebbesen,Nature 424,824(2003).

    [2]J.Aizpurua,P.Hanarp,D.S.Sutherland,M.Kall,G. W.Bryant,and F.J.G.de Abajo,Phys.Rev.Lett.90,057401(2003).

    [3]E.Ozbay,Science 311,189(2006).

    [4]K.Li,M.Ⅰ.Stockman,and D.J.Bergman,Phys.Rev. Lett.91,227402(2003).

    [5]B.Sturman,E.Podivilov,and M.Gorkunov,Europhys. Lett.101,741(2013).

    [6]L.A.Sweatlock,S.A.Maier,and H.A.Atwater,Phys. Rev.B 71,235408(2005).

    [7]B.Augui′e and W.L.Barnes,Phys.Rev.Lett.101,143902(2008).

    [8]S.Yashna and D.Anuj,Nanotechnology 25,210(2014).

    [9]F.Hao,P.Nordlander,Y.Sonnefraud,P.V.Dorpe,and S.A.Maier,ACS Nano.3,643(2009).

    [10]P.K.Jain,S.Eustis,and M.A.El-Sayed,J.Phys. Chem.B 110,18243(2006).

    [11]T.G.Habteyes,S.Dhuey,S.Cabrini,P.J.Schuck,and S.R.Leone,Nano Lett.11,1819(2011).

    [12]J.Q.Hu,Q.Chen,Z.X.Xie,G.B.Han,R.H.Wang,B.Ren,Y.Zhang,Z.L.Yang,and Z.Q.Tian,Adv. Funct.Mater.14,183(2004).

    [13]K.D.Wang,H.X.Zhang,and Y.F.Liu,Chin.J. Chem.Phys.24,434(2011).

    [14]Z.L.Netzer,Z.Tanaka,B.Chen,and C.Y.Jiang,J. Phys.Chem.C 117,16187(2013)

    [15]G.Liu and J.Shao,Chin.J.Chem.Phys.24,239(2011)

    [16]B.Kenens,M.Rybachuk,J.Hofkens,and H.Uji-Ⅰ,J. Phys.Chem.C 117,2547(2013).

    [17]P.M.GreshoandR.L.Sani,Absorptionand Scattering of Light by Small Particles,New York: Wiley(2000).

    [18]P.B.Johnson and R.W.Christy,Phys.Rev.B 6,4370 (1972).

    [19]S.Westcott,J.Jackson,C.Radloff,and N.Halas,Phys. Rev.B 66,155431(2002).

    [20]F.Hao,E.M.Larsson,T.A.Ali,D.S.Sutherland,and P.Nordlander,Chem.Phys.Lett.458,262(2008).

    [21]O.Pena-Rodr′?guez,U.Pal,M.Campoy-Quiles,L. Rodr′?guez-Fern′andez,M.Garriga,and M.Ⅰ.Alonso,J.Phys.Chem.C 115,6410(2011).

    [22]M.Liu,T.W.Lee,S.K.Gray,P.Guyot-Sionnest,and M.Pelton,Phys.Rev.Lett.102,107401(2009).

    [23]C.J.Xuan,X.D.Wang,L.Xia,B.Wu,H.Li,and S. X.Tian,Chin.J.Chem.Phys.27,628(2014).

    [24]S.Zhang,D.A.Genov,Y.Wang,M.Liu,and X.Zhang,Phys.Rev.Lett.101,047401(2008).

    [25]P.Tassin,L.Zhang,T.Koschny,E.N.Economou,and C.Soukoulis,Phys.Rev.Lett.102,053901(2009).

    [26]A.Manjavacas and F.J.G.Abajo,Opt.Express 17 19401(2009).

    [27]Y.G.Chen,T.S.Kao,B.Ng,X.Li,X.G.Luo,B. Luk’yanchuk,S.A.Maier,and M.H.Hong,Opt.Express 21,13691(2013).

    [28]W.M.Wei,R.H.Z,Y.K.W,F(xiàn).Yang,and S.Hong,Chin.J.Chem.Phys.27,659(2014).

    [29]W.Cai,L.Wang,X.Zhang,J.Xu,and F.J.G.Abajo,Phys.Rev.B 82,125454(2010).

    [30]Z.K.Zhou,X.N.Peng,Z.J.Yang,Z.S.Zhang,M. Li,X.R.Su,Q.Zhang,X.Y.Shan,Q.Q.Wang,and Z.Y.Zhang,Nano Lett.11,49(2011).

    [31]S.Kawata,Near-Field Optics and Surface Plasmon Polaritons,Berlin:Springer,(2001).

    Yue Li,GuangTao Fei?,Shao-hui Xu,Guo-liang Shang,Hao-miao Ouyang,Li-de Zhang
    Key Laboratory of Materials Physics,and Anhui Key Laboratory of Nanomaterials and Nanotechnology,Institute of Solid State Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China.
    (Dated:Received on February 26,2016;Accepted on March 22,2016)
    Plasmonic Ag nanowire homotrimer with asymmetrical radii and separations,which exhibits characteristics of multiple plamonic resonances and different electric field distributions,is systematically investigated by means of 2D finite element method.Ⅰt was found that the dark and bright modes appear in asymmetrical nanowire homotrimer.Ⅰn addition,when the dark modes appear between the smaller radii of the nanowires,the cascade effect results in enhanced electric field between the smaller radii nanowires.As a result of the appearance of the bright modes between the smaller radii of the nanowires,the restriction of the cascade effect generates enhanced electric field between the bigger nanowires.
    Key words:Asymmetric homotrimer,Bright and dark modes,Extinction cross section,Cascade effect

    ?

    Author to whom correspondence should be addressed.E-mail: gtfei@issp.ac.cn,Tel.:+86-551-65591453,F(xiàn)AX:+86-551-65591434

    久久久成人免费电影| 国产美女午夜福利| 51午夜福利影视在线观看| 床上黄色一级片| 国产精品一及| 亚洲片人在线观看| 成人毛片a级毛片在线播放| 少妇高潮的动态图| 成人精品一区二区免费| 啦啦啦韩国在线观看视频| 尤物成人国产欧美一区二区三区| 色视频www国产| 一边摸一边抽搐一进一小说| 国内毛片毛片毛片毛片毛片| 欧美黑人欧美精品刺激| av天堂在线播放| 亚洲 国产 在线| 亚洲精品在线美女| av福利片在线观看| 91狼人影院| 国产亚洲精品综合一区在线观看| 国产单亲对白刺激| 成人亚洲精品av一区二区| 日韩欧美在线二视频| 国产成人啪精品午夜网站| 特大巨黑吊av在线直播| 国产高潮美女av| 国产精品98久久久久久宅男小说| 91九色精品人成在线观看| 看片在线看免费视频| 中文字幕久久专区| 国产在线精品亚洲第一网站| 真实男女啪啪啪动态图| 十八禁国产超污无遮挡网站| 亚洲久久久久久中文字幕| xxxwww97欧美| 很黄的视频免费| 免费在线观看亚洲国产| 国产中年淑女户外野战色| 可以在线观看的亚洲视频| 99riav亚洲国产免费| 亚洲精华国产精华精| 91久久精品国产一区二区成人| 国产精品精品国产色婷婷| 亚洲狠狠婷婷综合久久图片| a级毛片a级免费在线| 亚洲国产欧洲综合997久久,| 国产精品免费一区二区三区在线| 久久精品夜夜夜夜夜久久蜜豆| 深夜a级毛片| 91午夜精品亚洲一区二区三区 | 国产视频内射| 亚洲成人久久爱视频| 久久久色成人| 男插女下体视频免费在线播放| 久久天躁狠狠躁夜夜2o2o| 欧美黑人巨大hd| 丝袜美腿在线中文| 男女之事视频高清在线观看| 丝袜美腿在线中文| 亚洲aⅴ乱码一区二区在线播放| 在线观看美女被高潮喷水网站 | 好男人在线观看高清免费视频| 18禁裸乳无遮挡免费网站照片| 97热精品久久久久久| 中亚洲国语对白在线视频| 免费人成视频x8x8入口观看| 嫩草影院新地址| 少妇裸体淫交视频免费看高清| 日日干狠狠操夜夜爽| 欧美激情在线99| 51午夜福利影视在线观看| 一个人免费在线观看电影| 在线观看美女被高潮喷水网站 | 别揉我奶头~嗯~啊~动态视频| 一本一本综合久久| 精品欧美国产一区二区三| 一本一本综合久久| 美女高潮的动态| 极品教师在线视频| 男人狂女人下面高潮的视频| 内地一区二区视频在线| 又黄又爽又刺激的免费视频.| 十八禁国产超污无遮挡网站| 夜夜躁狠狠躁天天躁| 国产色婷婷99| 人妻丰满熟妇av一区二区三区| 日日夜夜操网爽| 少妇的逼水好多| 亚洲中文日韩欧美视频| 在线观看舔阴道视频| 日本熟妇午夜| 欧美+日韩+精品| 成人高潮视频无遮挡免费网站| 国产探花极品一区二区| 色5月婷婷丁香| 成人高潮视频无遮挡免费网站| 国产精品亚洲一级av第二区| 午夜福利在线观看免费完整高清在 | 综合色av麻豆| av在线天堂中文字幕| 亚洲aⅴ乱码一区二区在线播放| av视频在线观看入口| 51午夜福利影视在线观看| 男女视频在线观看网站免费| 国产精华一区二区三区| 亚洲欧美日韩高清专用| 能在线免费观看的黄片| 99热6这里只有精品| 亚洲欧美激情综合另类| 性欧美人与动物交配| 婷婷丁香在线五月| 欧美国产日韩亚洲一区| 国产大屁股一区二区在线视频| 国产精品一区二区免费欧美| 丁香六月欧美| 搡老熟女国产l中国老女人| 婷婷丁香在线五月| 亚洲欧美日韩高清在线视频| 窝窝影院91人妻| 午夜免费男女啪啪视频观看 | 欧美性猛交黑人性爽| 欧美成人性av电影在线观看| 性插视频无遮挡在线免费观看| 亚洲欧美清纯卡通| 免费观看的影片在线观看| 男插女下体视频免费在线播放| 真人一进一出gif抽搐免费| 1024手机看黄色片| 好男人在线观看高清免费视频| 别揉我奶头~嗯~啊~动态视频| 国产美女午夜福利| 欧美丝袜亚洲另类 | 欧美日韩乱码在线| 日日干狠狠操夜夜爽| 岛国在线免费视频观看| 最近最新免费中文字幕在线| 日韩欧美精品免费久久 | 亚洲一区二区三区不卡视频| a级一级毛片免费在线观看| 丁香六月欧美| 91狼人影院| 欧美精品啪啪一区二区三区| 亚洲色图av天堂| 国产精品久久久久久久电影| 久久精品91蜜桃| 免费在线观看影片大全网站| ponron亚洲| 深夜a级毛片| 久久久成人免费电影| 长腿黑丝高跟| 一个人免费在线观看的高清视频| 免费看美女性在线毛片视频| 亚洲aⅴ乱码一区二区在线播放| 午夜免费激情av| 国产真实乱freesex| 亚洲人成伊人成综合网2020| 91麻豆av在线| 日本在线视频免费播放| 男女那种视频在线观看| 亚洲三级黄色毛片| netflix在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 国语自产精品视频在线第100页| 熟女电影av网| 91午夜精品亚洲一区二区三区 | 国产精品1区2区在线观看.| 色哟哟哟哟哟哟| 国产三级中文精品| 亚洲国产精品999在线| 久久久成人免费电影| 90打野战视频偷拍视频| 精品免费久久久久久久清纯| 性色avwww在线观看| 国产人妻一区二区三区在| 极品教师在线视频| 欧美潮喷喷水| 亚洲最大成人中文| 国产一区二区三区视频了| 欧美bdsm另类| 亚洲国产欧美人成| 久久久久久久精品吃奶| 国产人妻一区二区三区在| 精品久久久久久成人av| 国产av麻豆久久久久久久| 欧美绝顶高潮抽搐喷水| 999久久久精品免费观看国产| 国产一区二区在线观看日韩| 国产一区二区亚洲精品在线观看| 亚洲欧美日韩卡通动漫| 真人一进一出gif抽搐免费| 如何舔出高潮| av专区在线播放| 国产亚洲欧美98| 国产精品久久电影中文字幕| 亚洲中文日韩欧美视频| 熟女电影av网| 人人妻人人澡欧美一区二区| 免费av毛片视频| 少妇裸体淫交视频免费看高清| 俺也久久电影网| 久久久国产成人精品二区| 久久久精品大字幕| 亚洲欧美日韩东京热| 三级国产精品欧美在线观看| 亚洲精品成人久久久久久| 精品午夜福利在线看| 美女高潮的动态| 男女那种视频在线观看| 国产探花极品一区二区| 91久久精品电影网| 久久精品国产自在天天线| 国产三级黄色录像| 精品久久久久久久末码| 日本黄色片子视频| 亚洲av成人精品一区久久| 内射极品少妇av片p| 久久热精品热| 丰满的人妻完整版| 免费观看人在逋| 国产亚洲精品久久久久久毛片| 亚洲国产精品999在线| 久久精品影院6| www.www免费av| 国产单亲对白刺激| 窝窝影院91人妻| 亚洲第一区二区三区不卡| 国产午夜精品久久久久久一区二区三区 | 婷婷精品国产亚洲av在线| 亚洲,欧美精品.| 91在线精品国自产拍蜜月| 精品一区二区三区视频在线| 中出人妻视频一区二区| 欧美潮喷喷水| 九九在线视频观看精品| 丁香欧美五月| АⅤ资源中文在线天堂| 性色avwww在线观看| 如何舔出高潮| 在线播放无遮挡| 熟女电影av网| 久久99热这里只有精品18| 最近视频中文字幕2019在线8| 亚洲欧美日韩高清专用| 久久精品国产亚洲av天美| 国产亚洲精品综合一区在线观看| 国产一区二区三区视频了| 国产精品av视频在线免费观看| 久久久精品欧美日韩精品| 亚洲成av人片免费观看| 婷婷丁香在线五月| 国产伦一二天堂av在线观看| 日本黄大片高清| 一区福利在线观看| a级毛片免费高清观看在线播放| 亚洲最大成人手机在线| 欧美极品一区二区三区四区| 色5月婷婷丁香| 午夜福利高清视频| 日本精品一区二区三区蜜桃| 欧美成人a在线观看| 欧美色欧美亚洲另类二区| 亚洲午夜理论影院| 麻豆久久精品国产亚洲av| 久久久久久久久大av| 免费观看人在逋| 色视频www国产| 中文字幕av在线有码专区| 国产极品精品免费视频能看的| 国产精品,欧美在线| 女人十人毛片免费观看3o分钟| 一级黄片播放器| av专区在线播放| 国产一级毛片七仙女欲春2| 国产免费av片在线观看野外av| 性色av乱码一区二区三区2| 国产视频内射| 久久久久免费精品人妻一区二区| 国产高清视频在线播放一区| 在线免费观看的www视频| 高清毛片免费观看视频网站| 亚洲欧美精品综合久久99| 色5月婷婷丁香| av中文乱码字幕在线| 久久人人爽人人爽人人片va | 十八禁国产超污无遮挡网站| 看十八女毛片水多多多| 18禁黄网站禁片免费观看直播| 国产三级黄色录像| 国产人妻一区二区三区在| 日日夜夜操网爽| 日本黄大片高清| АⅤ资源中文在线天堂| 国产亚洲av嫩草精品影院| 精品久久久久久久久久免费视频| 亚洲专区国产一区二区| av欧美777| 天天躁日日操中文字幕| 午夜福利成人在线免费观看| 国产精品99久久久久久久久| 色在线成人网| 欧美性猛交╳xxx乱大交人| 97超级碰碰碰精品色视频在线观看| 午夜视频国产福利| 老熟妇仑乱视频hdxx| 国产成人福利小说| bbb黄色大片| 夜夜躁狠狠躁天天躁| 三级国产精品欧美在线观看| 99热只有精品国产| 久久午夜亚洲精品久久| 亚洲人成网站高清观看| 亚洲第一区二区三区不卡| 免费高清视频大片| 国产精品嫩草影院av在线观看 | a在线观看视频网站| 精品人妻一区二区三区麻豆 | 日韩中字成人| 我要搜黄色片| 99久国产av精品| 欧美激情国产日韩精品一区| 亚洲国产精品999在线| 两个人视频免费观看高清| 成人亚洲精品av一区二区| 国产毛片a区久久久久| 少妇被粗大猛烈的视频| 女人十人毛片免费观看3o分钟| 老司机福利观看| 日韩精品中文字幕看吧| 男女做爰动态图高潮gif福利片| 亚洲aⅴ乱码一区二区在线播放| av黄色大香蕉| 九九在线视频观看精品| 男女床上黄色一级片免费看| 亚洲最大成人手机在线| 欧美最黄视频在线播放免费| 麻豆久久精品国产亚洲av| 一二三四社区在线视频社区8| 国产淫片久久久久久久久 | 国产精品一区二区免费欧美| 精品久久久久久,| 一本久久中文字幕| 精品一区二区三区av网在线观看| 1000部很黄的大片| 国产三级黄色录像| 麻豆av噜噜一区二区三区| 欧美+日韩+精品| 午夜福利欧美成人| 99久久无色码亚洲精品果冻| 久久精品国产亚洲av天美| 波野结衣二区三区在线| 午夜a级毛片| 国产成人影院久久av| 国产高清三级在线| 亚洲第一区二区三区不卡| 久久精品影院6| 国产成人av教育| 久久久久久久久久成人| 午夜福利18| 久久久久久久精品吃奶| 在线播放国产精品三级| 小说图片视频综合网站| 深夜精品福利| 在线免费观看不下载黄p国产 | 国产激情偷乱视频一区二区| 久久久久亚洲av毛片大全| 99国产综合亚洲精品| 又爽又黄无遮挡网站| 激情在线观看视频在线高清| 国产高清激情床上av| 十八禁人妻一区二区| 精品一区二区三区av网在线观看| 午夜福利高清视频| 欧美性感艳星| 别揉我奶头 嗯啊视频| 成人国产综合亚洲| 国内揄拍国产精品人妻在线| 免费人成视频x8x8入口观看| 国产aⅴ精品一区二区三区波| 国产一区二区三区视频了| 国产一区二区激情短视频| 精品无人区乱码1区二区| 一个人看视频在线观看www免费| av欧美777| 给我免费播放毛片高清在线观看| 国产精品电影一区二区三区| 午夜福利在线在线| 欧美成人性av电影在线观看| 一本精品99久久精品77| 日韩欧美 国产精品| 免费观看人在逋| 日本在线视频免费播放| 麻豆久久精品国产亚洲av| 久久久久久久午夜电影| 亚洲avbb在线观看| 国产老妇女一区| a级毛片a级免费在线| 午夜福利成人在线免费观看| 欧美三级亚洲精品| 亚洲av日韩精品久久久久久密| 日本黄色片子视频| 国产白丝娇喘喷水9色精品| 免费电影在线观看免费观看| 精品人妻熟女av久视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久这里只有精品中国| 1024手机看黄色片| 日日摸夜夜添夜夜添av毛片 | 久久久久亚洲av毛片大全| 99久久无色码亚洲精品果冻| 精品一区二区三区av网在线观看| 又粗又爽又猛毛片免费看| 51午夜福利影视在线观看| 十八禁国产超污无遮挡网站| 国产精品影院久久| 欧美成人a在线观看| 精品国内亚洲2022精品成人| 2021天堂中文幕一二区在线观| 亚洲五月天丁香| 淫妇啪啪啪对白视频| 成人三级黄色视频| www.www免费av| 国产亚洲精品av在线| 日韩欧美一区二区三区在线观看| 国产美女午夜福利| 99久久九九国产精品国产免费| 五月玫瑰六月丁香| 国产v大片淫在线免费观看| 国产亚洲精品久久久久久毛片| 久久久久久久午夜电影| 国产成人啪精品午夜网站| 两个人的视频大全免费| 免费观看人在逋| 亚洲人成网站高清观看| 少妇人妻一区二区三区视频| 精品久久久久久久末码| 午夜视频国产福利| 久久这里只有精品中国| 无人区码免费观看不卡| 黄色配什么色好看| 欧美精品国产亚洲| 亚洲av不卡在线观看| 日韩欧美 国产精品| 亚洲欧美日韩卡通动漫| 啦啦啦韩国在线观看视频| 男人舔女人下体高潮全视频| 亚洲欧美清纯卡通| 91狼人影院| 亚州av有码| 国产亚洲欧美98| 国产一级毛片七仙女欲春2| 免费看美女性在线毛片视频| 亚洲人成网站高清观看| 成人精品一区二区免费| 精品人妻偷拍中文字幕| 91在线精品国自产拍蜜月| 午夜视频国产福利| 精品一区二区免费观看| 免费在线观看亚洲国产| 国产精品亚洲一级av第二区| 免费看美女性在线毛片视频| 久久久精品大字幕| 美女大奶头视频| 好男人在线观看高清免费视频| 欧美激情久久久久久爽电影| 五月玫瑰六月丁香| 欧美另类亚洲清纯唯美| 欧美+亚洲+日韩+国产| 午夜福利在线观看吧| 亚洲在线观看片| 国产不卡一卡二| 99热6这里只有精品| 在线天堂最新版资源| 我要搜黄色片| 国产精品野战在线观看| 91麻豆精品激情在线观看国产| 久久精品夜夜夜夜夜久久蜜豆| 国产v大片淫在线免费观看| 一级a爱片免费观看的视频| 中文字幕免费在线视频6| 精品人妻偷拍中文字幕| 日本一二三区视频观看| 日韩精品中文字幕看吧| 淫秽高清视频在线观看| 国产高清三级在线| 色噜噜av男人的天堂激情| 熟女人妻精品中文字幕| 欧美最新免费一区二区三区 | 男人和女人高潮做爰伦理| 99国产精品一区二区三区| 露出奶头的视频| 老女人水多毛片| 午夜福利欧美成人| 97超级碰碰碰精品色视频在线观看| 动漫黄色视频在线观看| 成人午夜高清在线视频| 午夜日韩欧美国产| 美女高潮喷水抽搐中文字幕| 人妻久久中文字幕网| 欧美在线黄色| 无人区码免费观看不卡| 亚洲精品在线美女| 啪啪无遮挡十八禁网站| 欧美不卡视频在线免费观看| 亚洲欧美日韩卡通动漫| 国产精品人妻久久久久久| 美女高潮喷水抽搐中文字幕| 精品久久久久久成人av| 午夜免费成人在线视频| 国产精品美女特级片免费视频播放器| 亚洲经典国产精华液单 | 国产探花在线观看一区二区| 国产精品,欧美在线| 老司机福利观看| 欧美日本亚洲视频在线播放| 精品熟女少妇八av免费久了| 九九在线视频观看精品| 99久久无色码亚洲精品果冻| 91狼人影院| 欧美性猛交黑人性爽| 亚洲欧美日韩高清在线视频| 热99在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 日本五十路高清| 别揉我奶头~嗯~啊~动态视频| 九九在线视频观看精品| 一区二区三区四区激情视频 | 窝窝影院91人妻| 99热只有精品国产| 亚洲久久久久久中文字幕| 美女免费视频网站| 欧美色欧美亚洲另类二区| 中文字幕av成人在线电影| 国产亚洲av嫩草精品影院| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 中文资源天堂在线| a级毛片a级免费在线| 丁香六月欧美| 亚洲av成人av| 久久人妻av系列| 我的女老师完整版在线观看| 国产精品久久电影中文字幕| 日韩欧美精品v在线| 夜夜夜夜夜久久久久| 国产三级中文精品| 亚洲人与动物交配视频| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| av天堂中文字幕网| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久成人| 亚洲最大成人av| 国产亚洲精品综合一区在线观看| 欧美性猛交黑人性爽| 免费人成在线观看视频色| 国产高清视频在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 丰满的人妻完整版| 直男gayav资源| 亚洲美女视频黄频| 欧美中文日本在线观看视频| 精华霜和精华液先用哪个| 国产精品久久久久久久久免 | 舔av片在线| 看黄色毛片网站| 床上黄色一级片| 国产av麻豆久久久久久久| 色哟哟·www| 小蜜桃在线观看免费完整版高清| 有码 亚洲区| 国产激情偷乱视频一区二区| 国产真实伦视频高清在线观看 | 制服丝袜大香蕉在线| 91狼人影院| 美女xxoo啪啪120秒动态图 | 有码 亚洲区| 小蜜桃在线观看免费完整版高清| 亚洲熟妇熟女久久| 窝窝影院91人妻| 国产亚洲欧美在线一区二区| 丁香六月欧美| a级毛片免费高清观看在线播放| 成人精品一区二区免费| 欧美一区二区国产精品久久精品| 日韩欧美国产在线观看| 丰满人妻一区二区三区视频av| 免费在线观看成人毛片| 久久久久亚洲av毛片大全| 桃色一区二区三区在线观看| 国产午夜精品久久久久久一区二区三区 | 99riav亚洲国产免费| 日韩中文字幕欧美一区二区| 成年人黄色毛片网站| 亚洲中文字幕一区二区三区有码在线看| 久久久久九九精品影院| 国产极品精品免费视频能看的| 1024手机看黄色片| 久久热精品热| 一级黄片播放器| 亚洲乱码一区二区免费版| 久久久国产成人精品二区| 搡老岳熟女国产| 欧美另类亚洲清纯唯美| 婷婷六月久久综合丁香| 亚洲天堂国产精品一区在线| 欧美黑人欧美精品刺激| 窝窝影院91人妻| or卡值多少钱| 欧美激情国产日韩精品一区| 亚洲内射少妇av| 国产 一区 欧美 日韩| 十八禁网站免费在线| 国产av麻豆久久久久久久| 亚洲最大成人av|