• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigation of air-entrainment in skimming flow over stepped spillways

    2016-09-14 08:16:44JieminZhanJianboZhangYejunGongDepartmentofAppliedMechanicsandEngineeringSchoolofEngineeringSunYatsenUniversityGuangdong510275China

    Jiemin Zhan,Jianbo Zhang,Yejun Gong?Department of Applied Mechanics and Engineering,School of Engineering,Sun Yat-sen University,Guangdong 510275,China

    ?

    Numerical investigation of air-entrainment in skimming flow over stepped spillways

    Jiemin Zhan,Jianbo Zhang,Yejun Gong?
    Department of Applied Mechanics and Engineering,School of Engineering,Sun Yat-sen University,Guangdong 510275,China

    h i g h l i g h t s

    ?Simulation is performed of the air-entrainment in skimming flow using the volume of fluid(VOF),mixture and Eulerian.?The VOF+large eddy simulation(LES)method is able to capture the splashing water droplets.

    ?The mixture+LES method predicts the inception of air entrainment most accurately.

    ?The Eulerian+Reynolds-averaged Navier-Stokes(RANS)method fails to capture the free-surface aeration.

    a r t i c l ei n f o

    Article history:

    Received in revised form

    29 March 2016

    Accepted 30 March 2016

    Available online 6 May 2016

    Skimming flow

    Stepped spillways

    Air-entrainment

    Large eddy simulation

    As a widely used flood energy dissipator,the stepped spillway can significantly dissipate the kinetic or hydraulic energy due to the air-entrainment in skimming flow over the steps.The free-surface aeration involves the sharp deformation of the free surface and the complex turbulent shear flows.In this study, the volume of fluid(VOF),mixture,and Eulerian methods are utilized to simulate the air-entrainment by coupling with the Reynolds-averaged Navier-Stokes/large eddy simulation(RANS/LES)turbulence models.The free surface deformation,air volume fraction,pressure,and velocity are compared for the three different numerical methods.Only the Eulerian+RANS method fails to capture the free-surface aeration.The air volume fraction predicted by the VOF+LES method best matches the experimental measurement,while the mixture+LES method predicts the inception point of the air entrainment more accurately.

    ?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The stepped spillway at the toe of a dam is one of the widely seen energy dissipation structures in hydro-power projects[1]. Energy of the flood is dissipated due to the air-entrainment in skimming flow,together with the generated vortexes on the steps[2].The experimental investigation in the laboratory is not able to capture the vortex structures in the flow.Hence, researchers have been devoted to the numerical investigation of the flow aeration in skimming flow,with the development of highperformance computers and parallel computation methods[3].

    Limited by the computation condition,the earlier numerical studies of the stepped spillway overflow did not consider the coupling of the turbulence model[1].Then,the Reynolds-averaged Navier-Stokes(RANS)turbulence models,including the standard k-εmodel and the re-normalisation group(RNG)k-εmodel, are widely utilized in conjunction with the volume of fluid(VOF) method[4,5].The VOF+RANS method is able to capture the fre e surface in good agreement with the experimental results. However,the time averaged RANS method is not able to capture the fluctuating instantaneous flow characteristics.Different to RANS method,the large eddy simulation(LES)method resolves the spatial-filtered Navier-Stokes equations,such that it is able to capture the small scale eddies[6].

    In this study,the LES sub-grid scale(SGS)Smagorinsky-Lilly model will be used to resolve the turbulent structures in skimming flow overthe stepped spillways using a commercial computational fluid dynamics(CFD)tool,ANSYS FLUENT[7]. Three multiphase models are available in FLUENT:the VOF model[8],the mixture model[9],and the Eulerian model[10]. The VOF method captures the gasliquid interface by calculating the volume fraction of water through each computing cell,but it does not reflect the phase interaction very well.The mixture method considers the interactions between phases(can be more than two)by introducing the relative velocity into the mixed momentumequation.ThemostcomplexEulerianmethodresolves the governing equations for each phase with coupled pressure andinterfaceinteraction.Moredetailsofthethreemultiphasemethods refer to Ref.[11].

    Fig.1.Computation domain and boundary conditions[12].

    Fig.2.(Color online)Air volume fraction distribution above the steps.Left:time averaged air volume fraction above No.4-10 steps;right:instantaneous air volume fraction above No.7-9 steps at 60 s.

    Fig.3.Air volume fraction distribution on probes P7-P9 with distance y measured normal to the pseudo-bottom and Y90 the characteristic distance where the air volume fraction is 90%.

    To compare the three typical multi-phase models,the skimming flow will be simulated using three different numerical methods with details shown in Table 1.Because the LES turbulence option is not allowed for the Eulerian method in FLUENT,we use the RNG k-εmodel for turbulence in the Eulerian case.The two fluids in the VOF model share a single set of momentum equations,the liquid phase volume fraction is resolved throughout the whole computation domain and the gas-liquid interface is build using the Geo-reconstruct method.For each multiphase method,pressure-velocity coupling is coordinated via the Pressure Implicit with the Splitting of Operators(PISO)scheme for LES or the Semi-Implicit Method for Pressure Linked(SIMPLE)scheme for RANS.Different combinations of the computation algorithms are tested for each method,and the best performers are listed in Table 1,where pressure staggering option(PRESTO)scheme calculates the''staggered''pressure using the discrete continuity balance for pressure discretization,quadratic upstream interpolation for convective kinematics(QUICK)is a quadratic-upwind differencingscheme[7].NotethatthevelocityfieldsresolvedbytheVOF andmixturemethodarethemixturevelocityoftheair-waterflow, while the Eulerian method predicts the fluid velocity instead.

    As shown in Fig.1,the tested stepped spillway model is positioned 1.5 m from the inlet,0.4 m from the top boundary and 0.5 m from the right boundary.The stepped spillway includes ten identicalstepswithheighthandwidthl.Inaskimmingflow,water enters the inlet at a fixed mass flow rate qw,and then flows over the dam with a critical flow depth of dc.The mass flow rate qwis adjustedsuchthatdc/h=1.15.Then,airiscontinuouslyentrained andreleasedthefreesurfaceabovethesteps,andlastlytheaerated flow leaves the downstream outlet freely.

    The skimming flow is simulated using the three different numerical methods listed in Table 1,and the calculated air volumefraction are compared in Fig.2.Obviously,the Eulerian method is not able to capture the air entrainment pattern as vividly as the other two methods.In experiment,the location of inception point of free-surface aeration is above the No.6 step[13].The simulated location of air entrainment is No.5.step for the VOF method and No.6 step for the mixture method.Though the VOF method predicts an earlier air entrainment,it is capable to capture the water splashing far from the steps,while the mixture method ignore the small size water drops,as shown by the instantaneously air volume fraction on the right side of Fig.2.

    Table 1 Computation models.

    Fig.4.Time averaged pressure and velocity distribution of the No.7-9 steps.Top:static pressure on the horizontal step edge,and the maximum points are labeled by solid circles;bottom:velocity magnitude on the horizontal line adjacent to the step edge with a distance of 1 mm,and the reattachment points are also labeled by solid circles.

    Fig.5.(Color online)Vortex structures above the steps.Left:time averaged vorticity magnitude versus the velocity streamlines above No.4-10 steps;right:instantaneous velocity streamlines above No.7-9 steps at 60 s,where the reattachment points are labeled by red solid circles.

    More details are shown in the air volume fraction distributions on probes P7-P9,as given in Fig.3,where the VOF case best matches the experimental data.The positions of the probes are shown in Fig.1.On each probe,the air volume fraction is monotonically increasing with the normalized distance y/Y90, where Y90 is the characteristic distance where the air volume fraction is 90%.For the mixture model,the predicted air volume fraction starts from a value much greater than the experimental measurement,because it is not able to accurately simulate the thin layer downstream of each step edge.For the Eulerian method,the air volume fraction suddenly increase from zero to a value near 1, indicating again its failure to capture the air entrainment.

    The pressure and velocity distributions on the horizontal edges of the No.7-9 steps are shown in Fig.4.We observed two extreme points on each pressure curve.The pressure is the smallest in the flow recirculation region,and reaches the maximum at the reattachment point,which is a stagnation point with zero velocity, as in Fig.4.Note that this statement is not applicable to the Eulerian+RANS method,due to its weak capability of predicting vortex structure.

    The reattachment point separates the flow recirculation region and the mixing layer downstream,as confirmed by the streamline plot in Fig.5.The VOF and mixture methods capture two or more vortexes inside the recirculation region,while the Eulerian+RANS method only predicts the primary vortex with comparatively smaller vorticity magnitude.Outside the recirculation region,thefree surface is disturbed by the interaction between the shear layer and the solid step edge.The resulting turbulent fluctuations can produce the free-surface aeration and spray generation.

    In conclusion,coupled with the LES method,both the VOF and mixture methods are able to simulate the air entrainment in the skimming flow over the stepped spillway.Compared with the mixture method,the VOF method predicts one step earlier the inception point of the air entrainment,but it is able to capable to capture the small scale water drops or layers,such that a better agreement of the predicted air volume fraction with experimental data.The Eulerian+RANS method is not very suitableforthesimulationoffreesurfaceaeration.Additionally,we observed that the maximum pressure on each horizontal step edge is positioned exactly at the reattachment point,which separates the recirculation region and the mixing layer downstream.In the future,the relationship between the critical flow depth and the reattachment length will be further investigated.

    Acknowledgments

    ThisworkwassupportedbytheGuangdongSpecial ResearchFundofPublicWelfareandCapacityBuilding (2015A020216008)and the Special Program for Applied Research onSuperComputationoftheNSFC-GuangdongJointFund(thesecond phase).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.taml.2016.03.003.

    References

    [1]M.R.Chamani,N.Rajaratnam,Characteristics of skimming flow over stepped spillways,J.Hydraulic Eng.125(1999)361-368.

    [2]J.H.Wu,B.Zhang,F.Ma,Inception point of air entrainment over stepped spillways,J.Hydrodynamics 25(2013)91-96.http://dx.doi.org/10.1016/S1001-6058(13)60342-X.

    [3]A.Eghbalzadeh,M.Javan,Comparison of mixture and VOF models for numerical simulation of air centrainment in skimming flow over stepped spillways,Procedia Engineering 28(2012)657-660.

    [4]Q.Chen,G.Dai,H.Liu,Volume of fluid model for turbulent numerical simulation of stepped spillway over flow,J.Hydraulic Eng.128(2002) 683-688.

    [5]X.Cheng,Y.Chen,L.Luo,Numerical simulation of air-water two-phase flow over stepped spillway,Sci.in China Series E:Tech.Sci.49(2006) 674-684.

    [6]Y.Gong,Large eddy simulation of dispersed multiphase flow,(Ph.D.thesis), Michigan Technological University,Michigan,USA,April 2012.

    [7]ANSYS Inc.,ANSYS Fluent Version 15.0 User's Guide.

    [8]C.Hirt,B.Nichols,Volume of fluid method for dynamics of free boundaries, J.Comput.Phys.39(1981)201-221.

    [9]J.Sanyal,S.Vasquez,S.Roy,etal.,Numericalsimulationofgas-liquiddynamics in cylindrical bubble column reactors,Chem.Eng.Sci.54(1999)5071-5083.

    [10]J.Chahed,V.Roig,L.Masbernat,Eulerian-Eulerian two-fluid model for turbulent gas-liquid bubbly flows,International J.Multiphase Flow 29(2003) 23-49.

    [11]X.Cheng,X.Chen,Progress in numerical simulation of high entrained airwater two-phase flow,in:2012 Third International Conference on Digital Manufacturing and Automation(ICDMA),Guilin,China,2012,pp.626-629.

    [12]C.Gonzalez,H.Chanson,Turbulence manipulation in aircwater flows on a stepped chute:An experimental study,Eur.J.Mech.B Fluids 27(2008) 388-C408.

    [13]G.Carosi,H.Chanson,Air-water time and length scales in skimming flows on a stepped spillway.Application to the spray characterisation,Report No.CH59/06,Division of Civil Engineering,The University of Queensland, Brisbane,Australia,2006.

    29 January 2016

    ?Corresponding author.

    E-mail addresses:gongyj3@mail.sysu.edu.cn,yejungong@126.com(Y.Gong).

    http://dx.doi.org/10.1016/j.taml.2016.03.003

    2095-0349/?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    51国产日韩欧美| 少妇熟女aⅴ在线视频| 伊人久久精品亚洲午夜| 亚洲真实伦在线观看| 日本猛色少妇xxxxx猛交久久| 国产免费视频播放在线视频 | 又黄又爽又刺激的免费视频.| 国产成人一区二区在线| 欧美三级亚洲精品| 永久免费av网站大全| av天堂中文字幕网| 成人高潮视频无遮挡免费网站| 又爽又黄a免费视频| 免费看日本二区| 亚洲国产精品国产精品| 免费看av在线观看网站| 国产视频内射| 中文字幕亚洲精品专区| 国产毛片a区久久久久| 国产乱人视频| АⅤ资源中文在线天堂| 久久久久久大精品| 亚州av有码| 国产成人91sexporn| 男人舔奶头视频| 一个人看的www免费观看视频| 国产精品国产高清国产av| 国产精品一区二区在线观看99 | 天堂√8在线中文| 国产黄片美女视频| 蜜桃久久精品国产亚洲av| 精品久久久久久久久av| 大香蕉久久网| 好男人在线观看高清免费视频| 美女xxoo啪啪120秒动态图| 欧美性猛交╳xxx乱大交人| 一级二级三级毛片免费看| 国产精品女同一区二区软件| 超碰av人人做人人爽久久| 日本午夜av视频| 特级一级黄色大片| 人妻少妇偷人精品九色| 在线免费观看的www视频| 国产av码专区亚洲av| 亚洲一区高清亚洲精品| 在线免费观看的www视频| 精品熟女少妇av免费看| 黄片无遮挡物在线观看| 七月丁香在线播放| 亚洲av免费在线观看| 精品一区二区免费观看| 自拍偷自拍亚洲精品老妇| 亚洲第一区二区三区不卡| 亚洲成人av在线免费| 99久久九九国产精品国产免费| 亚洲经典国产精华液单| 夜夜看夜夜爽夜夜摸| 午夜福利在线在线| 国产精品av视频在线免费观看| 长腿黑丝高跟| 亚洲欧美日韩卡通动漫| 国产人妻一区二区三区在| 最后的刺客免费高清国语| 日本av手机在线免费观看| 国产亚洲午夜精品一区二区久久 | 99九九线精品视频在线观看视频| 亚洲精品国产成人久久av| 国产精品久久视频播放| 一区二区三区免费毛片| 秋霞在线观看毛片| 中文字幕制服av| 美女xxoo啪啪120秒动态图| 亚洲内射少妇av| 淫秽高清视频在线观看| 97在线视频观看| 乱人视频在线观看| 亚洲av电影在线观看一区二区三区 | 99久国产av精品国产电影| 亚洲精品456在线播放app| 国产精品99久久久久久久久| 草草在线视频免费看| 久久韩国三级中文字幕| 少妇熟女欧美另类| 女的被弄到高潮叫床怎么办| av黄色大香蕉| 18禁动态无遮挡网站| 99久国产av精品| 99热这里只有是精品50| 最近最新中文字幕大全电影3| 国产日韩欧美在线精品| 99热精品在线国产| 可以在线观看毛片的网站| 99热这里只有是精品50| 看片在线看免费视频| 欧美高清成人免费视频www| 22中文网久久字幕| 免费大片18禁| 99久国产av精品| 白带黄色成豆腐渣| 18禁在线播放成人免费| 精品久久久久久成人av| 成人毛片60女人毛片免费| 亚洲熟妇中文字幕五十中出| 秋霞在线观看毛片| 一个人看视频在线观看www免费| 国产一区二区三区av在线| 国产黄色小视频在线观看| 极品教师在线视频| 黄色日韩在线| 国产精品国产三级国产av玫瑰| 国产精品嫩草影院av在线观看| 欧美97在线视频| 22中文网久久字幕| 久久精品久久精品一区二区三区| 中文在线观看免费www的网站| 日本免费在线观看一区| 高清av免费在线| 免费黄色在线免费观看| 黄色配什么色好看| 长腿黑丝高跟| 久热久热在线精品观看| 高清午夜精品一区二区三区| 国国产精品蜜臀av免费| 亚洲av不卡在线观看| 少妇高潮的动态图| 亚洲av免费在线观看| 成人性生交大片免费视频hd| 日韩国内少妇激情av| 26uuu在线亚洲综合色| 岛国在线免费视频观看| 国产亚洲一区二区精品| 人人妻人人看人人澡| 色网站视频免费| 国产一区二区三区av在线| 欧美一区二区国产精品久久精品| 亚洲五月天丁香| 1024手机看黄色片| 亚洲精品乱码久久久v下载方式| 在线播放无遮挡| 亚洲av中文av极速乱| 男女国产视频网站| 国产v大片淫在线免费观看| 精品酒店卫生间| 男人舔女人下体高潮全视频| 午夜免费激情av| 亚洲精品一区蜜桃| 国产又色又爽无遮挡免| 久久精品国产亚洲av涩爱| 少妇熟女aⅴ在线视频| 伊人久久精品亚洲午夜| www.av在线官网国产| 精品不卡国产一区二区三区| 中文天堂在线官网| 少妇高潮的动态图| 中文亚洲av片在线观看爽| 日韩国内少妇激情av| 超碰av人人做人人爽久久| 亚洲av.av天堂| av免费观看日本| 中文字幕av成人在线电影| 色网站视频免费| 精品国产一区二区三区久久久樱花 | 久久综合国产亚洲精品| 中文字幕熟女人妻在线| 卡戴珊不雅视频在线播放| 国内精品宾馆在线| 亚洲精品456在线播放app| 亚洲va在线va天堂va国产| 成人亚洲欧美一区二区av| 久久久久久久久久久免费av| 欧美区成人在线视频| 亚洲图色成人| 麻豆av噜噜一区二区三区| 国产高清三级在线| 白带黄色成豆腐渣| 国产极品天堂在线| 国产成人91sexporn| 成人漫画全彩无遮挡| 日本一二三区视频观看| 99久国产av精品| 天堂av国产一区二区熟女人妻| 黄色日韩在线| 日本与韩国留学比较| 国国产精品蜜臀av免费| 在线免费十八禁| 成人综合一区亚洲| 国产极品精品免费视频能看的| 久久久久久伊人网av| 久久午夜福利片| 中文字幕制服av| 99热这里只有是精品50| 美女内射精品一级片tv| 大香蕉97超碰在线| 欧美色视频一区免费| 成人三级黄色视频| 黑人高潮一二区| 亚洲最大成人手机在线| 日韩视频在线欧美| 在线a可以看的网站| av免费观看日本| 成人特级av手机在线观看| 99在线视频只有这里精品首页| 中文字幕亚洲精品专区| 伦理电影大哥的女人| 久久精品91蜜桃| 美女大奶头视频| 日韩精品有码人妻一区| 欧美日韩国产亚洲二区| 国产午夜精品论理片| 久久久亚洲精品成人影院| 成人国产麻豆网| 日本猛色少妇xxxxx猛交久久| 床上黄色一级片| 亚洲精品影视一区二区三区av| 特大巨黑吊av在线直播| 少妇熟女aⅴ在线视频| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频 | 午夜a级毛片| 91久久精品国产一区二区成人| 中文字幕免费在线视频6| 欧美不卡视频在线免费观看| 日韩精品有码人妻一区| 国产精品久久久久久av不卡| 99久久人妻综合| 在线a可以看的网站| 色吧在线观看| 亚洲欧美清纯卡通| 亚洲人成网站高清观看| 我的老师免费观看完整版| 亚洲一级一片aⅴ在线观看| 禁无遮挡网站| 亚洲三级黄色毛片| 精品一区二区三区人妻视频| 亚洲av成人av| 亚洲欧美中文字幕日韩二区| 亚洲av中文字字幕乱码综合| 又粗又爽又猛毛片免费看| 男女国产视频网站| 日本黄色片子视频| 熟妇人妻久久中文字幕3abv| 亚洲成人中文字幕在线播放| 国产高清有码在线观看视频| 久久久久久久国产电影| .国产精品久久| 99久久中文字幕三级久久日本| 日本一二三区视频观看| 联通29元200g的流量卡| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 国产视频内射| 久久久久国产网址| 亚洲伊人久久精品综合 | 国产色婷婷99| 中文字幕av成人在线电影| av在线天堂中文字幕| 国产单亲对白刺激| 欧美不卡视频在线免费观看| 国产成人91sexporn| 亚洲av免费高清在线观看| 高清毛片免费看| 天堂中文最新版在线下载 | h日本视频在线播放| 久久久久久久久中文| 特级一级黄色大片| 久久久久久久久久久免费av| 精品国产露脸久久av麻豆 | 国产精品三级大全| 久久这里只有精品中国| 看非洲黑人一级黄片| 日韩精品有码人妻一区| 色噜噜av男人的天堂激情| 精品一区二区免费观看| av福利片在线观看| 亚洲不卡免费看| 国产一级毛片在线| 真实男女啪啪啪动态图| 亚洲三级黄色毛片| 99热这里只有是精品50| 国产色婷婷99| 国产探花在线观看一区二区| 成人欧美大片| 伦精品一区二区三区| 一级爰片在线观看| 欧美激情在线99| 大香蕉97超碰在线| 夜夜爽夜夜爽视频| 日日啪夜夜撸| 99国产精品一区二区蜜桃av| videos熟女内射| 国产一级毛片七仙女欲春2| 99久久中文字幕三级久久日本| 视频中文字幕在线观看| 成人毛片a级毛片在线播放| 亚洲av福利一区| av女优亚洲男人天堂| 听说在线观看完整版免费高清| 午夜老司机福利剧场| 一级爰片在线观看| 婷婷色麻豆天堂久久 | 国产在线一区二区三区精 | 男女边吃奶边做爰视频| 久久久国产成人精品二区| 亚洲av二区三区四区| 国产一区亚洲一区在线观看| 欧美xxxx性猛交bbbb| 伊人久久精品亚洲午夜| 日日撸夜夜添| 狂野欧美白嫩少妇大欣赏| 一个人看视频在线观看www免费| 色综合亚洲欧美另类图片| 亚洲最大成人手机在线| 亚洲精华国产精华液的使用体验| 色噜噜av男人的天堂激情| 春色校园在线视频观看| 少妇的逼水好多| eeuss影院久久| 国产精华一区二区三区| 99久久人妻综合| 午夜福利视频1000在线观看| 高清在线视频一区二区三区 | 一卡2卡三卡四卡精品乱码亚洲| 国产成人a区在线观看| 波野结衣二区三区在线| 亚洲国产精品专区欧美| 超碰av人人做人人爽久久| 一区二区三区乱码不卡18| 日韩视频在线欧美| 日日啪夜夜撸| 综合色av麻豆| 韩国av在线不卡| 亚洲欧美精品综合久久99| 色视频www国产| 亚洲av二区三区四区| 九色成人免费人妻av| 国产一级毛片在线| 亚洲第一区二区三区不卡| 成人漫画全彩无遮挡| 99久久人妻综合| 天天躁夜夜躁狠狠久久av| av视频在线观看入口| 欧美一级a爱片免费观看看| 黄片无遮挡物在线观看| av国产久精品久网站免费入址| 国产精品野战在线观看| 国产一区二区在线观看日韩| 99久久精品国产国产毛片| 在线播放无遮挡| 免费av毛片视频| 狂野欧美白嫩少妇大欣赏| 大香蕉久久网| 国产一区二区在线av高清观看| 免费看日本二区| 国内精品美女久久久久久| 综合色丁香网| 国产精品麻豆人妻色哟哟久久 | 寂寞人妻少妇视频99o| 视频中文字幕在线观看| 久久久精品大字幕| 亚洲成人中文字幕在线播放| 国产在视频线精品| 亚洲人成网站在线观看播放| 亚洲av中文av极速乱| 久久久久久国产a免费观看| 男人和女人高潮做爰伦理| 久久久久久久久久久丰满| www.av在线官网国产| 日本色播在线视频| 亚洲av一区综合| 久久99热6这里只有精品| 欧美高清成人免费视频www| 在线观看av片永久免费下载| 国产精品一区二区三区四区久久| 国语对白做爰xxxⅹ性视频网站| 在线播放国产精品三级| av天堂中文字幕网| 亚洲av男天堂| 一级毛片我不卡| 日韩欧美国产在线观看| 小说图片视频综合网站| 久久久久久伊人网av| 国产在视频线精品| 亚洲人成网站高清观看| 国内精品美女久久久久久| 欧美精品国产亚洲| 国产淫片久久久久久久久| 99久久九九国产精品国产免费| 91久久精品国产一区二区三区| 国产亚洲av片在线观看秒播厂 | 日本免费一区二区三区高清不卡| 嫩草影院入口| 麻豆成人av视频| 国产黄a三级三级三级人| 国产精品永久免费网站| 国产亚洲5aaaaa淫片| 国产亚洲精品久久久com| 国产精品国产高清国产av| 综合色av麻豆| 国产成人a区在线观看| 久久精品久久久久久噜噜老黄 | 只有这里有精品99| 日韩亚洲欧美综合| 黄色配什么色好看| 久久久久久久久大av| 五月伊人婷婷丁香| 18禁裸乳无遮挡免费网站照片| 人人妻人人看人人澡| 日韩制服骚丝袜av| 久久久久性生活片| 国产成人一区二区在线| 亚洲怡红院男人天堂| 国产亚洲精品久久久com| 成人高潮视频无遮挡免费网站| 国内揄拍国产精品人妻在线| 51国产日韩欧美| 精品酒店卫生间| 我的女老师完整版在线观看| 日韩欧美三级三区| 国产淫片久久久久久久久| 国内精品一区二区在线观看| 精品午夜福利在线看| 中文字幕制服av| 国产午夜福利久久久久久| av在线天堂中文字幕| videos熟女内射| 深夜a级毛片| 国产精品熟女久久久久浪| av在线亚洲专区| 99热网站在线观看| 桃色一区二区三区在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 伊人久久精品亚洲午夜| 久久久久久久久大av| 干丝袜人妻中文字幕| 成人毛片60女人毛片免费| 一区二区三区乱码不卡18| 少妇高潮的动态图| 日本免费a在线| 成人午夜精彩视频在线观看| 在线免费观看的www视频| 国产久久久一区二区三区| 美女大奶头视频| 青春草国产在线视频| 久久久久久九九精品二区国产| 午夜免费激情av| 人人妻人人澡人人爽人人夜夜 | 国产三级在线视频| 日韩 亚洲 欧美在线| 亚洲av日韩在线播放| 久久久久九九精品影院| 三级经典国产精品| 日本爱情动作片www.在线观看| 国产精品不卡视频一区二区| 成年女人永久免费观看视频| 真实男女啪啪啪动态图| 草草在线视频免费看| 老司机福利观看| 亚洲欧美精品专区久久| 秋霞在线观看毛片| 精品人妻偷拍中文字幕| 1024手机看黄色片| 免费观看在线日韩| 国语对白做爰xxxⅹ性视频网站| 三级经典国产精品| 久久6这里有精品| 欧美+日韩+精品| 听说在线观看完整版免费高清| 亚洲av中文字字幕乱码综合| 一边亲一边摸免费视频| 欧美潮喷喷水| 国产精品美女特级片免费视频播放器| 亚洲国产日韩欧美精品在线观看| 欧美精品一区二区大全| 日本免费a在线| 午夜久久久久精精品| 久久久久久久久中文| 免费电影在线观看免费观看| 99久国产av精品| 蜜臀久久99精品久久宅男| 亚洲国产精品成人久久小说| 成人亚洲欧美一区二区av| 亚洲aⅴ乱码一区二区在线播放| 亚洲无线观看免费| 日韩大片免费观看网站 | 中文字幕免费在线视频6| 亚洲真实伦在线观看| 大香蕉97超碰在线| 国产精品一区二区三区四区免费观看| 18禁在线播放成人免费| 赤兔流量卡办理| 免费av毛片视频| 中文字幕亚洲精品专区| 国产免费男女视频| 2021天堂中文幕一二区在线观| 1024手机看黄色片| 你懂的网址亚洲精品在线观看 | 如何舔出高潮| 亚洲av中文av极速乱| 国产精品嫩草影院av在线观看| 白带黄色成豆腐渣| 一夜夜www| 国产午夜精品论理片| 黑人高潮一二区| 偷拍熟女少妇极品色| 欧美97在线视频| 免费不卡的大黄色大毛片视频在线观看 | 蜜臀久久99精品久久宅男| 午夜免费激情av| 国产黄片美女视频| 国产一区亚洲一区在线观看| 天堂影院成人在线观看| 日本wwww免费看| 色视频www国产| 婷婷色麻豆天堂久久 | 欧美色视频一区免费| 免费av观看视频| 久久精品综合一区二区三区| 中文字幕av在线有码专区| 一边亲一边摸免费视频| 国产一区有黄有色的免费视频 | av在线蜜桃| 午夜福利视频1000在线观看| 国产精品.久久久| 日韩av在线大香蕉| 免费看光身美女| 偷拍熟女少妇极品色| kizo精华| .国产精品久久| 国产视频首页在线观看| 可以在线观看毛片的网站| 国产男人的电影天堂91| 国产乱人偷精品视频| 亚洲欧洲国产日韩| 九九爱精品视频在线观看| 亚洲成人中文字幕在线播放| 麻豆精品久久久久久蜜桃| 午夜日本视频在线| 久久久国产成人免费| 亚洲成av人片在线播放无| 身体一侧抽搐| 亚洲最大成人手机在线| 1000部很黄的大片| 亚洲人与动物交配视频| 免费看a级黄色片| 男人狂女人下面高潮的视频| 男人舔女人下体高潮全视频| 99久久成人亚洲精品观看| 黑人高潮一二区| av专区在线播放| 亚洲av电影在线观看一区二区三区 | 日韩一本色道免费dvd| 久久99热6这里只有精品| 亚洲精品成人久久久久久| 别揉我奶头 嗯啊视频| 三级国产精品欧美在线观看| av女优亚洲男人天堂| 国产极品天堂在线| 晚上一个人看的免费电影| 国产伦精品一区二区三区视频9| 国产又黄又爽又无遮挡在线| 久久精品影院6| 国产又色又爽无遮挡免| 日韩成人av中文字幕在线观看| 免费无遮挡裸体视频| 春色校园在线视频观看| 日本免费一区二区三区高清不卡| 国产乱来视频区| eeuss影院久久| 国产亚洲av片在线观看秒播厂 | 亚洲av成人精品一二三区| 久久人妻av系列| 97在线视频观看| 久久精品国产亚洲av涩爱| 亚洲婷婷狠狠爱综合网| 亚洲av日韩在线播放| 麻豆乱淫一区二区| 欧美bdsm另类| 真实男女啪啪啪动态图| 欧美一区二区国产精品久久精品| 日日摸夜夜添夜夜添av毛片| 日日摸夜夜添夜夜爱| 人体艺术视频欧美日本| 1024手机看黄色片| 波多野结衣高清无吗| 久久这里只有精品中国| 一卡2卡三卡四卡精品乱码亚洲| 看非洲黑人一级黄片| 国产精品永久免费网站| 精品久久久久久电影网 | 久久热精品热| 韩国av在线不卡| 国产精品福利在线免费观看| 超碰97精品在线观看| 日本免费一区二区三区高清不卡| 七月丁香在线播放| 99热这里只有是精品50| 少妇的逼好多水| 国产精品人妻久久久久久| 日本av手机在线免费观看| 看十八女毛片水多多多| 亚洲精品国产av成人精品| 日本免费a在线| 欧美不卡视频在线免费观看| 午夜福利在线观看吧| 国产一级毛片七仙女欲春2| 欧美色视频一区免费| 日本免费一区二区三区高清不卡| 建设人人有责人人尽责人人享有的 | 91aial.com中文字幕在线观看| 少妇人妻精品综合一区二区| 国产三级在线视频| 亚洲av电影不卡..在线观看| 99久久精品热视频| 亚洲在线自拍视频| 日本猛色少妇xxxxx猛交久久|