• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the stress-strain states of cellular materials under high loading rates

    2016-09-14 08:16:41YunyunDingShilongWngZhijunZhengLimingYngJilinYuCASKeyLortoryofMechniclBehviorndDesignofMterilsUniversityofSciencendTechnologyofChinHefei230026ChinMechnicsndMterilsScienceReserchCenterNingoUniversityNingo315211Chin

    Yunyun Ding,Shilong Wng,Zhijun Zheng,?,Liming Yng,Jilin YuCAS Key Lortory of Mechnicl Behvior nd Design of Mterils,University of Science nd Technology of Chin,Hefei 230026,ChinMechnics nd Mterils Science Reserch Center,Ningo University,Ningo 315211,Chin

    ?

    Letter

    On the stress-strain states of cellular materials under high loading rates

    Yuanyuan Dinga,Shilong Wanga,Zhijun Zhenga,?,Liming Yangb,Jilin Yua
    aCAS Key Laboratory of Mechanical Behavior and Design of Materials,University of Science and Technology of China,Hefei 230026,China
    bMechanics and Materials Science Research Center,Ningbo University,Ningbo 315211,China

    h i g h l i g h t s

    ?Dynamic impact of cellular materials is analyzed with wave propagation technique.

    ?Time history of particle velocity and stress-strain history curves are obtained.

    ?The dynamic stress-strain states obtained verify the validity of the dynamic-rigid-plastic hardening(D-R-PH)model.

    a r t i c l ei n f o

    Article history:

    Accepted 3 May 2016

    Available online 10 May 2016

    Cellular materials

    Stress-strain states

    Lagrangian analysis method

    Shock wave

    A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique,i.e.the Lagrangian analysis method,of which the main advantage is that no pre-assumed constitutive relationshipisrequired.Timehistoriesofparticlevelocity,localstrain,andstressprofilesarecalculatedto present the local stress-strain history curves,from which the dynamic stress-strain states are obtained. The present results reveal that the dynamic-rigid-plastic hardening(D-R-PH)material model introduced in a previous study of our group is in good agreement with the dynamic stress-strain states under high loading rates obtained by the Lagrangian analysis method.It directly reflects the effectiveness and feasibility of the D-R-PH material model for the cellular materials under high loading rates.

    ?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/ licenses/by/4.0/).

    Cellular materials have been extensively used in crashworthiness application due to their considerable capacity of energy absorption[1-4].The stress-strain relation of cellular materials under low-velocity compression shows three distinct stages of deformation,namely elastic,long plateau,and densification stages. The dynamic behavior of cellular materials under high-velocity loading is dominated by inertia effect,which leads to the deformation localization and stress enhancement[5].The dynamic features can be well explained by the 1D shock wave models[5-8], in which the rigid-perfectly plastic-locking(R-PP-L)shock wave model involving only two material parameters(locking strainεLand plateau stressσpl)is the most popular one.However,the RPP-L shock wave model can only characterize the compressive behavior of cellular materials in a first-order approximation[9,10]. Recently,Zheng et al.[11]proposed a rigid-plastic hardening (R-PH)material model(an R-PH idealization)and a dynamicrigid-plastic hardening(D-R-PH)material model(a D-R-PH idealization)to describe the stress-strain behaviors of cellular materialsunderlow-velocitycompressionandunderhigh-velocity impact,respectively,and revealed different deformation mechanisms to explain the loading-rate effect of cellular materials.The stress-strain relation of the D-R-PH idealization[11]is written as

    whereσ0dis the dynamic initial crushing stress and D the strain hardening parameter.They found that the stress-strain states of cellular materials are essentially loading-rate dependent[11].In this study,we aim to present further evidence on the loading-rate effect of cellular materials.

    In the shock wave models for cellular materials[5-11],the shock wave assumption is an idealizedassumption,which is appropriateonlyforthecasewitharelativelyhighimpactvelocity. The wave propagation technique may provide an opportunity to investigate the strain-stress behavior of cellular materials without any pre-assumptions.The Lagrangian analysis method[12-14] gets the favor of most researchers because no constitutive relation is required.However,the boundary/initial conditions arerequired for the traditional Lagrangian analysis method as it involves integral operations.To overcome this difficulty,a method combining the Hopkinson pressure bar technique and Lagrangian analysis was developed by Wang et al.[15],from which the physical quantities(particle velocity,stress,etc.)at the boundary of the specimen can be obtained simultaneously.This wave propagation technique,namely the''1sv+nv''Lagrangian method, contains a dual-information of stress and velocity at one position often located at the boundary of specimen and n particle velocity profiles.Due to the big difference in wave impedance between the elastic bar and cellular materials,another experimental technique (Taylor-Hopkinson bar with knowing initial conditions)[16]was carriedouttoinvestigatethedynamicresponseofaluminumfoam. Unfortunately,the experimental data of cellular materials under high impact velocity,sayv>200 m/s,are hardly obtained and the other limitations like the digital image correlation accuracy also restrictitsapplication.Tomakeupthedeficienciesinexperimental study,the mesoscopic finite element(FE)model is employed in this paper and the Lagrangian analysis is applied to study the stress-strain behavior of cellular materials under high-velocity impact.

    In 1D stress wave propagation theory[17],the mass and momentum conservation conditions in Lagrangian coordinate are expressed as and

    respectively,wherev,ε,andσare particle velocity,strain,and stress,respectively;X is Lagrangian coordinate;t is time;ρ0is the initial density of cellular specimen.Here,the stress and strain are defined as positive for compressive case,and negative for tensile case.Eqs.(2)and(3)are the basic equations of the Lagrangian analysis method,from which the stress and strain relation can be built with the aid of particle velocity field.Since the variables are connected by their first-order partial derivatives,the integral operations are requisite and the boundary/initial conditions are required to determine the integral constants.Supposing detailed information of particle velocityv(Xi,tj)at Lagrangian coordinates Xi(i=1,2,...,n)and time tj(j=1,2,...)has been measured, and then the strain and stress fields can be determined from Eqs. (2)and(3),written in the difference form

    where1X is the grid size and1t the time step.It is worth noticing that the partial derivatives(?σ/?X and?v/?X)may be inaccurate whenthedistanceoftwoadjacentLagrangianpositionsisnotsmall enough,as for most experimental cases.Grady[14]introduced the path-line method to improve the computational accuracy of Lagrangian analysis,in which the first order derivatives containing variableX ischangedtothepartialderivativescontainingvariablet by the total differentiation along the path-line.If there is sufficient data obtained from a test,the path-line method is not necessary. The FE simulations can offer a detailed particle velocity field and the boundary stress.

    The mesoscopic FE model[11]is employed to perform the quasi-staticcompressionanddynamicimpactofcellularmaterials. Closed-cell foam models are generated by employing the 3D Voronoi technique,see Ref.[11]for details.The cell-wall material of the Voronoi structure is assumed to be elastic,perfectly plastic with densityρs=2770 kg/m3,Young's modulus E=69 GPa, Poisson's ratioν=0.3,and yield stressσys=170 MPa.The relative density of the Voronoi structure used isρ0/ρs=0.1 and cell walls have a uniform thickness.The cellular specimen used in this study is constructed in a volume of 30X20X 20 mm3with 600 nuclei,and the average cell size d≈3.34 mm. The ABAQUS/Explicit software is used to perform the numerical simulations.

    Fig.1.The Taylor impact test scenario and deformation patterns.

    A Taylor impact test scenario of cellular materials is performed, as schematically represented in Fig.1.In the virtual test,the specimen travels at an initial velocityv0=250 m/s and impacts a fixed rigid target.Some deformation patterns are presented in Fig.1.The velocity profiles at all element nodes can be extracted from the FE simulations,and the stress,strain,and velocity profiles at free end can also be acquired simultaneously.Supposing the X coordinateisestablishedatthefreeendandtheareaofspecimenis considered to be unchanged throughout the test,then the dynamic strain-stress states can be investigated by using the''1sv+nv'' Lagrangian analysis method.

    In considering the fact that the Lagrangian analysis method is based on the continuum mechanics,an average particle velocity field is used to substitute for the local particle velocity.For example,the average velocity profile at the Lagrangian position X is calculated by averaging all nodal velocities along the loading direction from X-d/2 to X+d/2 in the cellular specimen.The particle velocity profilesv(Xi,t)are shown in Fig.2(a).A feature of rapid velocity change can be observed,which is a result of the propagation of plastic stress waves.In the specimen,unloading waves are continually reflected back from the free end,and thus the plastic wave becomes weaken and finally vanished,which can be illustrated by the disappearance of rapid velocity change at position X<8 mm.

    Thus,according to the''1sv+nv''Lagrangian analysis method mentioned above,the dynamic strain and stress profiles can be directly obtained by the particle velocity field combining with ε(X,0)=0 andσ(0,t)=0.As shown in Fig.2(b),the strain at a Lagrangian position X≥8 mm increases rapidly at first and then maintains a specific strain.This local specific strain decreases with the position away from the impact end and reflects the degree of local densification induced by the action of the plastic wave in the specimen.However,for the position of X<8 mm,the strain is almost equal to zero because of the disappearance of plastic wave in those positions there.

    From Eq.(5),the obtained stress profiles,as shown in Fig.2(c), can be divided into three stages,namely the elastic,plastic,and unloading stages.As can be seen,in the elastic stage,the stress profile increases dramatically from zero to a dynamic crushing stress.Then,with the action of plastic wave,the stress gradually increases further to a densification stress,and afterwards the stress begins to decrease due to the action of the unloading wave.Moreover,the densification stress decreases with the distance away from the impact boundary,which also reflects the process that the plastic wave is gradually weakened by the elastic unloading wave.In Ref.[11],only the stress at the impact end was obtained.Althoughthelocalstraindistributioncanbecalculatedin Ref.[11],the absence of the local stress distribution does not bring a full understanding of the local stress-strain history of a position in the specimen.

    By eliminating the time from the stress and strain profiles,a local dynamic stress-strain history curve can be acquired at each Lagrangian position,as shown in Fig.3 with dash lines.In these localstress-strainhistorycurves,threedistinctstages,i.e.,theelastic,plastic,and unloading stages,can be observed.The elastic and unloading stages are mainly controlled by the Young's modulus of cellularmaterials,andthesetwostagesareapproximatelyinparallel.For the Lagrangian positions X≥14 mm,at which the loading rate is quite high,the stress in plastic stage almost increases linearly from the dynamic crushing stress to the densification stress, buttheplasticdeformationoccursalongacrookedlineundermoderate loading rates(corresponding to 8 mm

    Under high loading rates,the deformation pattern of cellular materials consists of lay-wise collapse bands,which is similar with the phenomenon of structural shock wave[18].It suggests the dynamic response of cellular materials can be characterized by the shock wave models under high loading rates.The D-RPH idealization with two material parameters,see Eq.(1),can welldepictthedynamicconstitutivebehaviorofcellularmaterials. As reported in Ref.[11],the material parameters of the D-R-PH idealization are obtained based on the local strain field[19,20], boundary stress and conservation conditions(=7.7 MPa and D=0.22 MPa).

    Fig.2.Time histories of(a)particle velocity,(b)local strain,and(c)local stress of the cellular material under initial impact velocity of 250 m/s.

    Fig.3.The local stress-strain history profiles and the dynamic stress-strain states for the cellular material.

    Three stress-strain curves for the cellular material considered are presented in Fig.4:the dash line is obtained from the quasistatic compression simulation,the solid line is the D-R-PH model presented by Zheng et al.[11],and the points with error bars are the dynamic stress-strain states obtained by Lagrangian analysis

    methodunderhighloadingrates.TheD-R-PHmodelcoincideswell withthestress-strainstatesobtainedbyLagrangianmethodunder high loading rates.It reveals the effectiveness and reliability of the D-R-PH model for cellular materials under high loading rates.The densification strain under a high loading rate is larger than quasistatic one and the dynamic initial crushing stress is also higher than that of quasi-static.These phenomena are connected with the different deformation mechanisms under different loading rates[11].Applying the Lagrangian analysis method,we present much direct evidence and confirm the findings of Zheng et al.[11].It should be noted that the Lagrangian analysis method does not involve the assumption of deformation patterns.Thus, the Lagrangian analysis method may be applied to explore the rate-sensitivity mechanism of cellular materials under moderate loading rates.

    In the present study,we carried out a virtual Taylor test combining with the Lagrangian analysis method to explore the dynamic behavior of cellular materials.With the aid of freeend boundary condition,a serial of local stress-strain history curves can be determined from the particle velocity field by the Lagrangian analysis method.Furthermore,a curve of dynamic stress-strain states is obtained from the critical points just before the unloading stage of local stress-strain history curves.Under high loading rates,the prediction of D-R-PH model[11]coincides well with the dynamic stress-strain states obtained by applying the Lagrangian analysis method.Thus,the effectiveness and reliability of the D-R-PH model for cellular materials under high loading rates can be further confirmed.

    Fig.4.Comparison of the quasi-static stress-strain curve,dynamic stress-strain states,and the D-R-PH model for the cellular material.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11372308 and 11372307)and the Fundamental Research Funds for the Central Universities(WK2480000001).

    References

    [1]A.G.Hassen,L.Enstock,M.Langseth,Close-range blast effects of aluminum foam panels,Int.J.Impact Eng.27(2002)593-618.

    [2]X.K.Wang,Z.J.Zheng,J.L.Yu,Crashworthiness design of density-graded cellular metals,Theor.Appl.Mech.Lett.3(2013)031001.

    [3]S.F.Liao,Z.J.Zheng,J.L.Yu,et al.,A design guide of double-layer cellular claddings for blast alleviation,Int.J.Aerosp.Lightweight Struct.3(2013) 109-133.

    [4]S.L.Lopatnikov,B.A.Gama,M.J.Haque,et al.,Dynamic of metal foam deformation during taylor cylinder-hopkinson bar impact experiment, Compos.Struct.61(2003)61-71.

    [5]S.R.Reid,C.Peng,Dynamic uniaxial crushing of wood,Int.J.Impact Eng.19 (1997)531-570.

    [6]Z.J.Zheng,Y.D.Liu,J.L.Yu,et al.,Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes,Int.J. Impact Eng.42(2012)66-79.

    [7]L.L.Wang,L.M.Yang,Y.Y.Ding,On the energy conservation and critical velocities for the propagation of a steady-shock wave in a bar of cellular material,Acta Mech.Sin.29(2013)420-428.

    [8]Z.J.Zheng,J.L.Yu,C.F.Wang,et al.,Dynamic crushing of cellular materials:A unified framework of plastic shock wave model,Int.J.Impact Eng.53(2013) 29-43.

    [9]J.J.Harrigan,S.R.Reid,C.Peng,Inertia effects in impact energy absorbing materials and structures,Int.J.Impact Eng.22(1999)955-979.

    [10]P.J.Tan,S.R.Reid,J.J.Harrigan,et al.,Dynamic compressive strength properties of aluminum foams.Part II-'shock'theory and comparison with experimental data and numerical models,J.Mech.Phys.Solids 53(2005)2206-2230.

    [11]Z.J.Zheng,C.F.Wang,J.L.Yu,etal.,Dynamicstress-strainstatesformetalfoams using a 3D cellular model,J.Mech.Phys.Solids 72(2014)93-114.

    [12]R.Fowles,R.F.Williams,Plane stress wave propagation in solids,J.Appl.Phys. 41(1970)360-363.

    [13]M.Cowperthwaite,R.F.Williams,Determination of constitutive relationships with multiple gauges in non-divergent waves,J.Appl.Phys.42(1971) 456-462.

    [14]D.E.Grady,Experimental analysis of spherical wave propagation,J.Geophys. Res.78(1973)1299-1307.

    [15]L.L.Wang,J.Zhu,H.W.Lai,A new method combining lagrangian analysis with hpb technique,Strain 47(2011)173-182.

    [16]L.L.Wang,Y.Y.Ding,L.M.Yang,Experimental investigation on dynamic constitutive behavior of aluminum foams by new inverse methods from wave propagation measurements,Int.J.Impact Eng.62(2013)48-59.

    [17]L.L.Wang,Foundations of Stress Waves,second ed.,National Defense Industry Press,Beijing,2005.

    [18]T.Y.Reddy,S.R.Reid,R.Barr,Experimental investigation of inertia effects in one-dimensional metal ring systems subjected to end impact-II.Free-ended systems,Int.J.Impact Eng.11(1991)463-480.

    [19]S.F.Liao,Z.J.Zheng,J.L.Yu,On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials,Int.J. Solids Struct.51(2014)478-490.

    [20]S.F.Liao,Z.J.Zheng,J.L.Yu,Dynamic crushing of 2D cellular structures:Local strain field and shock wave velocity,Int.J.Impact Eng.57(2013)7-16.

    25 March 2016

    http://dx.doi.org/10.1016/j.taml.2016.05.001

    2095-0349/?2016 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    ?Corresponding author.

    E-mail address:zjzheng@ustc.edu.cn(Z.Zheng).

    *This article belongs to the Solid Mechanics

    12—13女人毛片做爰片一| 午夜老司机福利剧场| 九九久久精品国产亚洲av麻豆| 亚洲 国产 在线| 永久网站在线| 国产精品一区二区性色av| 国产精品一区二区三区四区免费观看 | 91在线精品国自产拍蜜月| 久久精品综合一区二区三区| 狠狠狠狠99中文字幕| 精品欧美国产一区二区三| 91麻豆av在线| 午夜日韩欧美国产| 97碰自拍视频| 十八禁网站免费在线| 亚洲五月天丁香| 久久久国产成人精品二区| av专区在线播放| 婷婷精品国产亚洲av| 波多野结衣高清无吗| 丰满人妻一区二区三区视频av| 99国产综合亚洲精品| 亚洲国产色片| 国产av麻豆久久久久久久| 赤兔流量卡办理| 毛片一级片免费看久久久久 | 亚洲成人精品中文字幕电影| 欧美日韩瑟瑟在线播放| 亚洲成人中文字幕在线播放| 身体一侧抽搐| 身体一侧抽搐| 欧美一区二区精品小视频在线| 三级国产精品欧美在线观看| 日韩欧美 国产精品| 三级国产精品欧美在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲中文字幕一区二区三区有码在线看| 中文字幕人成人乱码亚洲影| 毛片一级片免费看久久久久 | 亚洲精品乱码久久久v下载方式| 搡老熟女国产l中国老女人| 成人av一区二区三区在线看| 国产一区二区亚洲精品在线观看| 欧美xxxx黑人xx丫x性爽| 日本一二三区视频观看| 国产大屁股一区二区在线视频| 欧美激情久久久久久爽电影| 亚洲一区二区三区色噜噜| 国产精品久久久久久亚洲av鲁大| 一区二区三区高清视频在线| 午夜精品一区二区三区免费看| 免费在线观看亚洲国产| 免费在线观看成人毛片| 日韩有码中文字幕| 一个人观看的视频www高清免费观看| 国内毛片毛片毛片毛片毛片| 美女黄网站色视频| 一二三四社区在线视频社区8| 床上黄色一级片| 成年女人永久免费观看视频| 国产精品日韩av在线免费观看| 欧美性猛交╳xxx乱大交人| 一级毛片久久久久久久久女| 亚洲黑人精品在线| 最后的刺客免费高清国语| 十八禁人妻一区二区| 欧美乱妇无乱码| 亚洲天堂国产精品一区在线| 亚洲中文字幕一区二区三区有码在线看| 人人妻人人澡欧美一区二区| 少妇人妻一区二区三区视频| 精品久久久久久,| 亚洲自拍偷在线| 少妇被粗大猛烈的视频| 久久99热这里只有精品18| 亚洲av成人av| 国产av不卡久久| 十八禁网站免费在线| 九九热线精品视视频播放| 国产av不卡久久| 美女xxoo啪啪120秒动态图 | 99久久精品一区二区三区| 在线播放无遮挡| 精品福利观看| 国产一区二区在线观看日韩| 天美传媒精品一区二区| 51国产日韩欧美| 天堂av国产一区二区熟女人妻| 国产高清视频在线播放一区| 精品午夜福利在线看| 一本久久中文字幕| 日日夜夜操网爽| 麻豆久久精品国产亚洲av| 亚洲精品色激情综合| 免费观看的影片在线观看| 中文在线观看免费www的网站| av福利片在线观看| 88av欧美| 99久久精品国产亚洲精品| 18+在线观看网站| 日韩欧美国产一区二区入口| 国产高清有码在线观看视频| 日本在线视频免费播放| 麻豆久久精品国产亚洲av| 九色成人免费人妻av| 别揉我奶头~嗯~啊~动态视频| 日韩欧美在线二视频| 久久草成人影院| 精品一区二区三区视频在线| 国产高清有码在线观看视频| 亚洲五月天丁香| 色播亚洲综合网| 18禁裸乳无遮挡免费网站照片| 桃红色精品国产亚洲av| 亚洲av免费高清在线观看| 国内精品久久久久久久电影| 色综合欧美亚洲国产小说| 久久久久精品国产欧美久久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美激情久久久久久爽电影| 亚洲中文字幕一区二区三区有码在线看| 97碰自拍视频| 日日干狠狠操夜夜爽| xxxwww97欧美| 怎么达到女性高潮| 免费av观看视频| 在线播放无遮挡| 亚洲精品一卡2卡三卡4卡5卡| 麻豆久久精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 少妇被粗大猛烈的视频| 亚洲av成人av| 亚洲av第一区精品v没综合| 久久天躁狠狠躁夜夜2o2o| 亚洲国产色片| 成年免费大片在线观看| 亚洲专区国产一区二区| 亚洲成人久久性| 一a级毛片在线观看| 亚洲av熟女| 亚洲美女搞黄在线观看 | 中文字幕高清在线视频| 97人妻精品一区二区三区麻豆| 日日干狠狠操夜夜爽| 精品日产1卡2卡| 波多野结衣巨乳人妻| 在线国产一区二区在线| 9191精品国产免费久久| 久久久久国产精品人妻aⅴ院| 在线观看免费视频日本深夜| 国产免费一级a男人的天堂| 免费看a级黄色片| 久久精品夜夜夜夜夜久久蜜豆| 香蕉av资源在线| 欧美性猛交╳xxx乱大交人| 久久久久国内视频| aaaaa片日本免费| 免费人成在线观看视频色| 国产三级中文精品| 久久午夜福利片| 婷婷丁香在线五月| 伊人久久精品亚洲午夜| 精品福利观看| 老熟妇乱子伦视频在线观看| 色哟哟哟哟哟哟| 日韩精品青青久久久久久| 两个人的视频大全免费| 亚洲av五月六月丁香网| 两性午夜刺激爽爽歪歪视频在线观看| 三级国产精品欧美在线观看| 国产真实伦视频高清在线观看 | 男人舔女人下体高潮全视频| 亚洲自偷自拍三级| 国产伦人伦偷精品视频| 亚洲成av人片免费观看| 一级av片app| av专区在线播放| 一个人看的www免费观看视频| 国产三级中文精品| 精品国产三级普通话版| 十八禁网站免费在线| 18美女黄网站色大片免费观看| 国产69精品久久久久777片| 国产亚洲精品av在线| 国内揄拍国产精品人妻在线| 久久九九热精品免费| 免费av观看视频| 国产不卡一卡二| a在线观看视频网站| 成人欧美大片| 久久精品国产自在天天线| 日韩欧美免费精品| 国内精品美女久久久久久| 久久婷婷人人爽人人干人人爱| 免费观看人在逋| 国产麻豆成人av免费视频| 亚洲美女搞黄在线观看 | 亚洲熟妇熟女久久| 欧美xxxx黑人xx丫x性爽| 国产成人欧美在线观看| 成人一区二区视频在线观看| 国产精品国产高清国产av| 波多野结衣高清无吗| 99热只有精品国产| 国产伦人伦偷精品视频| 精品人妻熟女av久视频| 级片在线观看| 伦理电影大哥的女人| 国产三级在线视频| 亚洲无线在线观看| 男人和女人高潮做爰伦理| 久久久久精品国产欧美久久久| 欧美日韩瑟瑟在线播放| 国产男靠女视频免费网站| 国产黄a三级三级三级人| 非洲黑人性xxxx精品又粗又长| 欧美不卡视频在线免费观看| 亚洲精品色激情综合| 最新在线观看一区二区三区| 日本黄大片高清| 天美传媒精品一区二区| 天堂网av新在线| 人人妻人人澡欧美一区二区| 十八禁人妻一区二区| 国产亚洲精品av在线| 免费av毛片视频| bbb黄色大片| 国产毛片a区久久久久| 美女高潮喷水抽搐中文字幕| 亚洲欧美精品综合久久99| 欧美三级亚洲精品| а√天堂www在线а√下载| 午夜精品一区二区三区免费看| 久久国产乱子伦精品免费另类| 中国美女看黄片| 9191精品国产免费久久| 国产精品一区二区三区四区久久| 欧美极品一区二区三区四区| 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 亚洲va日本ⅴa欧美va伊人久久| 88av欧美| 极品教师在线视频| 久久久久久九九精品二区国产| 最近中文字幕高清免费大全6 | 少妇的逼水好多| 亚洲片人在线观看| 两人在一起打扑克的视频| 又紧又爽又黄一区二区| 欧美一区二区亚洲| 窝窝影院91人妻| 3wmmmm亚洲av在线观看| 桃色一区二区三区在线观看| 国产爱豆传媒在线观看| 国产亚洲精品久久久com| 色5月婷婷丁香| 精品午夜福利在线看| 色综合欧美亚洲国产小说| 91久久精品电影网| 免费观看的影片在线观看| 搞女人的毛片| 嫩草影院精品99| 成人高潮视频无遮挡免费网站| 一级a爱片免费观看的视频| 久久午夜亚洲精品久久| 欧美绝顶高潮抽搐喷水| 久久久久久国产a免费观看| 黄色丝袜av网址大全| 国产精品影院久久| 毛片女人毛片| 婷婷精品国产亚洲av| 乱人视频在线观看| 中文字幕久久专区| 国产私拍福利视频在线观看| 亚洲av不卡在线观看| 一进一出抽搐gif免费好疼| 亚洲精品影视一区二区三区av| 成人精品一区二区免费| 精品午夜福利在线看| 中文字幕免费在线视频6| 国内少妇人妻偷人精品xxx网站| 亚洲aⅴ乱码一区二区在线播放| 麻豆一二三区av精品| 3wmmmm亚洲av在线观看| 国产精品亚洲av一区麻豆| 国产午夜福利久久久久久| 天堂动漫精品| 国产69精品久久久久777片| 悠悠久久av| 老鸭窝网址在线观看| 国产伦一二天堂av在线观看| 色哟哟·www| www.熟女人妻精品国产| 日韩中字成人| 首页视频小说图片口味搜索| 国产av在哪里看| 麻豆国产av国片精品| 看十八女毛片水多多多| 精品免费久久久久久久清纯| 国产熟女xx| 波多野结衣高清作品| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 我要看日韩黄色一级片| 亚洲人成网站在线播| 亚洲午夜理论影院| 国产精品美女特级片免费视频播放器| 伊人久久精品亚洲午夜| 亚州av有码| 好男人在线观看高清免费视频| 天堂网av新在线| 午夜福利欧美成人| 十八禁人妻一区二区| 国产亚洲精品综合一区在线观看| 搡女人真爽免费视频火全软件 | 国产欧美日韩一区二区精品| 国产亚洲精品av在线| 亚洲精品成人久久久久久| 性色avwww在线观看| 午夜免费男女啪啪视频观看 | 白带黄色成豆腐渣| 一二三四社区在线视频社区8| 欧美成人免费av一区二区三区| 国内精品美女久久久久久| 国产三级黄色录像| 久久伊人香网站| 色在线成人网| 亚洲av一区综合| 久久人妻av系列| 成年版毛片免费区| 国产三级在线视频| 成人av一区二区三区在线看| 日本在线视频免费播放| 国产精品亚洲美女久久久| 亚洲美女黄片视频| 欧美黑人巨大hd| 亚洲欧美日韩高清在线视频| av天堂中文字幕网| 99在线人妻在线中文字幕| 麻豆av噜噜一区二区三区| 婷婷精品国产亚洲av| 亚洲熟妇熟女久久| 欧美乱妇无乱码| 一边摸一边抽搐一进一小说| 成人一区二区视频在线观看| 国产男靠女视频免费网站| 男女之事视频高清在线观看| 真实男女啪啪啪动态图| 国产一区二区三区视频了| 亚洲av美国av| 欧美中文日本在线观看视频| 精品一区二区三区人妻视频| 听说在线观看完整版免费高清| 一级av片app| 全区人妻精品视频| 色哟哟·www| 欧美成人免费av一区二区三区| 欧美三级亚洲精品| 午夜福利免费观看在线| 99热这里只有精品一区| 人妻夜夜爽99麻豆av| 免费看美女性在线毛片视频| 蜜桃久久精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看| 亚洲性夜色夜夜综合| 欧美高清性xxxxhd video| 欧美一区二区精品小视频在线| 最近中文字幕高清免费大全6 | 在线观看美女被高潮喷水网站 | 亚州av有码| 乱码一卡2卡4卡精品| 他把我摸到了高潮在线观看| 观看免费一级毛片| www.999成人在线观看| 观看免费一级毛片| 十八禁网站免费在线| 精品久久久久久久久久免费视频| 男女床上黄色一级片免费看| 亚洲欧美日韩高清在线视频| 国产成人福利小说| 国产激情偷乱视频一区二区| 亚洲av日韩精品久久久久久密| 成人美女网站在线观看视频| 免费高清视频大片| 天堂网av新在线| 日本精品一区二区三区蜜桃| 国内精品久久久久精免费| 亚洲av免费在线观看| 亚洲人成网站高清观看| 九色成人免费人妻av| 午夜精品一区二区三区免费看| 亚洲自偷自拍三级| 免费一级毛片在线播放高清视频| 色综合站精品国产| 9191精品国产免费久久| 国产伦人伦偷精品视频| 亚洲色图av天堂| 亚洲精品影视一区二区三区av| 亚洲专区国产一区二区| 国产亚洲精品久久久com| 999久久久精品免费观看国产| 男插女下体视频免费在线播放| 动漫黄色视频在线观看| 国产人妻一区二区三区在| 成人av一区二区三区在线看| 中文字幕精品亚洲无线码一区| 亚洲av成人不卡在线观看播放网| 一级黄片播放器| 最好的美女福利视频网| 免费看日本二区| 婷婷色综合大香蕉| 亚洲精品乱码久久久v下载方式| 久久99热这里只有精品18| 中文字幕人妻熟人妻熟丝袜美| 少妇高潮的动态图| 在线观看午夜福利视频| 又紧又爽又黄一区二区| 久久午夜亚洲精品久久| 国产乱人视频| 国产69精品久久久久777片| 日韩成人在线观看一区二区三区| 成人亚洲精品av一区二区| 日本 av在线| 国产精品久久电影中文字幕| 久久婷婷人人爽人人干人人爱| 高清在线国产一区| 精品午夜福利在线看| 成人一区二区视频在线观看| 国产一区二区三区在线臀色熟女| 欧美潮喷喷水| 日本五十路高清| 亚洲 国产 在线| 亚洲无线在线观看| 最近最新中文字幕大全电影3| 深夜a级毛片| 三级毛片av免费| 伦理电影大哥的女人| 国产精品精品国产色婷婷| 级片在线观看| 日韩欧美一区二区三区在线观看| 欧美日韩亚洲国产一区二区在线观看| 欧美一区二区精品小视频在线| 一边摸一边抽搐一进一小说| 日韩中字成人| 欧美一区二区亚洲| 国产 一区 欧美 日韩| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费观看视频网站| 国产熟女xx| 哪里可以看免费的av片| 首页视频小说图片口味搜索| 2021天堂中文幕一二区在线观| bbb黄色大片| 国内精品美女久久久久久| 午夜老司机福利剧场| 欧美不卡视频在线免费观看| 搡老妇女老女人老熟妇| 国产精品人妻久久久久久| 日韩欧美三级三区| 色综合欧美亚洲国产小说| av中文乱码字幕在线| 亚洲av免费高清在线观看| 动漫黄色视频在线观看| 国产成人影院久久av| 亚洲一区二区三区不卡视频| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 亚洲成人中文字幕在线播放| 午夜精品在线福利| 亚洲av二区三区四区| 天天躁日日操中文字幕| 亚洲一区二区三区不卡视频| 色综合站精品国产| 观看免费一级毛片| 亚洲精品日韩av片在线观看| 毛片女人毛片| 动漫黄色视频在线观看| 最后的刺客免费高清国语| 国产精品1区2区在线观看.| 俄罗斯特黄特色一大片| 午夜免费男女啪啪视频观看 | 亚洲第一电影网av| 亚洲精品成人久久久久久| 国产69精品久久久久777片| 国产精品久久久久久亚洲av鲁大| 成人性生交大片免费视频hd| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 精品不卡国产一区二区三区| 亚洲精华国产精华精| 757午夜福利合集在线观看| 国产精品女同一区二区软件 | 亚洲av五月六月丁香网| 男女之事视频高清在线观看| 特级一级黄色大片| 制服丝袜大香蕉在线| 国产伦在线观看视频一区| 国产精品女同一区二区软件 | 小说图片视频综合网站| 色精品久久人妻99蜜桃| 免费av不卡在线播放| 99久久无色码亚洲精品果冻| 国产白丝娇喘喷水9色精品| 一个人观看的视频www高清免费观看| 伊人久久精品亚洲午夜| 国产高清有码在线观看视频| 亚洲国产精品合色在线| 69av精品久久久久久| 99国产精品一区二区三区| 国产精品女同一区二区软件 | 日本成人三级电影网站| 成人无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 国产精品久久视频播放| 又紧又爽又黄一区二区| 久久久久九九精品影院| 精品一区二区三区视频在线观看免费| 国产精华一区二区三区| 久久香蕉精品热| 嫁个100分男人电影在线观看| 女同久久另类99精品国产91| 午夜福利在线观看吧| 波野结衣二区三区在线| 亚洲五月天丁香| 九九在线视频观看精品| 亚洲最大成人手机在线| 亚洲精品在线美女| 精品欧美国产一区二区三| 一进一出抽搐gif免费好疼| 熟女人妻精品中文字幕| 国产免费一级a男人的天堂| 久99久视频精品免费| 日本免费一区二区三区高清不卡| 一进一出抽搐动态| 嫩草影视91久久| 中文字幕精品亚洲无线码一区| 亚洲精品在线观看二区| 免费在线观看成人毛片| 亚洲精品一区av在线观看| 夜夜夜夜夜久久久久| 午夜影院日韩av| 99久国产av精品| 午夜福利欧美成人| 国产成人啪精品午夜网站| 亚洲av.av天堂| 久久人妻av系列| 国产一区二区在线av高清观看| 看免费av毛片| 久久久久久大精品| 欧美日本视频| 久久久精品欧美日韩精品| 色5月婷婷丁香| 级片在线观看| 午夜a级毛片| 黄色丝袜av网址大全| 亚洲av美国av| 亚洲av中文字字幕乱码综合| 久久久久久国产a免费观看| 精品久久久久久久人妻蜜臀av| 国产三级黄色录像| 在线国产一区二区在线| 国内毛片毛片毛片毛片毛片| 麻豆一二三区av精品| 最近视频中文字幕2019在线8| 天堂av国产一区二区熟女人妻| 国产一区二区在线av高清观看| 中文字幕av在线有码专区| 变态另类丝袜制服| 国产精品电影一区二区三区| 天堂动漫精品| 国产精品一区二区免费欧美| 97碰自拍视频| 18禁裸乳无遮挡免费网站照片| 免费看光身美女| 国产一区二区在线av高清观看| 两人在一起打扑克的视频| 国产三级中文精品| 国产成人aa在线观看| 日韩中文字幕欧美一区二区| 日韩av在线大香蕉| 女同久久另类99精品国产91| 日韩av在线大香蕉| 欧美日韩国产亚洲二区| 日本精品一区二区三区蜜桃| 精品视频人人做人人爽| 777米奇影视久久| 秋霞伦理黄片| 各种免费的搞黄视频| 免费黄网站久久成人精品| 日产精品乱码卡一卡2卡三| 蜜桃亚洲精品一区二区三区| 深夜a级毛片| 亚洲久久久久久中文字幕| 日韩不卡一区二区三区视频在线| 97在线人人人人妻| 国产精品国产三级国产av玫瑰| 黄色欧美视频在线观看| 大码成人一级视频| 成人欧美大片| 一级毛片久久久久久久久女| 免费av不卡在线播放| 亚洲欧美中文字幕日韩二区| 中文欧美无线码| 国产一级毛片在线| av播播在线观看一区| 久久精品久久久久久久性| 哪个播放器可以免费观看大片| 精品99又大又爽又粗少妇毛片| 久久久成人免费电影| 中文在线观看免费www的网站| 精品午夜福利在线看| 国产精品麻豆人妻色哟哟久久| 国国产精品蜜臀av免费| 麻豆成人av视频| 亚洲欧洲日产国产|