• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling the mechanics of HMX detonation using a Taylor-Galerkin scheme

    2016-09-14 08:16:44AdamDuranVeeraSundararaghavanDepartmentofAerospaceEngineeringUniversityofMichiganAnnArborMI48109USA

    Adam V.Duran,Veera SundararaghavanDepartment of Aerospace Engineering,University of Michigan,Ann Arbor,MI 48109,USA

    ?

    Modeling the mechanics of HMX detonation using a Taylor-Galerkin scheme

    Adam V.Duran,Veera Sundararaghavan?
    Department of Aerospace Engineering,University of Michigan,Ann Arbor,MI 48109,USA

    h i g h l i g h t s

    ?An integrated algorithm for cyclotetramethylene tetranitramine(HMX)particle detonation that incorporates equations of state,Arrhenius kinetics, and mixing rules.

    ?A stabilized Taylor-Galerkin finite element simulation algorithm with pressure and temperature equilibrium enforced across phases.

    ?The scheme captures the distinct features of detonation waves:rarefaction wave,contact discontinuity,shock wave,and the von Neumann spike.

    ?Computed detonation velocity compares well with experiments reported in literature.

    a r t i c l ei n f o

    Article history:

    Received in revised form

    12 April 2016

    Accepted 4 May 2016

    Available online 17 May 2016

    Energetic composites

    Detonation

    Shock

    Finite element

    Design of energetic materials is an exciting area in mechanics and materials science.Energetic composite materials are used as propellants,explosives,and fuel cell components.Energy release in these materials are accompanied by extreme events:shock waves travel at typical speeds of several thousand meters per second and the peak pressures can reach hundreds of gigapascals.In this paper,we develop a reactive dynamics code for modeling detonation wave features in one such material.The key contribution in this paper is an integrated algorithm to incorporate equations of state,Arrhenius kinetics,and mixing rules for particle detonation in a Taylor-Galerkin finite element simulation.We show that the scheme captures the distinct features of detonation waves,and the detonation velocity compares well with experiments reported in literature.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Energetic composite materials are used as propellants,explosives,and fuel cell components.During the detonation of these materials a shock wave is sustained by the rapid chemical energy heat release involving tightly coupled nonlinear interactions between chemistry and mechanics.These waves have extreme features which laboratory experiments are seldom equipped to handle;they travel at typical speeds of several thousand meters per second and the peak pressures can reach about 100 GPa[1]. Currently,there is significant interest in engineering the microstructures of these energetic composites for targeted shock sensitivity and energy output.Literature in this area indicate the importance of composite features,for example,smaller energetic particles have lesser run time to detonation[2]and the time to detonation increases with the strength and content of the matrix (binder)material[3].The first step in understanding these effects is the development of a reliable computational model of the energetic particle,typically the energetic crystal cyclotetramethylene tetranitramine(HMX),in these composites.

    Modeling reactive burn of extreme detonation events is a significant challenge.The model is highly dependent on experimental data for each explosive composition.Unreacted material is converted to detonation products by a finite reaction rate where intermediate reactive species only exist for a few nanoseconds and are extremely difficult to measure experimentally.Reactive burn models are typically pressure(e.g.Ref.[4])or temperature dependent(e.g.Arrhenius model).Arrhenius reaction kinetics are often approximated in a single step[5]and are tuned to experiments and chemical data such as heats of formation [6-8].Equations of state are defined for each of the reaction states and mixing rules are needed for partially reacted states.Typically for the pressure dependent models,pressure equilibrium is assumed[9]or an analytic mixture is used[10]for partially burned mixture of reactants and products.For temperature based Arrhenius models,it is assumed that the unreacted explosive and reac-

    http://dx.doi.org/10.1016/j.taml.2016.05.002

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?Corresponding author.

    E-mail address:veeras@umich.edu(V.Sundararaghavan).tion products are in both temperature and pressure equilibrium. Although timescales of interest suggest that pressure equilibrium is reached long before temperature equilibrium,both temperature and pressure equilibrium is used in this work.This assumption is widely used[5,11]and will affect partially reacted pressures and temperatures.

    Shock strength of HMX is typically an order of magnitude higher than its yield strength.The material response of HMX under shock conditions is described by an isotropic equation of state(EOS)relating pressure,volume,and energy.A variety of equations of states have been proposed,the popular ones being the Jones-Wilkins-Lee(JWL)form[4],the Murnaghan form[10], and the Grüneisen form.The Grüneisen form,with a linear shock velocity versus particle velocity Hugoniot,has been employed in several studies[12-14].For the gaseous reaction products,by far the most popular equation of state is the JWL form that was developed by measuring the expansion velocity of metal casings surrounding HMX[15].

    Shockwavepropagationthroughreactivematerialsisgoverned by the reactive Euler equations,a nonlinear set of hyperbolic conservation laws.Classical formulations in the fluid dynamics community use Riemann solvers in the context of finite volume methods[16,17].In the context of standard finite element methods,various methods such as Petrov Galerkin(PG)methods, Galerkin/least-squares(GLS)methods,and the Taylor-Galerkin (TG)methods have been developed.In the PG and GLS methods, a stabilization term with a coefficient is added to the weak form to act as an artificial diffusion,however,the choice of the coefficient is semi-empirical[18,19].The basic TG algorithm was proposed by Donea[20]in which Taylor expansion in time precedes the Galerkin space discretization.TG finite element schemes are especially attractive since the diffusion arises from an improved Taylor approximation(second-order)to the time derivative of the fields while increasing computational efficiency[21].While TG algorithms have been successfully applied in areas such as pollutant transport and fluid dynamics[22-24],there does not exist a prior study of the technique for detonation of energetic particles.In this paper we present a one-step second-order TG finite element scheme for modeling detonation of HMX via benchmark cases.The integrated algorithm incorporates a high resolution shock capturing scheme,multiple equations of state, Arrhenius kinetics,and mixing rules.

    1.Euler equations

    In detonation simulations,diffusive phenomena are neglected since pressure transfer time scales are two to three orders of magnitude faster than heat or species transfer time scales[25]. The 2D reactive Euler equations are then given by the following equations

    with

    Here,ρis the density,ρu andρvare the momentum in the x and y directions,p is the pressure andρE is the total energy per unit volume.The subscripts x,y,and t denote partial derivatives. The source term S is based upon a one-step reaction scheme for HMX described by A1-→B,where NAis the mass fraction of the unreacted explosive and NBis the mass fraction of the gaseous reaction products.The reaction rate is given by the Arrhenius form in S,where q is the heat release,Z is the static frequency factor, E1is the activation energy,and R is the molar gas constant.The Euler equations are written in the quasi-linear form with Jacobian matrices Ai=?Fi/?U.The flux vectors are linearized as Fi=AiU for the numerical implementation.

    2.Computational model

    Thematerialbehaviorisgivenintheformofanequationofstate fortheunreactedsolidandtheexplosiveproducts.Theseequations arewrittenasafunctionofspecificvolumeνandenergye.Theyare related to the state variables as follows: The pressure and temperature(ps,Ts)for a solid unreacted material are given by a linear Mie-Grüneisen EOS and those for the gaseous reaction products(pg,Tg)are taken to be the JWL form. The EOS equations and the model parameters can be found in Ref.[11]and is available in a more condensed form in the supplementary file accompanying this letter.For modeling a mixture of solid and gaseous states,it is assumed that the unreacted explosive and reaction products are in temperature and pressure equilibrium;i.e.T=Ts(νs,es)=Tg(νg,eg)and p=ps(νs,es)= pg(νg,eg).Equilibriumisenforcedbyiteratingonνsandes.Thefollowing system can be solved using a Newton-Raphson method.

    To relate the unreacted solid and reaction products,a mixture rule is used,ν=(1-λ)νs+λνgand e=(1-λ)es+λeg.Here,λ is the burn fraction;the mass fraction of detonation products in the mixture.For the one-step reaction in this work,λ=NB.Now, the system of equations is closed and both EOS can be expressed in terms of the solid specific volume and internal energy.Convergence is achieved when1p<10-4Mbar(1 bar=105Pa)and 1T<10-2K as discussed in Ref.[11].

    The2DreactiveEulerequationsgivenbyEq.(1)aresolvedusing aone-stepTGscheme.Thiswidelyusedtime-steppingalgorithmis second-orderaccurate,explicitandanalogoustotheLax-Wendroff method[20].Taking a Taylor series expansion of U(from Eq.(2)) in time,

    where1t is the time step,superscripts n+1 denotes the current time and n denotes the previous time.The second term of the right hand side of Eq.(5)is found from rearranging Eq.(1)and the third term is found by differentiating Eq.(1)with respect to time.Now Eq.(5)is written as

    Ateachtimestep,theequationsofstateandthemixingruleisused to compute Aiand the source terms.The field variables are solvedusing the weak form given as follows:

    Toensurestabilityinregionsofcompressionwhere?u/?x<0and?v/?y<0,flux is computed based on a group representation.AfterGalerkinspatialdiscretizationthealgebraicequationM(Un+1-Un)=Bnis obtained and solved for Un+1.A lumping scheme is then used for the purpose of adding numerical dissipation and to givenon-oscillatorysolutionsinthepresenceofsteepsolutiongradients[26].Here,the consistent mass matrix M is replaced by the diagonal matrix ML,obtained by row sum.The mass lumping reducesthesecondorderTGschemetoafirstorderscheme.Addition of a small first order solution adds an artificial numerical dissipation to the system.The smoothed solution is obtained by adding a small dissipation through parameter d,where 0≤d≤1;for maximum dissipation d=1.The smoothed solution is obtained as

    where d is locally constructed by considering pressure gradients as expressed in the equations below.Here,nodes''j''are connected to nodes''i''wherep()denoteslocalpressureandx()denoteslocalposition.

    where

    Then,the artificial viscosity coefficient for segment i-j is determined by the following equation,whereχis a free parameter discussed in the following section.

    3.Verification using SOD shock benchmark problem

    Totestthestabilityandaccuracyoftheschemedescribedabove, the classical fluid dynamics shock tube problem is solved[27].The test consists of two fluids at differing pressures separated by a membrane.Once the membrane is removed,a rarefaction wave contactdiscontinuityandshockwaveisformed.Thesolutionforan ideal gas is obtained analytically using Riemann invariants and is compared with numerical results in Fig.1.The numerical results in Fig.1showgoodagreementwiththeexactsolutionandthedistinct characteristics of the test are captured.Next,the effects of the free parameterχon the numerical solution are studied.Figure 2 shows theaverageerror pernodeasafunctionoftheparameterχfortwo different time steps.In general,error increases with increasing the parameterχand decreasing the time step increases the average error per node.The optimal parameter for both time steps isχ= 0.1,the value used in Fig.1 and in subsequent sections.

    Fig.1.Numerical and analytical results for SOD shock tube.

    Fig.2.Effect of parameterχon average error per node.

    4.Reactive HMX models in 1D and 2D

    Next,shock loading a single HMX sample is studied.Numerical results are obtained with linear elements for a 1 cm domain with 1x=0.01 cm and1t=10-3μs.Dirichlet boundary conditions areusedwherevelocityisspecifiedtobezero.Discontinuousinitial conditions are given for density and total energy.For the left half of the domainρ=2.2 g/cm3and E=0.004 Mbar resulting in a pressure of p=5 GPa and temperature of T=590 K. The right half of the domain is set to ambient conditions where ρ=ρ0=1.89 g/cm3and E=0.00 Mbar resulting in a pressure of p=0 GPa and temperature of T=295 K.Velocity is initially zero and the sample is purely solid with a mass fraction of unity.Numerical results are shown in Figs.3 and 4 at time steps of t=0.2μs for a duration of one microsecond.Figure 3 shows the density of the sample.As the solution progresses a rarefaction wave,contact discontinuity,and shock wave form.The shock wave travels through the right side of the domain with a value ofρ= 2.07 g/cm3.Behind the shock and discontinuity,the initial density drops to a value ofρ=2.04 g/cm3as the solution evolves.At time t=1μs,the rarefaction wave is located at 0.1 cm,the contact discontinuity is located at 0.53 cm and the shock wave is located at 0.85 cm.Velocity reaches a maximum of u=0.03 cm/μs during the simulation.Figure 4 shows the pressure of the HMX sample. The initial pressure drops from p=5 GPa to p=2.13 GPa and is maintained through the shock front.The initial shock conditions are not drastic enough to initiate detonation of the sample withinthe simulated duration of t=1μs.The mass fraction never falls below NA=0.99 and the material remains inert.The computed shock velocity of the system is 0.36 cm/μs(p=5 GPa)and agrees with values reported in literature for experiments with HMX particle composites.Shot#1120 in Ref.[28]reports a shock velocity of 0.39 cm/μs for an input pressure of p=4.91 GPa.

    Fig.3.Numerical results of density for HMX sample at t=0.2μs time steps.

    Fig.4.Numerical results of pressure for HMX sample at t=0.2μs time steps.

    Next,detonation of 1 cm by 1 cm HMX sample is studied.A uniform mesh with a1x=1y=0.01 cm and1t=10-4μs is usedforadurationoft=0.45μs.No-slipboundaryconditionsare considered;i.e.u=0 at x=[0,1]cm andv=0 at y=[0,1]cm. A circular detonation front was used with the initial discontinuity located at r=0.1 cm.The combustion front is represented as a quarter of a circle that expands as the detonation proceeds.Within the quarter circle the material is shocked to a pressure of p= 55 GPa and temperature of T=2100 K.Outside,the domain is set to ambient conditions.Figure 5 shows the temperature profile at t=0.4μs.The temperature wave reaches a maximum value of T=3300 K and is sufficient enough to prompt detonation.Along the 45?plane shown in Fig.5 the burn fraction of the material λis plotted at time intervals of t=0.045μs in Fig.6.Within t=0.045μsthesolidwithinthequartercircleisfullyburnt.Asthe solution progresses the shock wave travels through the solid HMX sample and becomes fully gaseous.The calculated shock speed of 1.53 cm/μs is much higher than the previous inert case due to detonation.

    This paper presented the one-step second-order Taylor-Galerkin finite element scheme for modeling detonation of HMX via benchmark cases.The integrated algorithm incorporates a high resolution shock capturing scheme,multiple equations of state,Arrhenius kinetics,and mixing rules for HMX detonation simulations.In the detonation model,a one-step reaction scheme was used and temperature and pressure equilibrium between

    partially reacted states was enforced with a Newton-Raphson method and rule of mixtures.The numerical scheme was tested and agreed with exact solutions for SOD shock tube problem.The test was repeated for a single HMX sample and we showed that the shock velocity compared well with the experimental range reported in literature.Future work will include adding equations for a polymeric binder to simulate detonation in particulate composite microstructures.

    Fig.5.Numerical results of temperature at t=0.4μs.

    Fig.6.Numerical results of burn fraction along 45?plane at t=0.045μs time steps.

    Acknowledgments

    This paper was based upon work supported by the National Science Foundation Graduate Research Fellowship Program(DGE 1256260)and The Defense Threat Reduction Agency(HDTRA1-31-1-0009).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.taml.2016.05.002.

    References

    [1]W.Fickett,W.C.Davis,Detonation,University of California Press,Berkeley, 1979.

    [2]M.F.Gogulya,M.N.Makhov,A.Y.Dolgoborodov,et al.,Mechanical sensitivity and detonation parameters of aluminized explosives,Combust.Explos.Shock Waves 40(2004)445-457.

    [3]Z.P.Duan,L.J.Wen,Y.Liu,et al.,A pore collapse model for hot-spot ignition in shocked multi-component explosives,Int.J.Nonlinear Sci.Numer.Simul.11 (2010)19-24.

    [4]E.L.Lee,C.M.Tarver,Phenomenological model of shock initiation in heterogeneous explosives,Phys.Fluids(1958-1988)23(1980)2362-2372.

    [5]R.Menikoff,DetonationwavesinPBX9501,Combust.TheoryModel.10(2006) 1003-1021.

    [6]R.R.McGuire,C.M.Tarver,Chemical decomposition model for the thermal explosion of confined hmx,rdx and tnt explosives,in:Seventh Symposium (International)on Detonation NSWC MP,82(1981)56-64,334.

    [7]C.M.Tarver,T.D.Tran,Thermal decomposition models for hmx-based plastic bonded explosives,Combust.Flame 137(2004)50-62.

    [8]B.F.Henson,L.Smilowitz,J.J.Romero,et al.,Modeling thermal ignition and the initial conditions for internal burning in pbx 9501,AIP Conf.Proc.1195(2009) 257-262.

    [9]M.Cowperthwaite,A constitutive model for calculating chemical energy release rates from the flow fields in shocked explosives,in:Seventh Symposium(International)onDetonation,Annapolis,MD,82(1981)498-505, 34.

    [10]P.C.Souers,S.Anderson,J.Mercer,et al.,JWL++:a simple reactive flow code packagefordetonation,Propellants,Explosives,Pyrotechnics25(2000)54-58.

    [11]C.A.Handley,Numerical modelling of two HMX-based plastic-bonded explosives atthe mesoscale(Ph.D.thesis),University of St.Andrews,UK,2011.

    [12]M.R.Baer,Computational modeling of heterogeneous reactive materials at the mesoscale,AIP Conf.Proc.505(2000)27-34.

    [13]P.A.Conley,D.J.Benson,P.M.Howe,Microstructural effects in shock initiation, in:Eleventh International Detonation Symposium,Office of Naval Research ONR 33300-5,Snowmass,CO,1998,pp.768-780.

    [14]R.Menikoff,E.Kober,Compaction waves in granular HMX,AIP Conf.Proc.505 (2000)397-400.

    [15]J.W.Kury,H.C.Hornig,E.L.Lee,etal.Metalaccelerationbychemicalexplosives, in:Fourth(International)Symposium on Detonation,ACR-126,1965.

    [16]J.M.McGlaun,S.L.Thompson,M.G.Elrick,CTH:a three-dimensional shock wave physics code,Int.J.Impact Eng.10(1990)351-360.

    [17]A.L.Brundage,R.R.Wixom,A.S.Tappan,et al.,Mesoscale simulations of shock initiation in energetic materials characterized by three-dimensional nanotomography,AIP Conf.Proc.1195(2009)315-318.

    [18]W.H.Raymond,A.Garder,Selective damping in a galerkin method for solving wave problems with variable grids,Mon.Weather Rev.104(1976) 1583-1590.

    [19]A.N.Brooks,T.J.Hughes,Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations,Comput.Methods Appl.Mech.Engrg.32(1982) 199-259.

    [20]J.Donea,A Taylor Galerkin method for convective transport problems, Internat.J.Numer.Methods Engrg.20(1984)101-119.

    [21]E.A.Thornton,R.Ramakrishnan,Supercomputer implementation of finite element algorithms for high speed compressible flows,NASA-CR-177065, NASA technical report,United States,1986.

    [22]V.Nassehi,J.H.Bikangaga,A mathematical model for the hydrodynamics and pollutants transport in long and narrow tidal rivers,Appl.Math.Model.17 (1993)415-422.

    [23]M.Quecedo,M.Pastor,A reappraisal of taylor galerkin algorithm for drying wetting areas in shallow water computations,Int.J.Numer.Methods Fluids 38(2002)515-531.

    [24]R.Lohner,K.Morgan,J.Peraire,et al.,Finite element flux corrected transport (FEM-FCT)for the euler and Navier Stokes equations,Internat.J.Numer. Methods Fluids 7(1987)1093-1109.

    [25]J.E.Reaugh,Computer simulations to study the high-pressure deflagration of HMX,AIP Conf.Proc.706(2004)401-404.

    [26]J.Donea,A.Huerta,Finite element methods for flow problems,first ed.,John Wiley and Sons,Chichester(West Sussex),England,2003.

    [27]G.A.Sod,A survey of several different methods for systems of nonlinear hyperbolic conservation laws,J.Comput.Phys.27(1978)1-31.

    [28]R.E.Winter,S.S.Sorber,D.A.Salisbury,et al.,Experimental study of the shock response of an HMX-based explosive,Shock Waves 15(2006)89-101.

    23 January 2016

    *This article belongs to the Fluid Mechanics

    婷婷色av中文字幕| 一级毛片黄色毛片免费观看视频| 国产av精品麻豆| 男女下面插进去视频免费观看| 日韩一本色道免费dvd| 男男h啪啪无遮挡| 国产亚洲最大av| 一级毛片我不卡| 18禁观看日本| 色94色欧美一区二区| 哪个播放器可以免费观看大片| 国产精品 欧美亚洲| 一本久久精品| 亚洲第一av免费看| 欧美精品一区二区大全| 欧美日韩亚洲国产一区二区在线观看 | 狠狠婷婷综合久久久久久88av| 欧美日韩福利视频一区二区| 亚洲成人手机| videos熟女内射| 亚洲成色77777| 99精品久久久久人妻精品| 男女高潮啪啪啪动态图| 秋霞在线观看毛片| 深夜精品福利| 国产熟女午夜一区二区三区| 在线观看免费高清a一片| 久久久久久久大尺度免费视频| 黄片小视频在线播放| 国产精品 国内视频| 国产男女内射视频| 国产日韩欧美视频二区| 中文字幕人妻丝袜一区二区 | 免费高清在线观看视频在线观看| 男女之事视频高清在线观看 | 女的被弄到高潮叫床怎么办| 91成人精品电影| 日韩一区二区视频免费看| 亚洲精品美女久久久久99蜜臀 | av网站免费在线观看视频| 国产黄色免费在线视频| 婷婷色综合大香蕉| 最近最新中文字幕免费大全7| 欧美国产精品一级二级三级| 黄片小视频在线播放| 在线亚洲精品国产二区图片欧美| 午夜福利视频精品| 亚洲av电影在线观看一区二区三区| 啦啦啦在线免费观看视频4| 日韩免费高清中文字幕av| 啦啦啦啦在线视频资源| 亚洲国产精品999| 亚洲七黄色美女视频| 极品人妻少妇av视频| 久久热在线av| 欧美亚洲日本最大视频资源| 国产精品国产av在线观看| 久久人妻熟女aⅴ| 亚洲天堂av无毛| 国产片内射在线| 在现免费观看毛片| 亚洲第一av免费看| 大陆偷拍与自拍| 久久天躁狠狠躁夜夜2o2o | 大片免费播放器 马上看| 日韩 亚洲 欧美在线| 精品亚洲乱码少妇综合久久| 午夜福利在线免费观看网站| 亚洲国产av新网站| 中文字幕高清在线视频| 天天躁夜夜躁狠狠躁躁| 午夜福利免费观看在线| 精品一区二区免费观看| 亚洲欧美一区二区三区久久| 十八禁高潮呻吟视频| 九草在线视频观看| 免费在线观看黄色视频的| 成人影院久久| 精品国产超薄肉色丝袜足j| 日本欧美视频一区| 亚洲一码二码三码区别大吗| 国产亚洲欧美精品永久| 日本欧美国产在线视频| 亚洲国产看品久久| 制服丝袜香蕉在线| 亚洲国产中文字幕在线视频| 亚洲欧美一区二区三区国产| 国产精品国产av在线观看| 午夜福利网站1000一区二区三区| 最近最新中文字幕免费大全7| 毛片一级片免费看久久久久| 午夜福利视频在线观看免费| 国产成人精品无人区| 亚洲国产欧美在线一区| 水蜜桃什么品种好| 免费在线观看完整版高清| 婷婷色麻豆天堂久久| 国产精品 欧美亚洲| 国产视频首页在线观看| 麻豆乱淫一区二区| 亚洲成av片中文字幕在线观看| 亚洲精品,欧美精品| 制服人妻中文乱码| 麻豆精品久久久久久蜜桃| 精品一品国产午夜福利视频| 18在线观看网站| av一本久久久久| 免费黄色在线免费观看| 欧美人与善性xxx| 国产精品无大码| 精品一区二区三区av网在线观看 | 欧美激情高清一区二区三区 | 80岁老熟妇乱子伦牲交| 如日韩欧美国产精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产精品一二三区在线看| 欧美黄色片欧美黄色片| 视频区图区小说| 中文字幕高清在线视频| 搡老岳熟女国产| 天天操日日干夜夜撸| 午夜激情久久久久久久| 青春草国产在线视频| 尾随美女入室| 亚洲欧洲国产日韩| 亚洲精品国产av成人精品| 一个人免费看片子| 一级,二级,三级黄色视频| 男女高潮啪啪啪动态图| 国产一级毛片在线| 最近中文字幕2019免费版| 最新在线观看一区二区三区 | 侵犯人妻中文字幕一二三四区| 考比视频在线观看| 最黄视频免费看| 国产1区2区3区精品| 久久久久久久国产电影| 免费观看av网站的网址| av一本久久久久| 久久久精品区二区三区| 黑丝袜美女国产一区| 各种免费的搞黄视频| 色婷婷久久久亚洲欧美| 欧美老熟妇乱子伦牲交| 99精品久久久久人妻精品| 中文字幕av电影在线播放| 免费黄网站久久成人精品| 欧美日韩综合久久久久久| 成人国产麻豆网| 亚洲成色77777| 中文字幕制服av| 亚洲精品aⅴ在线观看| 天天影视国产精品| 亚洲国产精品国产精品| 丝袜喷水一区| 久久久欧美国产精品| 日韩,欧美,国产一区二区三区| 久久精品人人爽人人爽视色| 久久精品国产亚洲av高清一级| 久久久亚洲精品成人影院| 香蕉国产在线看| 少妇人妻 视频| 啦啦啦在线观看免费高清www| 精品一区在线观看国产| 中文字幕av电影在线播放| 欧美精品一区二区免费开放| 欧美黑人精品巨大| 日韩免费高清中文字幕av| 黄片播放在线免费| 国产精品三级大全| 精品国产一区二区久久| av免费观看日本| 国产精品无大码| 黄片无遮挡物在线观看| 如日韩欧美国产精品一区二区三区| 一区二区三区精品91| 亚洲人成电影观看| 99国产综合亚洲精品| 麻豆av在线久日| 亚洲av福利一区| 热99国产精品久久久久久7| 美女视频免费永久观看网站| 制服丝袜香蕉在线| 亚洲 欧美一区二区三区| 十八禁高潮呻吟视频| 欧美精品一区二区大全| 亚洲 欧美一区二区三区| videos熟女内射| a级毛片在线看网站| 午夜免费鲁丝| 国产又爽黄色视频| 69精品国产乱码久久久| 男人爽女人下面视频在线观看| 欧美老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆 | 男女之事视频高清在线观看 | 国产免费视频播放在线视频| 日韩一区二区视频免费看| 国产精品一国产av| a 毛片基地| 亚洲在久久综合| 18禁裸乳无遮挡动漫免费视频| 97精品久久久久久久久久精品| 日本黄色日本黄色录像| 韩国精品一区二区三区| 99热全是精品| 欧美日韩成人在线一区二区| 久久99精品国语久久久| 国产精品无大码| 中国三级夫妇交换| 午夜日韩欧美国产| 国产在线一区二区三区精| 国产成人精品福利久久| 日韩一区二区三区影片| 搡老岳熟女国产| 精品国产乱码久久久久久男人| 少妇人妻 视频| 啦啦啦在线免费观看视频4| 欧美成人午夜精品| 熟女av电影| 亚洲av欧美aⅴ国产| 99精品久久久久人妻精品| 欧美少妇被猛烈插入视频| 人妻人人澡人人爽人人| 在线亚洲精品国产二区图片欧美| 国产又爽黄色视频| 亚洲欧美成人精品一区二区| 久久国产精品男人的天堂亚洲| a级片在线免费高清观看视频| 叶爱在线成人免费视频播放| 国产精品成人在线| 美女扒开内裤让男人捅视频| 精品国产国语对白av| 亚洲国产欧美日韩在线播放| 1024香蕉在线观看| 天天操日日干夜夜撸| 免费不卡黄色视频| 亚洲 欧美一区二区三区| 建设人人有责人人尽责人人享有的| 美女中出高潮动态图| 国产在线免费精品| 亚洲欧洲国产日韩| 麻豆精品久久久久久蜜桃| 叶爱在线成人免费视频播放| 一二三四中文在线观看免费高清| 亚洲男人天堂网一区| 日韩中文字幕视频在线看片| 韩国精品一区二区三区| 日本色播在线视频| 一区二区三区激情视频| 久久天躁狠狠躁夜夜2o2o | 九色亚洲精品在线播放| 亚洲欧美精品自产自拍| 9191精品国产免费久久| 大香蕉久久网| 亚洲情色 制服丝袜| 亚洲成人免费av在线播放| 国产精品偷伦视频观看了| 我要看黄色一级片免费的| 99国产精品免费福利视频| 亚洲国产中文字幕在线视频| 天天影视国产精品| 成人国产av品久久久| 日韩人妻精品一区2区三区| 亚洲成人手机| 99国产精品免费福利视频| 日韩av免费高清视频| 久久久久久人妻| 亚洲av国产av综合av卡| 午夜福利影视在线免费观看| 成人免费观看视频高清| 国产成人av激情在线播放| avwww免费| 日韩制服骚丝袜av| 中文字幕亚洲精品专区| 成人手机av| 2021少妇久久久久久久久久久| 精品酒店卫生间| 久久久久精品国产欧美久久久 | 精品卡一卡二卡四卡免费| 国产不卡av网站在线观看| 各种免费的搞黄视频| 亚洲国产成人一精品久久久| 亚洲色图 男人天堂 中文字幕| 国产精品嫩草影院av在线观看| 黄色视频不卡| 久久综合国产亚洲精品| 国产xxxxx性猛交| 久久久久精品久久久久真实原创| 亚洲国产欧美日韩在线播放| 日本av免费视频播放| 国产精品一区二区精品视频观看| 纵有疾风起免费观看全集完整版| 免费在线观看视频国产中文字幕亚洲 | 中文字幕人妻熟女乱码| 建设人人有责人人尽责人人享有的| 成人毛片60女人毛片免费| 精品卡一卡二卡四卡免费| 91精品三级在线观看| 精品一区在线观看国产| 免费少妇av软件| 日韩一卡2卡3卡4卡2021年| 久久久久久免费高清国产稀缺| 天天操日日干夜夜撸| 亚洲综合精品二区| 大陆偷拍与自拍| 日日摸夜夜添夜夜爱| 尾随美女入室| 国产一区二区 视频在线| 欧美黑人精品巨大| 亚洲国产中文字幕在线视频| 日韩精品免费视频一区二区三区| 亚洲国产欧美在线一区| 免费少妇av软件| 少妇人妻久久综合中文| 嫩草影视91久久| av免费观看日本| 黄网站色视频无遮挡免费观看| 伊人亚洲综合成人网| 婷婷色综合www| 成人亚洲精品一区在线观看| 中文字幕高清在线视频| 亚洲成色77777| 亚洲,一卡二卡三卡| 欧美黄色片欧美黄色片| 国产一区二区 视频在线| av视频免费观看在线观看| 国产成人欧美在线观看 | 欧美日韩一区二区视频在线观看视频在线| 天天躁日日躁夜夜躁夜夜| 国产精品.久久久| 最近中文字幕高清免费大全6| 国产精品国产av在线观看| 日韩av免费高清视频| 一级爰片在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲图色成人| 久久久精品国产亚洲av高清涩受| av线在线观看网站| 视频区图区小说| 18禁动态无遮挡网站| 日韩av不卡免费在线播放| 五月天丁香电影| 国产有黄有色有爽视频| 日韩免费高清中文字幕av| 亚洲人成77777在线视频| 亚洲精品av麻豆狂野| 国产精品二区激情视频| 午夜免费鲁丝| 欧美激情极品国产一区二区三区| 国精品久久久久久国模美| 一本一本久久a久久精品综合妖精| 欧美少妇被猛烈插入视频| 日韩精品免费视频一区二区三区| 美女扒开内裤让男人捅视频| 精品一区二区三卡| 午夜激情久久久久久久| 在线观看免费视频网站a站| 又粗又硬又长又爽又黄的视频| 国产日韩欧美亚洲二区| 国产成人欧美在线观看 | 国产福利在线免费观看视频| 久久久久网色| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久人妻精品电影 | 久久婷婷青草| 免费av中文字幕在线| 久久精品aⅴ一区二区三区四区| 亚洲综合色网址| 少妇精品久久久久久久| 国产精品人妻久久久影院| 国产精品麻豆人妻色哟哟久久| 亚洲伊人久久精品综合| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久视频综合| 亚洲国产看品久久| 激情五月婷婷亚洲| 久久av网站| 久久热在线av| 看免费成人av毛片| 91精品伊人久久大香线蕉| 久久久国产精品麻豆| 91精品国产国语对白视频| 看免费成人av毛片| 色播在线永久视频| 肉色欧美久久久久久久蜜桃| 欧美国产精品va在线观看不卡| 亚洲七黄色美女视频| 女性被躁到高潮视频| 午夜福利网站1000一区二区三区| 午夜福利影视在线免费观看| 国产福利在线免费观看视频| 最近的中文字幕免费完整| 一级,二级,三级黄色视频| 97精品久久久久久久久久精品| 亚洲av国产av综合av卡| 日韩中文字幕欧美一区二区 | 午夜免费鲁丝| 性高湖久久久久久久久免费观看| 精品卡一卡二卡四卡免费| 精品国产一区二区三区久久久樱花| 精品久久久精品久久久| 亚洲av日韩在线播放| 久久久久精品性色| 亚洲av国产av综合av卡| 999精品在线视频| 一区在线观看完整版| 三上悠亚av全集在线观看| 免费在线观看黄色视频的| 黑人巨大精品欧美一区二区蜜桃| 99久久精品国产亚洲精品| 高清在线视频一区二区三区| 在线观看三级黄色| 考比视频在线观看| 我的亚洲天堂| 亚洲av电影在线进入| 女人爽到高潮嗷嗷叫在线视频| 叶爱在线成人免费视频播放| 国产精品久久久久久精品电影小说| 午夜福利网站1000一区二区三区| 亚洲欧美一区二区三区国产| 国产精品偷伦视频观看了| 丝袜在线中文字幕| 亚洲伊人久久精品综合| 精品一区二区三卡| av天堂久久9| 久久精品国产亚洲av涩爱| 久久国产亚洲av麻豆专区| 成人免费观看视频高清| 欧美人与性动交α欧美软件| 久久久亚洲精品成人影院| 麻豆精品久久久久久蜜桃| 免费观看a级毛片全部| 狠狠精品人妻久久久久久综合| 亚洲欧洲国产日韩| 日本欧美视频一区| 国产高清国产精品国产三级| 亚洲在久久综合| 91精品伊人久久大香线蕉| 人体艺术视频欧美日本| 9热在线视频观看99| 国产极品天堂在线| 丝袜在线中文字幕| 桃花免费在线播放| avwww免费| 亚洲国产精品一区三区| 精品酒店卫生间| av电影中文网址| 男女下面插进去视频免费观看| 亚洲精品第二区| 久久性视频一级片| 伊人久久大香线蕉亚洲五| 成人国语在线视频| 午夜福利乱码中文字幕| 人人妻人人添人人爽欧美一区卜| 校园人妻丝袜中文字幕| 深夜精品福利| 热re99久久国产66热| 90打野战视频偷拍视频| 亚洲一区中文字幕在线| 两性夫妻黄色片| 老汉色∧v一级毛片| 精品一区二区三区四区五区乱码 | 欧美老熟妇乱子伦牲交| 毛片一级片免费看久久久久| 久久99一区二区三区| 欧美成人午夜精品| 少妇人妻 视频| 一级爰片在线观看| 国产日韩一区二区三区精品不卡| 久久久国产精品麻豆| 99九九在线精品视频| av有码第一页| 精品少妇内射三级| 欧美 日韩 精品 国产| 亚洲欧美成人精品一区二区| 人人妻人人澡人人看| 亚洲精品国产区一区二| av免费观看日本| 妹子高潮喷水视频| 国产精品av久久久久免费| 亚洲精品乱久久久久久| 99久久人妻综合| 国产精品偷伦视频观看了| 久久精品亚洲熟妇少妇任你| 亚洲人成77777在线视频| 咕卡用的链子| 99精国产麻豆久久婷婷| 国产99久久九九免费精品| 久久精品国产亚洲av涩爱| 制服人妻中文乱码| 尾随美女入室| 久久久久人妻精品一区果冻| 欧美老熟妇乱子伦牲交| 国产人伦9x9x在线观看| 午夜免费男女啪啪视频观看| 午夜久久久在线观看| 精品人妻在线不人妻| 欧美另类一区| 国产av一区二区精品久久| 欧美国产精品一级二级三级| 欧美黑人精品巨大| www.熟女人妻精品国产| 久热这里只有精品99| 多毛熟女@视频| 国产精品久久久人人做人人爽| 国产亚洲午夜精品一区二区久久| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| 国产又爽黄色视频| 中文精品一卡2卡3卡4更新| 一个人免费看片子| 啦啦啦在线观看免费高清www| 日韩电影二区| 久久精品久久精品一区二区三区| 精品免费久久久久久久清纯 | 亚洲美女搞黄在线观看| 久久久国产一区二区| 捣出白浆h1v1| 欧美 亚洲 国产 日韩一| 午夜日本视频在线| 亚洲精品一区蜜桃| 国产视频首页在线观看| 午夜福利在线免费观看网站| 久久久久国产精品人妻一区二区| 国产麻豆69| 午夜免费观看性视频| 丁香六月欧美| 日韩一本色道免费dvd| 韩国精品一区二区三区| 国产片内射在线| 久久国产精品大桥未久av| 精品少妇一区二区三区视频日本电影 | 日本av手机在线免费观看| 精品免费久久久久久久清纯 | 国产成人精品在线电影| 侵犯人妻中文字幕一二三四区| 999精品在线视频| 国产成人欧美在线观看 | av福利片在线| 日韩一区二区视频免费看| 啦啦啦视频在线资源免费观看| 国产女主播在线喷水免费视频网站| 18禁动态无遮挡网站| 国产激情久久老熟女| 大香蕉久久网| 97精品久久久久久久久久精品| 精品一区二区免费观看| 免费在线观看完整版高清| 我要看黄色一级片免费的| 亚洲熟女精品中文字幕| 美女午夜性视频免费| 亚洲精品久久午夜乱码| 亚洲av欧美aⅴ国产| 日韩制服丝袜自拍偷拍| av一本久久久久| 伦理电影大哥的女人| 一级a爱视频在线免费观看| 日韩一卡2卡3卡4卡2021年| 日本欧美视频一区| 高清不卡的av网站| 亚洲精品自拍成人| 91成人精品电影| 午夜免费鲁丝| 欧美精品人与动牲交sv欧美| 黑人巨大精品欧美一区二区蜜桃| 中文字幕最新亚洲高清| 免费观看av网站的网址| 18禁动态无遮挡网站| 国产精品 欧美亚洲| 大陆偷拍与自拍| 免费看av在线观看网站| 熟女少妇亚洲综合色aaa.| 色94色欧美一区二区| 国产日韩欧美视频二区| 最新在线观看一区二区三区 | 国产av精品麻豆| 亚洲欧美激情在线| 日本午夜av视频| 精品人妻一区二区三区麻豆| 夫妻午夜视频| 人体艺术视频欧美日本| 亚洲成人一二三区av| 国产精品秋霞免费鲁丝片| 国产色婷婷99| 色视频在线一区二区三区| 亚洲av欧美aⅴ国产| 女人高潮潮喷娇喘18禁视频| 观看美女的网站| 交换朋友夫妻互换小说| 日日啪夜夜爽| 人人妻人人添人人爽欧美一区卜| 亚洲av欧美aⅴ国产| 极品少妇高潮喷水抽搐| 天美传媒精品一区二区| 亚洲精品aⅴ在线观看| 精品亚洲乱码少妇综合久久| 午夜免费鲁丝| 日韩一本色道免费dvd| 波多野结衣av一区二区av| 高清不卡的av网站| 汤姆久久久久久久影院中文字幕| 日本欧美视频一区| 亚洲国产欧美网| 欧美日韩视频精品一区| 少妇被粗大的猛进出69影院| 精品国产国语对白av| av免费观看日本| 国产成人午夜福利电影在线观看| 超碰成人久久| 免费在线观看黄色视频的| 宅男免费午夜| 国产精品久久久久久精品电影小说| 日本vs欧美在线观看视频| 日韩,欧美,国产一区二区三区|