• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of global look-up table strategy in digital image correlation with cubic B-spline interpolation and bicubic interpolation

    2016-09-14 08:16:42ZhiweiPanWeiChenZhenyuJiangLiqunTangYipingLiuZejiaLiuStateKeyLaboratoryofSubtropicalBuildingScienceSchoolofCivilEngineeringandTransportationSouthChinaUniversityofTechnologyGuangzhou510640China

    Zhiwei Pan,Wei Chen,Zhenyu Jiang?,Liqun Tang,Yiping Liu,Zejia LiuState Key Laboratory of Subtropical Building Science,School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,China

    ?

    Performance of global look-up table strategy in digital image correlation with cubic B-spline interpolation and bicubic interpolation

    Zhiwei Pan,Wei Chen,Zhenyu Jiang?,Liqun Tang,Yiping Liu,Zejia Liu
    State Key Laboratory of Subtropical Building Science,School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,China

    h i g h l i g h t s

    ?Global look-up table strategy is used to accelerate B-spline interpolation in digital image correlation(DIC).

    ?Performance of the strategy is evaluated theoretically and experimentally.

    ?The strategy is found a superior substitute for the one with bicubic interpolation.

    a r t i c l ei n f o

    Article history:

    Accepted 25 April 2016

    Available online 10 May 2016

    Digital image correlation

    Inverse compositional Gauss-Newton algorithm

    Cubic B-spline interpolation

    Bicubic interpolation

    Global look-up table

    Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation,which is the most time-consuming part in the iterative sub-pixel digital image correlation(DIC)algorithms.Inthispaper,agloballook-uptablestrategywithcubicB-splineinterpolation is developed for the DIC method based on the inverse compositional Gauss-Newton(IC-GN)algorithm. The performance of this strategy,including accuracy,precision,and computation efficiency,is evaluated through a theoretical and experimental study,using the one with widely employed bicubic interpolation asabenchmark.Thegloballook-uptablestrategywithcubicB-splineinterpolationimprovessignificantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation,at a trivial price of computation efficiency.

    ?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Digital image correlation(DIC)is a non-contact and full-field optical measurement technique which has found a wide variety of applications[1-5].To achieve high accuracy and precision of measurement,various sub-pixel DIC algorithms have been developed in the past years,among which the one based on the inverse compositional Gauss-Newton(IC-GN)algorithm[6]has become a popular DIC algorithm nowadays due to its superior performance (accuracy,precision,and computation efficiency)[1,7-9].As an iterative optimization algorithm,the performance IC-GN algorithm depends heavily on the interpolation,whereby the intensity map of warped target subset in the deformed image is reconstructed at sub-pixel locations during each iteration step:(i)the bias of interpolation affects directly the accuracy of the sub-pixel DIC algorithms.Researchers studied the influence of various interpolation algorithms on the accuracy of the sub-pixel DIC methods quantitatively[10-14].Their work demonstrates that the cubic B-spline interpolation leads to considerably less bias of the obtained results compared with the bicubic interpolation;(ii)the interpolation is themosttime-consumingpartoftheiterativeprocedure.Recently, Pan and Li[15]proposed a global look-up table strategy to accelerate the bicubic interpolation for the iterative sub-pixel DIC algorithm.By using a pre-computed table of interpolation coefficients, the interpolation times for processing a pair of subsets can be reducedforalmosttwoordersofmagnitude.Thesimilarstrategycan be also employed to alleviate the influence of the non-linear error in processing of digital fringe patterns[16].

    In this paper,a global look-up table strategy with cubic B-spline interpolation is developed for the IC-GN algorithm-based DIC method.The developed DIC method is compared with the one using the same strategy but with bicubic interpolation,at the aspects of accuracy,precision and efficiency.

    In both cubic B-spline interpolation and bicubic interpolation,a pieceofsmoothsurfaceofintensityisconstructedovereach2X2-pixel grid(qijq(i+1)jqi(j+1)q(i+1)(j+1))in the image,as illustrated in Fig.1.The surface guarantees that it goes through the fourinteger-pixel corners and its first and second partial derivatives are continuous.The intensity t(x,y)at sub-pixel location on this surface can be expressed as a polynomial form

    Fig.1.Illustrationof4X4-pixelgridforcalculationof16interpolationcoefficients.

    where(x,y)denotesthelocalcoordinatesofthesub-pixellocation with respect to the upper-left corner of a 2X2-pixel grid(Fig.1).is a matrix containing 16 interpolation coefficients

    calculated using the intensity informationof a grid of 4X4 integer pixels surrounding this sub-pixel location.

    For the cubic B-spline interpolation,the coefficient matrix a of each grid can be calculated according to Ref.[17] where

    Matrix a has a simple relation with p,i.e.

    Forthebicubicinterpolation,theconstructionofcoefficientmatrix a uses not only the intensity at neighboring integer-pixels but also their gradients.A detailed description can be found in Ref.[18].

    Agloballook-uptableconsistingof(M-1)X(N-1)elements can be pre-computed on a MXN-pixel speckle image.By repeatedly referring to this table during the iteration,considerable redundant calculations of interpolation coefficients are avoided. Obviously,this is a trade-off between the computation efficiency and memory usage.However,for a 768X576-pixel speckle image the global look-up table requires additional memory of about 56 MB,which could be a trivial expense to current computers.

    Table 1 lists the number of operations required to pre-compute matrix a of a 2X2-pixel grid for the two interpolation algorithms. It can be found that the operations for the bicubic interpolation are about 50%less than those for the cubic B-spline interpolation. Moreover,the pre-computation of matrix a for the cubic B-spline interpolation needs an additional transform from matrix p,which leads to extra operations.

    The bias raised in the two interpolation algorithms can be compared using the model proposed by Su et al.[14],in which an interpolation bias kernel Eib(vx,vy)is used as an indicator.It is defined as follows,neglecting the aliasing effect along the y-axis

    Table 1 Number of operations in cubic B-spline and bicubic interpolation.

    wherevxandvyare the frequency of the signals along x-axis and y-axis.Since the lowest period in a digital image is two pixels,the domain ofvxandvyis limited in(-0.5,0.5).??(vx,vy) represents the interpolation transfer function,which is the Fourier transform of the convolution kernel of an interpolation function. The interpolation transfer functions of the two interpolation algorithms can be expressed as equations in Box I.

    Figure 2(a)and(b)shows the surfaces of Eib(vx,vy)for the cubicB-splineinterpolationandthebicubicinterpolation.Aclearer comparison between the value of the two interpolation bias kernels is performed on the section ofvy=0.1 andvy=0.25, as shown in Fig.2(c)and(d).It can be seen that the value of cubic B-spline interpolation bias kernel is lower than that of bicubic interpolation bias kernel in the low-frequency region(-0.36< vx<0.36).As we know that the energy of an image usually concentrates in the low-frequency region,thus the cubic B-spline interpolation algorithm can reach smaller bias than the bicubic interpolation algorithm for most of speckle images.

    Figure3showsapracticalspeckleimagewithasizeof768X576 pixels.Using Fig.3 as the reference image,twenty target images were generated by translating it in Fourier domain according to the shift theorem[10],with pre-set sub-pixel displacements along x-axis from 0 to 1 pixel.The displacement between every two successive images was set to be 0.05 pixels.

    The IC-GN algorithm-based DIC method with the two interpolation algorithms was programmed using C++language and run on a desktop computer equipped with AMD FX-4300 CPU(4 cores, 3.8 GHz)and 8.0 GB RAM.The initial guess for the IC-GN algorithm is estimated using the Fourier transform-based cross correlation(FFT-CC)algorithm.Details of this DIC method can be found in Ref.[9].

    The bias caused by the two interpolation algorithms is evaluated using the mean bias error of the calculated results, defined as:

    where M denotes the number of points of interest(POIs,center of a subset).In this work,a 33X33-pixel subset is employed in the DIC computation and 15264 POIs are set in each speckle image.uiis the calculated displacement at the ith POI,and udis the pre-set displacement.

    Figure 4(a)shows the mean bias errors of the calculated displacements.The dependence of mean bias error on the subpixel displacement is in the form of a sinusoidal function,which stems from the interpolation bias,as explained in Refs.[10,14]. Distinct gap can be observed between the two curves of mean bias errors.The magnitude of mean bias errors caused by the cubic B-spline interpolation can be up to 46%lower than those by the bicubic interpolation,indicating a markedly higher accuracy. The gap also shows dependence on sub-pixel displacement.Theabsolute difference between the two curves reaches its peaks at 0.2 and 0.8 pixels,whereas the two curves are in good agreement around 0.5 pixels,as shown in Fig.4(a).Figure 4(b)shows the standard deviation of the calculated displacements.Discernible difference between the two interpolation algorithms appears in the range of the pre-set displacement from 0.3 to 0.7 pixels,which is up to 0.0019 pixels.

    Box I.

    Fig.2.Surfaces of Eib(vx,vy)for(a)cubic B-spline interpolation and(b)bicubic interpolation.The profiles of the two surfaces are compared on the section of(c)vy=0.1 and(d)vy=0.25.

    Fig.3.Speckle image used as reference image in experimental study.

    Figure 5(a)shows the computation time consumed by precomputation of global look-up tables for the DIC method with the two interpolation algorithms.The pre-computation time taken for the cubic B-spline interpolation algorithm is about 420 ms,almost threetimesasmuchasthatforthebicubicinterpolationalgorithm. However,this discrepancy does not significantly influence the ultimate computation efficiency of the DIC method,because the pre-computation occupies a small share(about 5%-7%)in the overall computation time when processing the speckle image pair with sub-pixel displacement.In Fig.5(b),the average time per iteration of the IC-GN algorithm with the two interpolation algorithms are at same level,with difference less than 1%,as in both interpolation algorithms the intensity at sub-pixel location is obtained according to Eq.(1).It is interesting in Fig.5(c)that the overall computation time consumed by the DIC method with the bicubic interpolation can be remarkably less than that with cubic B-spline interpolation for some sub-pixel displacements, e.g.0.05 pixels and 0.3 pixels.The reason could be attributed to the effects of the interpolation on convergence speed.Figure 5(d) compares the average iteration number in the IC-GN algorithm with the two interpolation algorithms.It can be found that the gap between the two series of data demonstrates similar tendencycompared with that of overall computation time(Fig.5(c)).The bicubic interpolation has larger bias,which generally leads to larger increment of deformation during the iteration,hence the convergence speed.Therefore,in some cases,the IC-GN algorithm with the cubic B-spline interpolation needs one more step to achieve the convergence criterion in comparison with the IC-GN algorithm with the bicubic interpolation.Nevertheless,in most of thecasestheIC-GNalgorithmwiththecubicB-splineinterpolation only increases the computation cost by up to 12%over its bicubic counterpart.

    Fig.4.(a)Mean bias errors and(b)standard deviation between the IC-GN algorithm-based DIC method with the two interpolation algorithms.

    Fig.5.Time consumed by(a)pre-computation of global look-up table,(b)each iteration,and(c)overall procedure of the DIC method.(d)Average iteration number in the DIC method.

    This work demonstrates the implementation of global lookup table strategy of cubic B-spline interpolation for the IC-GN algorithm-based DIC method.The theoretical and experimental study is carried out to evaluate the performance of this interpolation strategy in the sub-pixel DIC algorithm,in comparison with the widely used global look-up table strategy of bicubic interpolation.It is found that the IC-GN algorithm-based DIC method can achieve a significantly improved accuracy using the global look-up table strategy of cubic B-spline interpolation,compared with its counterpart with bicubic interpolation.Furthermore,this improvement requires slightly increased computation cost.

    Acknowledgments

    The work was financially supported by the National Natural ScienceFoundationofChina(11202081,11272124,and11472109) and the State Key Lab of Subtropical Building Science,South China University of Technology(2014ZC17).

    References

    [1]M.A.Sutton,J.J.Orteu,H.Schreier,Image Correlation for Shape,Motion and Deformation Measurements:Basic Concepts,Theory and Applications, Springer,New York,2009.

    [2]B.Pan,Recent progress in digital image correlation,Exp.Mech.51(2011) 1223-1235.

    [3]M.A.Sutton,Computer vision-based,noncontacting deformation measurements in mechanics:a generational transformation,Appl.Mech.Rev.65 (2013)050802.

    [4]Y.Ma,T.Xiong,X.Yao,Experimental investigation of interface curing stresses between pmma and composite using digital speckle correlation method, Theor.Appl.Mech.Lett.1(2011)51003.

    [5]B.Guo,H.Wang,H.Xie,et al.,Elastic constants characterization on graphite at 500°C by the virtual fields method,Theor.Appl.Mech.Lett.4(2014)021010.

    [6]S.Baker,I.Matthews,Lucas-Kanade 20 years on:a unifying framework,Int.J. Comput.Vision.56(2004)221-255.

    [7]B.Pan,K.Li,W.Tong,Fast,robust and accurate digital image correlation calculation without redundant computations,Exp.Mech.53(2013)1277-1289.

    [8]Y.Gao,T.Cheng,Y.Su,et al.,High-efficiency and high-accuracy digital image correlation for three-dimensional measurement,Opt.Laser.Eng.65(2015) 73-80.

    [9]Z.Jiang,Q.Kemao,H.Miao,et al.,Path-independent digital image correlation with high accuracy,speed and robustness,Opt.Laser.Eng.65(2015)93-102.

    [10]H.W.Schreier,J.R.Braasch,M.A.Sutton,Systematic errors in digital image correlation caused by intensity interpolation,Opt.Eng.39(2000)2915-2921.

    [11]Y.Q.Wang,M.A.Sutton,H.A.Bruck,et al.,Quantitative error assessment in pattern matching:effects of intensity pattern noise,interpolation,strain and image contrast on motion measurements,Strain 45(2009)160-178.

    [12]L.Luu,Z.Wang,M.Vo,et al.,Accuracy enhancement of digital image correlation with B-spline interpolation,Opt.Lett.36(2011)3070-3072.

    [13]Y.Zhou,C.Sun,Y.Song,et al.,Image pre-filtering for measurement error reduction in digital image correlation,Opt.Laser.Eng.65(2015)46-56.

    [14]Y.Su,Q.Zhang,Z.Gao,et al.,Fourier-based interpolation bias prediction in digital image correlation,Opt.Express 23(2015)19242-19260.

    [15]B.Pan,K.Li,A fast digital image correlation method for deformation measurement,Opt.Laser.Eng.49(2011)841-847.

    [16]C.Xiong,J.Yao,J.Chen,et al.,A convenient look-up-table based method for the compensation of non-linear error in digital fringe projection,Theor.Appl. Mech.Lett.6(2016)49-53.

    [17]T.Watanabe,Image coding making use of B-spline surfaces,Ieee.T.Circ.Syst. Vid.7(1997)409-413.

    [18]http://en.wikipedia.org/wiki/Bicubic_interpolation.

    28 January 2016

    http://dx.doi.org/10.1016/j.taml.2016.04.003

    2095-0349/?2016 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?Corresponding author.

    E-mail address:zhenyujiang@scut.edu.cn(Z.Jiang).

    *This article belongs to the Solid Mechanics

    亚洲图色成人| 2021天堂中文幕一二区在线观| 欧美+日韩+精品| 一个人看视频在线观看www免费| 中文资源天堂在线| 日韩,欧美,国产一区二区三区 | 国产成人a∨麻豆精品| 亚洲精品影视一区二区三区av| 69av精品久久久久久| 国产精品久久久久久av不卡| 亚洲精品久久国产高清桃花| 18禁在线无遮挡免费观看视频 | 欧美又色又爽又黄视频| 午夜影院日韩av| 色噜噜av男人的天堂激情| 99久久中文字幕三级久久日本| 色综合站精品国产| 免费看光身美女| 久久久久国产精品人妻aⅴ院| 亚洲成人久久性| 国产不卡一卡二| a级毛片免费高清观看在线播放| 听说在线观看完整版免费高清| 色播亚洲综合网| 狂野欧美白嫩少妇大欣赏| 99久久成人亚洲精品观看| 亚洲人成网站高清观看| 免费无遮挡裸体视频| 国产三级中文精品| 最新中文字幕久久久久| 九色成人免费人妻av| 一区二区三区免费毛片| 亚洲一区高清亚洲精品| 午夜激情欧美在线| 极品教师在线视频| 国产探花在线观看一区二区| 黄色日韩在线| 国产女主播在线喷水免费视频网站 | 国产精品国产高清国产av| 黄色日韩在线| 自拍偷自拍亚洲精品老妇| 久久久久久伊人网av| 日韩强制内射视频| 俺也久久电影网| 美女高潮的动态| 国产成人a区在线观看| 婷婷亚洲欧美| 午夜福利高清视频| 神马国产精品三级电影在线观看| 国产三级中文精品| 亚洲av成人av| 激情 狠狠 欧美| 免费观看人在逋| 嫩草影院新地址| 亚洲四区av| 国内精品宾馆在线| 成人性生交大片免费视频hd| aaaaa片日本免费| 免费看av在线观看网站| 久久精品国产鲁丝片午夜精品| 久久99热6这里只有精品| 久久精品夜夜夜夜夜久久蜜豆| 最新中文字幕久久久久| 亚洲内射少妇av| 亚洲,欧美,日韩| 亚洲精华国产精华液的使用体验 | 一级av片app| 中文字幕免费在线视频6| 一本精品99久久精品77| 亚洲天堂国产精品一区在线| 天堂网av新在线| 国产欧美日韩精品一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 在线国产一区二区在线| 欧美最黄视频在线播放免费| 欧美+日韩+精品| 久久精品91蜜桃| 91av网一区二区| 亚洲内射少妇av| 国产亚洲精品久久久com| 国产麻豆成人av免费视频| 免费看日本二区| 一本精品99久久精品77| 黄色配什么色好看| 国产精品亚洲一级av第二区| av在线观看视频网站免费| 亚洲内射少妇av| 久久天躁狠狠躁夜夜2o2o| 成人二区视频| 在线国产一区二区在线| 亚洲成人久久性| 深夜精品福利| 国产高清有码在线观看视频| 啦啦啦啦在线视频资源| 尾随美女入室| 99国产极品粉嫩在线观看| 欧美精品国产亚洲| 性插视频无遮挡在线免费观看| 亚洲一区高清亚洲精品| 国产精品亚洲美女久久久| 国内少妇人妻偷人精品xxx网站| 搡女人真爽免费视频火全软件 | 欧美中文日本在线观看视频| 成人欧美大片| 国产成人精品久久久久久| 一级a爱片免费观看的视频| 精品乱码久久久久久99久播| 两个人视频免费观看高清| 国产亚洲av嫩草精品影院| 干丝袜人妻中文字幕| 成人鲁丝片一二三区免费| 免费观看精品视频网站| 婷婷精品国产亚洲av| 12—13女人毛片做爰片一| 日日啪夜夜撸| 国产精品,欧美在线| 中文字幕熟女人妻在线| 在线观看午夜福利视频| 国产亚洲欧美98| 成人精品一区二区免费| 人妻夜夜爽99麻豆av| 热99在线观看视频| 搡老妇女老女人老熟妇| 在线免费观看不下载黄p国产| 老女人水多毛片| 精品人妻一区二区三区麻豆 | 亚洲性久久影院| h日本视频在线播放| 大型黄色视频在线免费观看| 日韩精品有码人妻一区| а√天堂www在线а√下载| 少妇人妻精品综合一区二区 | 成人亚洲精品av一区二区| 97超碰精品成人国产| 欧美+亚洲+日韩+国产| 欧美性猛交黑人性爽| 男人的好看免费观看在线视频| 免费看av在线观看网站| 欧美一级a爱片免费观看看| 联通29元200g的流量卡| 日韩精品中文字幕看吧| 国产精品综合久久久久久久免费| 深夜a级毛片| 精品久久久久久久久av| 久久天躁狠狠躁夜夜2o2o| 非洲黑人性xxxx精品又粗又长| av在线老鸭窝| 亚洲国产精品合色在线| 人人妻人人看人人澡| 波野结衣二区三区在线| 欧美日本亚洲视频在线播放| 国产精品三级大全| 性插视频无遮挡在线免费观看| 又爽又黄无遮挡网站| 美女被艹到高潮喷水动态| 成人亚洲欧美一区二区av| 99国产极品粉嫩在线观看| 国产高清视频在线观看网站| 一夜夜www| 中文字幕精品亚洲无线码一区| a级一级毛片免费在线观看| 欧美日本亚洲视频在线播放| 亚洲精品影视一区二区三区av| 久久久精品大字幕| 精华霜和精华液先用哪个| 亚洲精品影视一区二区三区av| 啦啦啦观看免费观看视频高清| 人人妻人人澡欧美一区二区| 亚洲国产精品成人综合色| 亚洲在线自拍视频| 一级a爱片免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 99热精品在线国产| 在线观看一区二区三区| 国产淫片久久久久久久久| 中国美白少妇内射xxxbb| 精品国产三级普通话版| 老司机影院成人| 中文资源天堂在线| 国产成人91sexporn| 69av精品久久久久久| 18禁在线播放成人免费| 深夜精品福利| 成人无遮挡网站| 亚洲人与动物交配视频| 欧美一级a爱片免费观看看| av福利片在线观看| 精品国产三级普通话版| av在线天堂中文字幕| 精品人妻熟女av久视频| 青春草视频在线免费观看| 日本黄色视频三级网站网址| 草草在线视频免费看| 久久久久久国产a免费观看| 亚洲婷婷狠狠爱综合网| 国产精品一二三区在线看| 亚洲av成人精品一区久久| av天堂中文字幕网| 搡老岳熟女国产| 乱人视频在线观看| 好男人在线观看高清免费视频| 国产成人一区二区在线| 欧美精品国产亚洲| 亚洲欧美精品综合久久99| 亚洲欧美精品自产自拍| av卡一久久| 丝袜喷水一区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲综合色惰| 亚洲自拍偷在线| a级毛片a级免费在线| 美女cb高潮喷水在线观看| 欧美高清性xxxxhd video| 精品少妇黑人巨大在线播放 | 亚洲成av人片在线播放无| 国产精品av视频在线免费观看| 国产成人aa在线观看| 国产精品一区二区三区四区免费观看 | 欧美丝袜亚洲另类| 永久网站在线| 日日干狠狠操夜夜爽| 亚洲欧美日韩高清在线视频| 一级a爱片免费观看的视频| 欧美色视频一区免费| 人妻制服诱惑在线中文字幕| 日本精品一区二区三区蜜桃| 免费在线观看成人毛片| 搡老熟女国产l中国老女人| 蜜臀久久99精品久久宅男| 久久久精品欧美日韩精品| aaaaa片日本免费| 日韩国内少妇激情av| 日韩制服骚丝袜av| 插阴视频在线观看视频| 男女那种视频在线观看| 欧美最新免费一区二区三区| 男女啪啪激烈高潮av片| 黄片wwwwww| 69人妻影院| 99热这里只有是精品在线观看| 美女被艹到高潮喷水动态| 久久欧美精品欧美久久欧美| 亚洲av免费高清在线观看| 不卡视频在线观看欧美| 久久久久久大精品| 嫩草影院精品99| 欧美色视频一区免费| 中文字幕人妻熟人妻熟丝袜美| 三级经典国产精品| 亚洲自拍偷在线| 色综合站精品国产| 乱系列少妇在线播放| 日韩一区二区视频免费看| 日韩欧美精品v在线| 午夜精品在线福利| 国产精品亚洲美女久久久| 少妇被粗大猛烈的视频| 成人漫画全彩无遮挡| 亚洲美女黄片视频| 日日撸夜夜添| 亚洲五月天丁香| 直男gayav资源| 一级黄色大片毛片| 99热这里只有是精品50| 97超碰精品成人国产| 91久久精品电影网| 国产精品日韩av在线免费观看| 午夜福利视频1000在线观看| 亚洲人成网站高清观看| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| 欧美色视频一区免费| 精品久久久久久久人妻蜜臀av| 一进一出好大好爽视频| 国产精品久久久久久久久免| 久久久久国产网址| 男人舔女人下体高潮全视频| 免费大片18禁| 亚洲最大成人手机在线| 久久久久精品国产欧美久久久| 欧美区成人在线视频| 亚洲av免费在线观看| 在线免费十八禁| 看片在线看免费视频| 亚洲国产精品sss在线观看| 卡戴珊不雅视频在线播放| 老师上课跳d突然被开到最大视频| 亚洲人成网站在线播放欧美日韩| 国产成年人精品一区二区| 亚洲成人久久爱视频| 中国美白少妇内射xxxbb| 亚洲欧美日韩无卡精品| 国产高清有码在线观看视频| 99热这里只有精品一区| 老熟妇乱子伦视频在线观看| 热99在线观看视频| 性插视频无遮挡在线免费观看| 亚洲欧美精品综合久久99| 天天一区二区日本电影三级| 国产一区二区三区av在线 | 国产午夜精品论理片| 高清午夜精品一区二区三区 | 久久中文看片网| 久久九九热精品免费| 亚洲欧美日韩高清在线视频| 国产午夜福利久久久久久| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩卡通动漫| 97超级碰碰碰精品色视频在线观看| 成人一区二区视频在线观看| 精品人妻视频免费看| 免费人成视频x8x8入口观看| 国产又黄又爽又无遮挡在线| 色哟哟哟哟哟哟| 我要看日韩黄色一级片| 国产视频内射| 日韩精品中文字幕看吧| 精品一区二区免费观看| 毛片一级片免费看久久久久| 午夜精品国产一区二区电影 | 最新中文字幕久久久久| 男女下面进入的视频免费午夜| 亚洲性夜色夜夜综合| 晚上一个人看的免费电影| av.在线天堂| 我的女老师完整版在线观看| 夜夜爽天天搞| 欧美色欧美亚洲另类二区| 内射极品少妇av片p| 国产精品人妻久久久影院| 亚洲一区高清亚洲精品| 成年版毛片免费区| 日韩三级伦理在线观看| 日韩 亚洲 欧美在线| 精品少妇黑人巨大在线播放 | 成人性生交大片免费视频hd| 国产激情偷乱视频一区二区| 色在线成人网| 插阴视频在线观看视频| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看| 国产 一区 欧美 日韩| 99久久精品热视频| 欧美国产日韩亚洲一区| 一区福利在线观看| 色尼玛亚洲综合影院| 国内揄拍国产精品人妻在线| 特大巨黑吊av在线直播| 久久精品夜夜夜夜夜久久蜜豆| 晚上一个人看的免费电影| 91av网一区二区| 国产单亲对白刺激| 少妇被粗大猛烈的视频| 成年av动漫网址| avwww免费| 成人亚洲精品av一区二区| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 精品人妻视频免费看| 美女高潮的动态| 最好的美女福利视频网| 啦啦啦啦在线视频资源| 久久人人精品亚洲av| 麻豆av噜噜一区二区三区| 国产男靠女视频免费网站| 少妇人妻精品综合一区二区 | 午夜福利18| 麻豆av噜噜一区二区三区| 国产av在哪里看| 亚洲成a人片在线一区二区| 蜜臀久久99精品久久宅男| 少妇熟女欧美另类| 日本与韩国留学比较| 美女高潮的动态| 精品人妻视频免费看| 亚洲一区高清亚洲精品| 亚洲欧美日韩无卡精品| 欧美另类亚洲清纯唯美| 国产伦精品一区二区三区视频9| 亚洲不卡免费看| 精品国产三级普通话版| 99久久成人亚洲精品观看| 男人舔女人下体高潮全视频| 性欧美人与动物交配| 亚洲自拍偷在线| 国产精品伦人一区二区| 色噜噜av男人的天堂激情| 一级av片app| 婷婷色综合大香蕉| 亚洲久久久久久中文字幕| 少妇丰满av| 亚洲美女搞黄在线观看 | av专区在线播放| 麻豆国产97在线/欧美| 午夜视频国产福利| 我要看日韩黄色一级片| 不卡视频在线观看欧美| 嫩草影院入口| 成年女人看的毛片在线观看| 人妻少妇偷人精品九色| 蜜臀久久99精品久久宅男| 成人鲁丝片一二三区免费| 亚洲国产精品sss在线观看| 成熟少妇高潮喷水视频| 久久久久久伊人网av| 又黄又爽又刺激的免费视频.| 精品午夜福利在线看| 啦啦啦观看免费观看视频高清| 精品久久国产蜜桃| 中国美白少妇内射xxxbb| 观看美女的网站| 亚洲国产精品合色在线| 亚洲七黄色美女视频| 老熟妇乱子伦视频在线观看| 亚洲欧美清纯卡通| 一进一出抽搐gif免费好疼| 51国产日韩欧美| 国产av在哪里看| 成人二区视频| 国内揄拍国产精品人妻在线| 十八禁国产超污无遮挡网站| 久久久久久国产a免费观看| 日韩在线高清观看一区二区三区| 亚洲av一区综合| 国产精品国产高清国产av| 亚洲高清免费不卡视频| 国产极品精品免费视频能看的| 精品欧美国产一区二区三| 日韩一本色道免费dvd| 99热这里只有是精品在线观看| 亚洲成人中文字幕在线播放| 国产色婷婷99| 久久鲁丝午夜福利片| 校园人妻丝袜中文字幕| av天堂中文字幕网| 亚洲va在线va天堂va国产| av在线蜜桃| 秋霞在线观看毛片| 久久精品国产自在天天线| 级片在线观看| 麻豆国产97在线/欧美| 欧美日本视频| 亚洲国产精品成人综合色| 中文亚洲av片在线观看爽| 老司机影院成人| 99久久久亚洲精品蜜臀av| 久久久久性生活片| 成人国产麻豆网| 日本一本二区三区精品| 日韩强制内射视频| 免费大片18禁| 成人永久免费在线观看视频| АⅤ资源中文在线天堂| 尤物成人国产欧美一区二区三区| 国产精品无大码| 97超视频在线观看视频| 久久午夜亚洲精品久久| 免费av不卡在线播放| 国产黄色小视频在线观看| 久久久欧美国产精品| 国产精品一及| 午夜精品国产一区二区电影 | 99九九线精品视频在线观看视频| 尾随美女入室| 偷拍熟女少妇极品色| 久久亚洲国产成人精品v| 亚洲国产欧美人成| 成人欧美大片| 国产一区二区在线av高清观看| 精品国内亚洲2022精品成人| 天堂√8在线中文| av在线老鸭窝| eeuss影院久久| 欧美另类亚洲清纯唯美| 一区福利在线观看| 亚洲美女搞黄在线观看 | 色尼玛亚洲综合影院| 久久99热这里只有精品18| 老女人水多毛片| 日日撸夜夜添| 日本一本二区三区精品| 精品乱码久久久久久99久播| 精品人妻一区二区三区麻豆 | 在线免费十八禁| 三级国产精品欧美在线观看| 一本久久中文字幕| 九九在线视频观看精品| 俺也久久电影网| 永久网站在线| 国产片特级美女逼逼视频| 国内精品一区二区在线观看| 长腿黑丝高跟| 国产av一区在线观看免费| 久久久久久久久大av| 国产综合懂色| 国产一区亚洲一区在线观看| 大又大粗又爽又黄少妇毛片口| 婷婷六月久久综合丁香| 别揉我奶头 嗯啊视频| 美女黄网站色视频| av在线老鸭窝| 国产亚洲91精品色在线| 国产激情偷乱视频一区二区| 亚洲无线在线观看| 久久久久久久久中文| 久久综合国产亚洲精品| 熟妇人妻久久中文字幕3abv| 搡老妇女老女人老熟妇| 白带黄色成豆腐渣| 男人的好看免费观看在线视频| 小说图片视频综合网站| 国产精品久久视频播放| 久久精品国产99精品国产亚洲性色| 国产高潮美女av| 秋霞在线观看毛片| 国产精品福利在线免费观看| 国产精品一二三区在线看| 亚洲成人久久性| 午夜激情福利司机影院| 午夜影院日韩av| 亚洲成a人片在线一区二区| 国产三级中文精品| 欧美3d第一页| 久久亚洲精品不卡| 又黄又爽又刺激的免费视频.| 99在线人妻在线中文字幕| 亚洲中文日韩欧美视频| 天美传媒精品一区二区| 白带黄色成豆腐渣| 亚洲va在线va天堂va国产| 亚洲第一区二区三区不卡| 成人av在线播放网站| 又粗又爽又猛毛片免费看| 女人被狂操c到高潮| 日韩中字成人| 别揉我奶头 嗯啊视频| 亚洲综合色惰| 免费人成在线观看视频色| 欧美性猛交黑人性爽| 丰满的人妻完整版| 国产91av在线免费观看| 亚洲欧美成人综合另类久久久 | 99九九线精品视频在线观看视频| 国产精品不卡视频一区二区| 国产黄色小视频在线观看| 欧美最新免费一区二区三区| 久久午夜亚洲精品久久| 两个人的视频大全免费| 免费在线观看成人毛片| 国产不卡一卡二| 亚洲国产精品国产精品| 国产av不卡久久| 国产av麻豆久久久久久久| 变态另类丝袜制服| 看片在线看免费视频| 偷拍熟女少妇极品色| 伦理电影大哥的女人| 日韩高清综合在线| 日韩欧美 国产精品| 精品无人区乱码1区二区| 全区人妻精品视频| 亚洲国产色片| 寂寞人妻少妇视频99o| 男人的好看免费观看在线视频| 成人毛片a级毛片在线播放| 可以在线观看的亚洲视频| 国产av在哪里看| 校园春色视频在线观看| 国产午夜精品久久久久久一区二区三区 | 欧美xxxx黑人xx丫x性爽| 日本黄大片高清| 免费在线观看成人毛片| 国产 一区精品| 精品久久久久久久久久久久久| 天堂√8在线中文| 亚洲av成人精品一区久久| 亚洲无线在线观看| 人妻丰满熟妇av一区二区三区| 欧美性感艳星| 三级经典国产精品| 亚洲欧美中文字幕日韩二区| 久久国产乱子免费精品| 国产高清三级在线| 嫩草影院精品99| 国产白丝娇喘喷水9色精品| 男人的好看免费观看在线视频| 国产女主播在线喷水免费视频网站 | 日本撒尿小便嘘嘘汇集6| 日韩精品有码人妻一区| 亚洲av成人精品一区久久| 嫩草影院精品99| 亚洲成人av在线免费| 最近的中文字幕免费完整| 精品国产三级普通话版| 国产精品电影一区二区三区| 日韩成人av中文字幕在线观看 | 亚洲最大成人手机在线| 亚洲乱码一区二区免费版| 日韩欧美国产在线观看| 淫秽高清视频在线观看| 亚洲欧美成人精品一区二区| 18禁在线无遮挡免费观看视频 | 麻豆精品久久久久久蜜桃| 亚洲美女视频黄频| 看片在线看免费视频| 少妇猛男粗大的猛烈进出视频 | 国产精品亚洲一级av第二区| 中文字幕精品亚洲无线码一区| 久久精品国产亚洲av香蕉五月| 国产伦精品一区二区三区四那| 卡戴珊不雅视频在线播放| 一区二区三区高清视频在线| 色视频www国产| 丰满的人妻完整版| 少妇的逼水好多|