• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the subgrade deformation under high-speed train loading and water–soil interaction

    2016-09-06 11:38:19JianHanGuoTangZhaoXiaoZhenShengXueSongJin
    Acta Mechanica Sinica 2016年2期

    Jian Han·Guo-Tang Zhao,2·Xiao-Zhen Sheng·Xue-Song Jin

    ?

    Study on the subgrade deformation under high-speed train loading and water–soil interaction

    Jian Han1·Guo-Tang Zhao1,2·Xiao-Zhen Sheng1·Xue-Song Jin1

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

    AbstractIt is important to study the subgrade characteristicsofhigh-speedrailwaysinconsiderationofthewater-soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops a nonlinear water-soil interaction dynamic model of slab track couplingwithsubgradeunderhigh-speedtrainloadingbased on vehicle-track coupling dynamics.By using this model, thebasicdynamiccharacteristics,includingwater-soilinteraction and without water induced by the high-speed train loading,arestudied.Themainfactors-thepermeabilitycoefficien andtheporosity-influencin thesubgradedeformation are investigated.The developed model can characterize the soil dynamic behaviour more realistically,especially when considering the influenc of water-rich soil.

    KeywordsWater-soil interaction·High-speed train

    loading·Finite difference method·Subgrade deformation· Permeability coefficien·Porosity

    1 Introduction

    In 1856,Darcy established a linear law of seepage.Since then many advances have been made in seepage mechanics, and theoretical basics have been provided for engineering calculations.Most previous studies did not consider the interaction between pore fluiflw and porous media deformation.However,many seepage problems with surface settlement involve fluid-soli interaction[1].Terzaghi[2], as an early researcher of the fluid-soli coupling deformationphenomenon,proposedaone-dimensionalconsolidation model based on the concept of effective stress that was widely used for solving solid mechanics problems.Biot later conducted further research on the interaction between a three direction deformation material and pore pressure. He also established a relatively perfect tridimensional consolidation theory based on the following assumptions:the material is isotropic and has a small linear elastic deformation,the pore fluiis incompressible and fill the pore space of the solid skeleton,and flui flw through a porous skeleton satisfie Darcy’s law[2].Two researchers,Barry [3]and Mercer[4],studied the flw and deformation in poroelasticity through a theoretical analysis and numerical simulation but did not study any applications.Nowadays, fluid-solicoupling seepage mechanics is widely applied in engineering,especially in tunnel engineering,highway subgrade construction,underground gas storage engineering,environmental engineering,chemical engineering,etc. For a high-speed railway,too,it is very important to consider the fluid-soli coupling in the subgrade in a water-rich area.

    Alongwiththerapiddevelopmentofhigh-speedrailways, research on the dynamics of a high-speed railway is becomingincreasinglycomplicated.Originallyindependentvehicle system dynamics and track system dynamics were replaced by vehicle-track coupling dynamics.Since Winkler proposed the elastic foundation beam theory,for the dynamics of a subgrade,railway subgrade modelling has been developed considering a semi-infinit elastic foundation[5]and layeredelasticfoundation[6,7].However,thelayeredelastic body used to model the subgrade in previous studies did not fully characterize the real subgrade deformation.The plas-ticity of the subgrade and water-soil interaction also needs to be considered.

    There was a study by Bian[8]who studied the consolidation and long-term settlement of soft soil ground induced by train traffi loading based on a 2.5-dimensional finit element method together with the thin layer element method. He investigated the influencof speed on subgrade settlement.In addition,Xiang[9]studied the consolidation deformation properties of a silt roadbed under the effect of a tide.Also,Chen[10]studied the dissipation of excess pore water pressure in the one-dimensional finit strain consolidation of soft clays.Another researcher,Xu[11],developed a one-dimensional continuity equation and conducted consolidation analysis of unsaturated soils with a high degree of saturation.In addition,Li[12]analysed one-dimensional consolidation problems considering the exponential flw law and time-dependent loading.Then Chen[13]investigated the deformation characteristics of slab track-subgrade with water level changes through a model test,the results of which showed that water has a very obvious influenc on subgrade deformation.However,the boundary of the model test is still different from that of an actual line. Therefore,more attention should be paid to subgrade deformation with water-soil interaction more realistically.The key factors related to the water flw should also be investigated.

    In this study,to analyse the effect of water-soil coupling togetherwithhigh-speedtrainloadingonthesubgradedeformation,a coupling dynamic model consisting of a vehicle and the CRTS-I slab track is developed to determine the rail-supporting forces.The rail-supporting forces are used as the boundary loading for the coupling model of the slab trackandsubgradeconsideringthewater-soilinteraction.By usingthismodel,thebasicdynamiccharacteristicsincluding water-soilinteractionandwithoutwaterinducedbythehighspeed train loading are studied.Main factors-permeability coefficien and porosity-influencin the subgrade deformation are investigated.

    2 Track-subgrade coupling model with water–soil interaction

    In this study a program based on the fast Lagrangian method of continuum(FLAC)numerical method is written by using the FISH language for conducting nonlinear coupling dynamic analysis.Figure 1 shows the analysis process.

    2.1Finite difference model of slab track

    A two-dimensional finitdifference model of the CRTSI slab track system is built.Figure 2 shows the mesh and geometric dimensioning of the model.The model includes three layers:slab,asphalt cement mortar(CAM),and a concrete base.It contains 138 elements and 171 nodes.Table 1 shows the material parameters of CRTS-I slab track components.

    2.2Finite difference model of subgrade

    A two-dimensional finit difference model of the subgrade system is built.Figure 2 shows the mesh and geometric dimensioning ofthe model.The model includes three layers: the firs layer of subgrade bed,the second layer of subgrade bed,and the third layer of subgrade.It contains 2128 elements and 2223 nodes.

    Fig.1 Process for nonlinear coupling dynamic analysis

    Table 1 Material parameters of slab track components

    Fig.2 Mesh and geometric dimensioning of CRTS-I slab track and subgrade

    A viscoelastic artificia boundary[14]was applied to the bottom of the subgrade.This type of boundary can characterize the real behaviour of the subgrade bottom support and avoidwavereflectio ontheboundary.Theboundaryissimulatedusinganormalandtangentialspringanddamping.One end of the spring-damping is connected to the subgrade bottom,and the other end is fi ed.Springs and dampers shown in Fig.2 are described in Eqs.(1)and(2)(Appendix).Both sides of the subgrade are free.The top surface and both sides of the subgrade are considered to be permeable boundaries.

    The constitutive relation of the subgrade is the Mohr-Coulomb elastic-plastic model.Tables 2 and 3,respectively, show the solid parameters and the fluiparameters of the subgrade components.

    Table 2 Solid material parameters of subgrade components

    Table 3 Fluid material parameters of subgrade components

    2.3Contact model between track and subgrade

    The contact relationship between the concrete base and the topsurfaceofthesubgradeissimulatedbyzerothicknesselements.TheconstitutiverelationistheCoulombshearmodel. Thecontactzoneincludesdoublesurfaces.Thecontactlogic method is used to search for the contact point,which gives thepointoneachofthetwosurfacestobeusedcontinuously. Figure 3 shows the force diagram of the contact surface. Taking point N as an example,LNindicates the length controlled by contact point N.The points closest to point N are M and P.Therefore,LNis equal to half of the distance from N to M and from N to P.Thus,the interface is divided into several continuous parts with length Li.Each part is controlled by point i(I,Q,M,N,P,and O in Fig.3).In Fig.3,S is the slider,T is the tensile strength,knis the normal stiffness,and ksis the shear stiffness.The total load in the normal and tangential directions is determined using Eq. (3)(Appendix).Table 4 shows the parameters of the contact model.

    2.4Water–soil interaction

    FLAC models the flw of flui through a permeable solid, such as soil in this study.The flw modelling may be done by itself,independent of the usual mechanical calculation, or it may be done in parallel with the mechanical modelling, in order to capture the effects of fluid-soli interaction.One type of fluid-soli interaction is consolidation,in which the slow dissipation of pore pressure causes displacements tooccurinthesoil.Thistypeofbehaviorinvolvestwomechanical effects.First,changes in pore pressure cause changes in effective stress,which affect the mechanical response of the soil.Second,the flui in a zone reacts to mechanical volume changes by a change in pore pressure.This study models the water-soil interaction in subgrade using the FLAC.Watersoil interaction should satisfy the following assumptions:

    Fig.3 Force diagram of contact surface

    Table 4 Parameters of contact model

    (1)Porous medium skeleton only has a small strain;

    (2)Solid particles in porous medium(soil particles)are incompressible;

    (3)The flw of pore water obeys Darcy’s law;

    (4)Theinfluenc ofcapillarypressureisneglected(theflui pressure is equal to air pressure when saturation is less than one),and the air pressure is zero in the unsaturated zone.

    Thevariablesinvolvedinthedescriptionofflui flwthrough soil are the pore pressure,saturation,and the three components of the specifi discharge vector.These variables are related through the flui mass-balance equation,Darcy’s law forflui transport,aconstitutiveequationspecifyingtheflui response to changes in pore pressure,saturation,and volumetric strains.Pore pressure influenc is involved in the mechanical constitutive laws to complete the fluiflwmechanical coupling.Assuming the volumetric strain rates are known,substitution of the mass balance equation into theflui constitutiverelation,usingDarcy’slaw,yieldsadifferential equation in terms of pore pressure and saturation that can be solved for particular geometries,properties,and boundary and initial conditions.

    The differential equations mentioned above describing the water-soil interaction in subgrade,and corresponding to FLAC’s numerical implementations are given in the appendix.

    2.5Load condition

    Figure 4 shows the coupling dynamic model of a vehicle and CRTS-I slab track that is used to predict the discrete railsupporting forces when a vehicle passes through the slab track.A high-speed railway vehicle is considered a rigid multi-body model in which the car body is supported on two double-axle bogies with a primary and a secondary suspension system.The dynamic model of the slab track subsystem includes the rail,fastener system,slab,CA mortar,and concrete base.The rail is treated as a continuous Timoshenko beam resting on rail pads,and the lateral,vertical,and torsional motions of the rail are considered simultaneously. When calculating the dynamic response of the vehicletrack,the tracing-curve-method[15]is adopted to locate the wheel-rail contact geometry.The non-linear Hertzian elastic contact theory is used to calculate the wheel-rail normal contactforces.Thetangentialwheel-railcreepforcesaref rst calculated using Kalker’s linear creep theory and then modifie using the Shen-Hedrick-Elkins nonlinear theory[16]. Moving rail-supporting is adopted as a new vehicle-track couplinginterfaceexcitationmodel(calledthe“trackingwindow”)[17-19].This excitation model well simulates the moving real vehicle under the excitation of discrete sleepers, and it can save a lot of computation time.The vehicle-track interaction is solved using a new explicit integration method [20].

    The rail-supporting forces at fastener i can be calculated using Eq.(9)(Appendix)by the coupling dynamic model of the vehicle and CRTS-I slab track shown above.

    Fig.4 Coupling dynamic model of a vehicle and a CRTS-I slab track.a Elevation.b End view

    Therail-supportingforcesalongthelongitudinaldirection of the track can be equivalent to one force by superimposing rail-supporting forces.In the process of superposition,each force should be multiplied by a track reduction factor along the longitudinal direction.Therefore,highspeed train loading onto the slab surface can be calculated using an equivalent method as given in Eq.(10)(Appendix).

    The equivalent rail-supporting force is taken as the input of the 2D finit difference coupling model of the slab track andsubgrade.Thisequivalentrail-supportingforceisapplied to the fastener.

    3 Results and discussions

    In the present analysis,the vehicle speed is 250 km/h.Typical rail irregularities characterized by wavelengths between 1 and 30 m are selected to excite the vehicle-track coupling dynamic system,as shown in Fig.5a.Figure 5b,c respectively show the time histories of the equivalent railsupporting forces with and without irregularities when the vehicle passes through the slab track.The passes of the four wheels(W1-W4)produce the four peaks observed in the fig ures.Figure 5b shows that the peaks corresponding to four wheels that are approximately equal without considering theirregularity.Figure 5c shows that the peaks corresponding to four wheels that are unequal due to the influenc of a rail irregularity,which causes the pitching motion of the bogie. Thus,W1(W2)is approximately equal to W3(W4).In this paper,the equivalent rail-supporting forces with irregularities in Fig.5c are used to excite the track-subgrade coupling dynamic model.

    Fig.5 Rail irregularity and equivalent rail-supporting forces.a Rail irregularity.b Equivalent rail-supporting forces without irregularity.c Equivalent rail-supporting forces with irregularity

    Fig.6 Monitoring location diagram

    Fig.7 Vertical stress with depth

    3.1Dynamic behaviour of subgrade under water–soil interaction

    3.1.1Subgrade stress

    Figure 6 shows the zero point and the vertical positive direction.Piis define as the point at the central line of the track ontheinterfaceoftwomaterials(P1:betweenslabandCAM, P2:between CAM and concrete base,P3:between concrete base and the firs layer of the subgrade,P4:between the firs layer and the second layer of the subgrade,P5:between the second layer and the third layer of the subgrade).Figure 7 shows the vertical stress with depth under the high-speed train loading.The cases with considering water and without water are compared.Figure 7 shows that the vertical stress includingwaterishigherthanthatwithoutwater.Forthecase withoutwater,theexternalpressureinducedbythetrainload is supported only by soil.However,for the case including water,the total stress induced by the train load is supported bybothsoilandtheporewater.Thecomponentsupportedby the soil causes the effective stress of the soil and the compo-nentsupportedbythewaterinducestheexcessporepressure. So,the interaction between water and soil leads to the higher stress.

    Figure8showstheverticalstressattenuationcoefficien of the cases including water and excluding water.The vertical stress of the cases including and excluding water attenuate quickly from top to P4,and the vertical stresses basically complete the attenuation when the depth reaches P5.It also canbeseenthattheattenuationcoefficien ofthecaseincluding water is higher than that excluding water.

    Fig.8 Attenuation coefficien with depth

    Fig.9 Vertical deformation with depth

    3.1.2Subgrade deformation

    Figure 9 shows that the vertical deformation decreases with anincreaseinverticaldepth.InFig.9,themeaningof P1-P5is the same to that in Sect.3.1.1.The existence of inflectio points,such as P1,P2,and P3,is mainly because of the obvious material differences between adjacent layers.When the high-speed train passes,the water is squeezed out of the subgrade boundary,as is shown in Fig.10,and the soil is compressed easily.Thus,the vertical deformation including water is higher than that without water.

    3.2Influenc of permeability coefficien and porosity on

    subgrade deformation under high-speed train loading and water–soil interaction

    The influencof the permeability coefficien of the three layers of subgrade is investigated.In the firs layer,the permeability coefficient of 1×10?3cm/s,5×10?3cm/s, 1×10?2cm/s,5×10?2cm/s,and1×10?1cm/sareusedand namedasL1-PA,L1-PB,L1-PC,L1-PD,andL1-PEforconvenience.Inthesecondlayer,thepermeabilitycoefficient of 5×10?4cm/s,1×10?3cm/s,5×10?3cm/s,1×10?2cm/s, and5×10?2cm/sareusedandnamedasL2-PA,L2-PB,L2-PC,L2-PD,and L2-PE.In the third layer,the permeability coefficient of5×10?4cm/s,1×10?3cm/s,5×10?3cm/s, 1×10?2cm/s,and 5×10?2cm/s are used and named as L3-PA,L3-PB,L3-PC,L3-PD,and L3-PE.

    Fig.10 Fluid vector in subgrade

    Fig.11 Vertical deformation influence by permeability coefficient of the firs layer

    Figure 11 shows that the subgrade deformation along with the change of depth influence by different permeability coefficient in the firs layer.With the increase of the permeability coefficien in the firs layer,the vertical deformation increase slowly in the firs layer(?0.4 to 0 m).Thissuggests that the larger permeability coefficien leads to the water squeezed out of the subgrade easier,and then leads to larger subgrade deformation.As for the smaller deformation increase,there are two main reasons.The firs reason is that the firs layer itself has a large friction coefficient The other reasonisthattherelativelylargeYoung’smodulusofthefirs layer leads its smaller deformation range.The deformation changes below the firs layer are small.This indicates that the change of the permeability coefficien in the firs layer has little impact on the second and third layers.

    Fig.12 Vertical deformation influence by permeability coefficient of the second layer

    Figure 12 shows that the subgrade deformation along with the change of depth influenceby different permeability coefficient in the second layer.With the increase of the permeability coefficien in the second layer,the vertical deformations in the firs layer(?0.4 to 0 m)and the second layer(?2.7 to 0.4 m)increase more obviously than that in thethirdlayer.Thedeformationofthesecondlayerincreases obviously due to the permeability coefficien changes of this layer.The deformation of the firs layer increases obviously due to the deformation of the second layer.The changing rules of the vertical deformations of the firs layer and the second layer with the permeability coefficien are similar. Therefore,the deformation of the subgrade top is chosen for studying the change rule with the permeability coefficient The relationship between the vertical deformation(z)and the permeability coefficien(k)can be fitte with a Logistic Formula(11)(Appendix).Figure 13 shows the fittin curve of subgrade top deformation changing with the permeability coefficien inthesecondlayer.Inthebeginningstagethevertical deformation increases quickly with an increase in the permeability coefficient Then it increases slowly.

    Figure14showsthatthesubgradedeformationalongwith the change of depth influenceby different permeability coefficient inthethirdlayer.Withtheincreaseofthepermeabilitycoefficien inthethirdlayer,theverticaldeformations inthethreelayersofthesubgrade(?5.7to0m)increase.The rulesoftheverticaldeformationsofthethreelayerschanging with the permeability coefficien in the third layer are similar to that changing with the permeability coefficien in the second layer.The relationship between vertical deformation (y)and permeability coefficien(x)can be also fitte with a Logistic Formula(11)(Appendix).

    Fig.13 Fitting curve-deformation changing with the permeability coefficien in the second layer

    Fig.14 Vertical deformation influence by permeability coefficient of the third layer

    Figure 15 shows the fittin curve of subgrade top deformationchangingwiththepermeabilitycoefficien inthethird layer.

    In order to investigate the influencof the permeability coefficien on the subgrade deformation in three layers, the permeability coefficien influenc factor is define to be Eq.(12)(Appendix).

    According to Eq.(12)(Appendix),the permeability coefficien influencfactors with the changing permeability coefficien in the firs layer,the second layer,and the third layer,respectively,areshowninFig.16.Thelargerinfluenc factor means that the permeability coefficien influence the deformation more obviously.The permeability coefficien influenc factorhasalocalmaximumindepthcorrespondingtothefirs layerwhenthepermeabilitycoefficien changesin the firs layer.The permeability coefficien influenc factor has a local maximum in depth corresponding to the second layer when the permeability coefficien changes in the second layer.The permeability coefficien influenc factor has a maximum in depth corresponding to the third layer when the permeability coefficien changes in the third layer.By comparing these three cases,it can be seen that the influ ence factor is the largest when the permeability coefficien changes in the third layer.

    Permeability coefficien affects the subgrade deformation by changing the water flw ability through the soil porosity. So,the porosity itself is also an important factor affecting the subgrade deformation.Figure 17 shows the vertical deformation on the subgrade top influence by the porosity permeability coefficien in the third layer.In Fig.17,PA, PB,PC,PD,and PE represent permeability coefficient of 5×10?4cm/s,1×10?3cm/s,5×10?3cm/s,1×10?2cm/s, and 5×10?2cm/s,respectively.It can be seen from Fig.17 that the deformationscorresponding to fi e permeability coefficient increase with the increase of porosity.It indicates that the increase of the porosity and the permeability coefficien both lead to the water squeezed out of the subgrade easily,and then lead to the increase of the subgrade deformation.

    Fig.15 Fitting curve-deformation changing with the permeability coefficien in the third layer

    Fig.16 Thepermeabilitycoefficient asaninfluenc factorofthethree layers

    Fig.17 Vertical deformation influence by both permeability coeffi cients and porosities

    4 Conclusions

    A 2D finit difference model of the slab track coupled with the subgrade considering the fluid-soli interaction is established.The equivalent rail-supporting forces obtained by the vehicle-trackcouplingdynamicmodelaretakenastheinputs to the track/subgrade model.By using the model,the basic dynamic characteristics and two main factors after considering the water influencinthe subgrade deformation are studied.The following conclusions can be drawn from the results:

    (1)When the high-speed train passes,the water induces the excessporepressure,whichleadstoverticalstressincludingwaterthatishigherthanthatwithoutwater.Thewater squeezed out of the subgrade boundary leads to vertical deformationincludingwaterthatishigherthanthatwithout water.

    (2)The permeability coefficien of the firs layer has little impact on the subgrade deformation.The permeability coefficient of the second layer and the third layer affect the subgrade deformation more obviously than that of the firs layer.The permeability coefficien changing in one layer affects the deformations itself and its above layers significantl.The increase of the porosity and the permeability coefficien both lead to the increase of the subgrade deformation.AcknowledgmentsThis work was supported by the National Natural Science Foundation of China(Grants U1134202,51305360),the NationalBasicResearchProgramofChina(Grant2011CB711103),and the 2015 Doctoral Innovation Funds of Southwest Jiaotong University.

    Appendix

    Equations and Symbols:

    where Ktand Knare,respectively,the tangent and normal stiffness,Ctand Cnare,respectively,the tangent and normal damping,and G is the shear modulus.R is the equivalent length between the source and the boundary,and Δl is the smallest mesh size(0.15 m).Csis the shear wave velocity, and Cpis the press wave velocity.Csand Cpare calculated by using Eq.(2)as

    where G,K and ρ are,respectively,shear modulus,bulk modulus,and density of the remaining part under the subgrade bed.These parameters can be seen or calculated from Table 2.

    Transport Law:

    The fluitransport is described by Darcy’s law.For a homogeneous,isotropic soil and constant water density,this law is given in the form:

    whereqiisthespecifi dischargevector,p isporepressure,k istheabsolutemobilitycoefficient(permeability)ofthesoil, ?k(s)is the relative mobility coefficient which is a function offlui saturation,s(inFLAC,?k(s)=s2(3?2s)),ρfisthe flui density,and gj,j=1,2 are the two components of the gravity vector.

    Balance Laws:

    For small deformations,the fluimass balance can be expressed as where ζ is the variation of water volume per unit volume of soil due to diffusive flui mass transport,as introduced by Biot(1956).Note that fluiis compressible,which is reflecte by the flui modulus Kf=Δp/(ΔVf/Vf).

    The balance of momentum has the form where ρ=(1?n)ρs+nsρwis the bulk density,and ρsand ρware the densities of the soil and water,respectively.Note that(1?n)ρscorresponds to the dry density of the matrix.

    Constitutive Laws:

    In the FLAC,changes in the variation of fluicontent are related to changes in pore pressure p,saturation s,and mechanical volumetric strains ε.The response equation for the pore flui is formulated as where M is the Biot modulus[N/m2],n is the porosity,and α is the Biot coefficient

    The constitutive response for the soil has the form

    whereσi′jistheeffectivestressrate,H isthefunctional form oftheconstitutivelaw(Mohr-Coulombmodelinthisstudy), κ is a history parameter,δijis the Kronecker delta,and ξijis the strain rate,which can be transformed into displacement (velocity,acceleration)accordingtocompatibilityequations. In the FLAC numerical approach,the flw domain is discretized into quadrilateral zones define by four nodes.(The same discretization is used for mechanical concerns,when applicable.)Both pore pressure and saturation are assumed tobenodalvariables.Internally,eachzoneissubdividedinto a triangle,in which the pore pressure and the saturation are assumed to vary linearly.The numerical scheme relies on a finit difference nodal formulation of the flui continuity equation.The formulation can be paralleled to the mechanical constant stress formulation that leads to the nodal form of Newton’s law.It is obtained by substituting the pore pressure,specifi dischargevector,andpore-pressuregradientfor velocity vector,stress tensor,and strain-rate tensors,respectively.Theresultingsystemofordinarydifferentialequations is solved using an explicit mode of discretization in time.

    where Fsupis the discrete rail-supporting force,ksupand csupare,respectively,the supporting stiffness and damping,and Zsupand˙Zsupare,respectively,the displacement and the velocity.

    where kiis the reduction factor.For a slab track,according tothereductionanalysisbyusingtheANSYS,k0is1,k±1= 0.286,k±2=0.0038,k±3=0.00055,k±4=0.00031,and soon.Thefastenernumberwithinavehiclelengthis(2n+1)(n=10).

    where k0=0.01145,p=2.1297,A=0.56756,and B= 0.50654 for the subgrade top.

    whereα isthepermeabilitycoefficien influenc factor,zmax, zmin,and zmidare the maximum,minimum,and middle deformationindifferentdepths,respectively.i=1,2,3corresponds to the changing permeability coefficien in the firs layer,the second layer,and the third layer,respectively.

    References

    1.Dong,P.C.:The problems of fluid-soli coupling and its advance in research.J.Geomech.5,17-26(1999).(in Chinese)

    2.Kong,X.Y.:Higher Seepage Mechanics,2nd edn.Press of UniversityofScienceandTechnologyofChina,Hefei(2010).(inChinese)

    3.Barry,S.I.,Mercer,G.N.:Flow and deformation in poroelasticity-I unusual exact solutions.Math.Comput.Modell.30,23-29(1999)

    4.Mercer,G.N.,Barry,S.I.:Flowanddeformationinporoelasticity-II numerical method.Math.Comput.Modell.30,31-38(1999)

    5.Hung,H.H.,Yang,Y.B.:Elastic waves in visco-elastic half-space generatedbyvariousvehicleloads.SoilDyn.Earthq.Eng.21,1-17 (2001)

    6.Chen,S.S.:The Response of Multilayered System to Dynamic Surface Loads[Ph.D.Thesis].University of California,Berkeley (1987)

    7.Maffeis,A.,Seandella,L.,Stupazzin,M.,et al.:Numerical prediction of low-frequency ground vibrations induced by high-speed trains at Ledsgaard.Sweden,Soil Dyn.Earthq.Eng.23,425-433 (2003)

    8.Bian,X.C.,Zeng,E.X.,Chen,Y.M.:Long-term settlements of soft soilgroundinducedbytraintraffi load.RockSoilMech.29,2990-2996(2008).(in Chinese)

    9.Xiang,X.C.,Hou,J.S.,Zhu,C.Q.:Consolidation deformation properties of silt roadbed under effect of tide.Rock Soil Mech. 30,1142-1146(2009).(in Chinese)

    10.Chen,J.Y.,Gong,X.N.,Deng,Y.H.:Research on dissipation of excess pore water pressure in one-dimensional finit strain consolidation of soft clays.Rock Soil Mech.30,191-195(2009).(in Chinese)

    11.Xu,H.F.,Xie,K.H.:One-dimensional continuity equation and consolidation analysis of unsaturated soils with high degree of saturation.J.Civil Archit.Environ.Eng.33,23-27,68(2011).(in Chinese)

    12.Li,C.X.,Xie,K.H.,Lu,M.M.,et al.:One-dimensional consolidationanalysisconsideringexponentialflwlawandtime-depending loading.Rock Soil Mech.32,553-558,578(2011).(in Chinese)

    13.Chen,R.P.,Zhao,X.,Jiang,H.G.,etal.:Modeltestondeformation characteristicsofslabtrack-subgradeunderchangesofwaterlevel. J.China Railw.Soc.36,87-93(2014)

    14.Liu,J.B.,Gu,Y.,Du,Y.X.:Consistent viscous-spring artificia boundaries and viscous-spring boundary elements.Chinese J. Geotech.Eng.28,1070-1075(2006)

    15.Chen,G.,Zhai,W.M.:Anewwheel/railspatiallydynamiccoupling model and its verification Veh.Syst.Dyn.41,301-322(2004)

    16.Shen,Z.Y.,Hedrick,J.K.,Elkins,J.A.:Acomparisonofalternative creep-force models for rail vehicle dynamic analysis.Veh.Syst. Dyn.12,79-83(1983)

    17.Xiao,X.B.,Jin,X.S.,Wen,Z.F.:Effect of disabled fastening systems and ballast on vehicle derailment.J.Vib.Acoust.Trans. ASME 129,217-229(2007)

    18.Jin,X.S.,Wen,Z.F.:Effect of discrete track support by sleepers on rail corrugation at a curved track.J.Sound Vib.315,279-300 (2007)

    19.Ling,L.,Xiao,X.B.,Jin,X.S.:Developmentofasimulationmodel for dynamic derailment analysis of high-speed trains.Acta Mech. Sin.30,860-875(2014)

    20.Zhai,W.M.:Two simple fast integration methods for large-scale dynamic problems inengineering.Int.J.Numer.Methods Eng.39, 4199-4214(1996)

    6 April 2015/Revised:17 June 2015/Accepted:30 June 2015/Published online:9 November 2015

    ?Xue-Song Jin xsjin@home.swjtu.edu.cn

    1State Key Laboratory of Traction Power,Southwest Jiaotong University,Chengdu 610031,China

    2China Railway Corporation,Beijing 100844,China

    精品久久久久久久人妻蜜臀av| 国产精品一区www在线观看| 欧美一区二区精品小视频在线| 欧美日韩国产亚洲二区| 久久人妻av系列| 夜夜夜夜夜久久久久| 狂野欧美白嫩少妇大欣赏| 欧美性猛交╳xxx乱大交人| 综合色av麻豆| 国产蜜桃级精品一区二区三区| av免费观看日本| 日韩,欧美,国产一区二区三区 | 欧美性猛交╳xxx乱大交人| 国产精品,欧美在线| 日日啪夜夜撸| 欧美日韩一区二区视频在线观看视频在线 | 亚洲成av人片在线播放无| 国产色爽女视频免费观看| 国产精品蜜桃在线观看 | 成人二区视频| 日本黄色片子视频| 免费观看的影片在线观看| 激情 狠狠 欧美| 日韩欧美三级三区| 国产精品无大码| 午夜福利高清视频| 成人午夜高清在线视频| 国产精品一及| 国内少妇人妻偷人精品xxx网站| 免费无遮挡裸体视频| 亚洲av中文字字幕乱码综合| 亚洲精品乱码久久久v下载方式| 国产精品一二三区在线看| 男插女下体视频免费在线播放| 我要搜黄色片| 亚洲国产欧美在线一区| 久久久成人免费电影| 日韩精品有码人妻一区| 日产精品乱码卡一卡2卡三| 99视频精品全部免费 在线| 精品人妻偷拍中文字幕| 欧美区成人在线视频| 大香蕉久久网| 亚洲性久久影院| 亚洲国产精品合色在线| 久久鲁丝午夜福利片| 国产精品人妻久久久久久| 欧美日本视频| 黄色一级大片看看| kizo精华| 波多野结衣巨乳人妻| 免费看光身美女| 亚洲第一区二区三区不卡| 亚洲av中文av极速乱| 99国产极品粉嫩在线观看| 国产高潮美女av| 精品人妻偷拍中文字幕| 亚洲精品日韩在线中文字幕 | 能在线免费看毛片的网站| 99国产精品一区二区蜜桃av| 综合色av麻豆| 少妇裸体淫交视频免费看高清| 一夜夜www| 卡戴珊不雅视频在线播放| 亚洲精品国产成人久久av| 成人特级av手机在线观看| 中国国产av一级| 亚洲国产欧美人成| 变态另类丝袜制服| 狂野欧美激情性xxxx在线观看| 国产成年人精品一区二区| 美女黄网站色视频| 黑人高潮一二区| 少妇的逼好多水| 丰满乱子伦码专区| АⅤ资源中文在线天堂| 一级毛片久久久久久久久女| 欧美在线一区亚洲| 狠狠狠狠99中文字幕| 欧美性感艳星| 男女边吃奶边做爰视频| 狂野欧美激情性xxxx在线观看| 69人妻影院| а√天堂www在线а√下载| av视频在线观看入口| a级毛片a级免费在线| av在线天堂中文字幕| 丰满乱子伦码专区| 观看美女的网站| 嫩草影院入口| 国产精品久久久久久av不卡| 亚洲精品国产av成人精品| 热99re8久久精品国产| 国产v大片淫在线免费观看| 亚洲第一电影网av| 又黄又爽又刺激的免费视频.| 国产精品野战在线观看| 成人美女网站在线观看视频| 亚洲欧美日韩高清在线视频| 男女那种视频在线观看| 成人午夜精彩视频在线观看| 日韩,欧美,国产一区二区三区 | 18+在线观看网站| 日韩国内少妇激情av| 免费av不卡在线播放| 亚洲人成网站在线播放欧美日韩| 日本黄大片高清| 亚洲精品成人久久久久久| 日日撸夜夜添| 亚洲国产欧美在线一区| 中文字幕熟女人妻在线| 卡戴珊不雅视频在线播放| 高清毛片免费观看视频网站| 久久久国产成人精品二区| 蜜桃久久精品国产亚洲av| 又黄又爽又刺激的免费视频.| 亚洲人成网站在线观看播放| 白带黄色成豆腐渣| 国产熟女欧美一区二区| 又粗又爽又猛毛片免费看| 久久国产乱子免费精品| 国产伦精品一区二区三区视频9| 亚洲国产欧美在线一区| 亚洲无线在线观看| 一区二区三区四区激情视频 | 男人舔女人下体高潮全视频| 欧美日韩在线观看h| 亚洲国产精品sss在线观看| 国产精品av视频在线免费观看| 免费观看a级毛片全部| 国产高清激情床上av| 婷婷六月久久综合丁香| 国国产精品蜜臀av免费| 精品免费久久久久久久清纯| 日本爱情动作片www.在线观看| 日韩成人av中文字幕在线观看| 亚洲va在线va天堂va国产| 国产亚洲av嫩草精品影院| 99在线视频只有这里精品首页| 国产中年淑女户外野战色| 亚洲成人久久爱视频| 欧美丝袜亚洲另类| 亚洲久久久久久中文字幕| 亚洲美女搞黄在线观看| 国产成人a区在线观看| 在线播放无遮挡| 国产亚洲5aaaaa淫片| 一级毛片aaaaaa免费看小| 搞女人的毛片| 天堂中文最新版在线下载 | 亚洲成人久久爱视频| 国产麻豆成人av免费视频| 午夜精品国产一区二区电影 | 亚洲最大成人手机在线| 秋霞在线观看毛片| 午夜精品国产一区二区电影 | 免费不卡的大黄色大毛片视频在线观看 | 搡老妇女老女人老熟妇| 性插视频无遮挡在线免费观看| 国产一区二区三区在线臀色熟女| 一边亲一边摸免费视频| 91久久精品国产一区二区三区| 亚洲av一区综合| 欧美xxxx黑人xx丫x性爽| 亚洲欧美中文字幕日韩二区| 成年av动漫网址| 国产精品麻豆人妻色哟哟久久 | 亚洲七黄色美女视频| 91久久精品国产一区二区成人| 国产精品三级大全| 超碰av人人做人人爽久久| av卡一久久| 99热全是精品| 又爽又黄无遮挡网站| 久久久久久久亚洲中文字幕| 国产av麻豆久久久久久久| 日韩成人伦理影院| 欧美日韩一区二区视频在线观看视频在线 | 欧美性猛交╳xxx乱大交人| 嫩草影院入口| 国产亚洲av嫩草精品影院| 99热全是精品| 久久久国产成人精品二区| 真实男女啪啪啪动态图| 黄色欧美视频在线观看| 国产午夜精品一二区理论片| 国产精品国产高清国产av| 三级国产精品欧美在线观看| 又粗又爽又猛毛片免费看| 精品国产三级普通话版| 91麻豆精品激情在线观看国产| 欧美性猛交黑人性爽| 久久久精品欧美日韩精品| 日日干狠狠操夜夜爽| 国产精华一区二区三区| 别揉我奶头 嗯啊视频| 日韩一区二区视频免费看| 久久久久免费精品人妻一区二区| www.av在线官网国产| 小说图片视频综合网站| 久久国产乱子免费精品| 亚洲内射少妇av| 色播亚洲综合网| 热99re8久久精品国产| 如何舔出高潮| 国产av麻豆久久久久久久| 亚洲色图av天堂| 99久久久亚洲精品蜜臀av| 国产成人91sexporn| 亚洲无线在线观看| 精品久久久久久久末码| 韩国av在线不卡| 国产乱人偷精品视频| 亚洲人成网站在线观看播放| 欧美区成人在线视频| 精品少妇黑人巨大在线播放 | 国产精品久久久久久亚洲av鲁大| av免费观看日本| 成年女人永久免费观看视频| 嫩草影院入口| 午夜激情欧美在线| 最近最新中文字幕大全电影3| 国产伦一二天堂av在线观看| 成人特级黄色片久久久久久久| 自拍偷自拍亚洲精品老妇| 国产精品免费一区二区三区在线| 九九热线精品视视频播放| 久久午夜福利片| 国产淫片久久久久久久久| 精品无人区乱码1区二区| 人妻久久中文字幕网| 色5月婷婷丁香| 人妻夜夜爽99麻豆av| 免费不卡的大黄色大毛片视频在线观看 | 免费人成在线观看视频色| 国产乱人视频| 少妇的逼好多水| 欧美色视频一区免费| 99热这里只有是精品50| 夜夜看夜夜爽夜夜摸| 色综合亚洲欧美另类图片| 岛国在线免费视频观看| 日本欧美国产在线视频| 嘟嘟电影网在线观看| kizo精华| 黄片wwwwww| 激情 狠狠 欧美| 青春草国产在线视频 | 国内精品美女久久久久久| 久久久成人免费电影| 亚洲欧美日韩卡通动漫| 久久99热6这里只有精品| 波多野结衣巨乳人妻| 日本五十路高清| 日韩欧美三级三区| 一级毛片我不卡| 国产精品蜜桃在线观看 | 日本五十路高清| 一级毛片电影观看 | 国产高清激情床上av| 超碰av人人做人人爽久久| 麻豆成人午夜福利视频| 日本三级黄在线观看| av在线亚洲专区| 亚洲一区二区三区色噜噜| 最新中文字幕久久久久| 国产一区二区三区在线臀色熟女| 性色avwww在线观看| 国产单亲对白刺激| 国产av麻豆久久久久久久| 精品不卡国产一区二区三区| 最好的美女福利视频网| АⅤ资源中文在线天堂| videossex国产| 麻豆精品久久久久久蜜桃| 精品国内亚洲2022精品成人| 三级经典国产精品| 免费看a级黄色片| 欧美精品国产亚洲| 69av精品久久久久久| 国产亚洲欧美98| 免费人成在线观看视频色| 在线天堂最新版资源| 热99在线观看视频| 亚洲精品久久国产高清桃花| 午夜精品国产一区二区电影 | 久久精品国产99精品国产亚洲性色| 欧美潮喷喷水| 悠悠久久av| 变态另类丝袜制服| 久99久视频精品免费| 国产探花在线观看一区二区| 2022亚洲国产成人精品| 国产一区二区在线av高清观看| 在线观看午夜福利视频| 欧美高清性xxxxhd video| 国产精品.久久久| 搡女人真爽免费视频火全软件| 嫩草影院入口| 亚洲不卡免费看| 精品不卡国产一区二区三区| 国产伦精品一区二区三区视频9| 亚洲高清免费不卡视频| 中文字幕免费在线视频6| 婷婷亚洲欧美| 99久久精品热视频| 国产成人免费无遮挡视频| 午夜精品国产一区二区电影| 亚洲中文av在线| 久久精品国产自在天天线| 黄色毛片三级朝国网站| 一级,二级,三级黄色视频| 免费av不卡在线播放| 国产欧美另类精品又又久久亚洲欧美| 性色avwww在线观看| 亚洲不卡免费看| 国产免费福利视频在线观看| 亚洲精品乱久久久久久| 五月天丁香电影| a级片在线免费高清观看视频| 成人黄色视频免费在线看| 国产av国产精品国产| 日日啪夜夜爽| 夜夜看夜夜爽夜夜摸| 亚洲av福利一区| 亚洲av免费高清在线观看| 久热这里只有精品99| 亚洲精品日韩在线中文字幕| 黑人欧美特级aaaaaa片| 99热6这里只有精品| 在线观看人妻少妇| 亚洲第一区二区三区不卡| 精品午夜福利在线看| 国内精品宾馆在线| 国产免费又黄又爽又色| 午夜日本视频在线| 99久久综合免费| 黄色欧美视频在线观看| 国产 一区精品| 在线观看免费高清a一片| av黄色大香蕉| 免费观看av网站的网址| 一级毛片电影观看| 久久久精品区二区三区| 黄色一级大片看看| 人人妻人人澡人人看| 亚洲精品国产av成人精品| 一区二区日韩欧美中文字幕 | 久久狼人影院| 高清黄色对白视频在线免费看| 国产一区亚洲一区在线观看| 国产亚洲精品久久久com| 国产成人精品一,二区| 成年美女黄网站色视频大全免费 | 丝袜在线中文字幕| 少妇高潮的动态图| 久久久国产一区二区| 国产无遮挡羞羞视频在线观看| 夫妻性生交免费视频一级片| 极品人妻少妇av视频| 最近手机中文字幕大全| 两个人免费观看高清视频| 91aial.com中文字幕在线观看| 黑人欧美特级aaaaaa片| 欧美xxxx性猛交bbbb| 亚洲无线观看免费| 七月丁香在线播放| 女性被躁到高潮视频| 国产精品麻豆人妻色哟哟久久| 母亲3免费完整高清在线观看 | 久久国产亚洲av麻豆专区| 欧美3d第一页| 国产在线免费精品| 国产国语露脸激情在线看| 亚洲四区av| a级片在线免费高清观看视频| 这个男人来自地球电影免费观看 | 爱豆传媒免费全集在线观看| 大片免费播放器 马上看| 免费黄频网站在线观看国产| 国产永久视频网站| 啦啦啦视频在线资源免费观看| 精品人妻一区二区三区麻豆| 午夜福利网站1000一区二区三区| 久久影院123| 老女人水多毛片| 美女大奶头黄色视频| 9色porny在线观看| videos熟女内射| 国产av精品麻豆| 久久久国产一区二区| 国产精品99久久99久久久不卡 | 少妇的逼水好多| 成人国产麻豆网| 久久久久精品性色| 亚洲精品美女久久av网站| 国产精品国产三级国产av玫瑰| 婷婷色综合www| 蜜桃在线观看..| 亚洲美女视频黄频| 高清欧美精品videossex| 尾随美女入室| 七月丁香在线播放| 一级毛片我不卡| 国产午夜精品一二区理论片| 精品久久久久久电影网| 人妻少妇偷人精品九色| 亚洲经典国产精华液单| 有码 亚洲区| 欧美日韩亚洲高清精品| 夜夜看夜夜爽夜夜摸| 亚洲精品国产色婷婷电影| 久久99热6这里只有精品| 最近中文字幕2019免费版| 国产片内射在线| 亚洲图色成人| 男女啪啪激烈高潮av片| 久久韩国三级中文字幕| tube8黄色片| 国产精品成人在线| 高清欧美精品videossex| 人人妻人人爽人人添夜夜欢视频| 国产精品国产三级国产av玫瑰| 好男人视频免费观看在线| 国产色爽女视频免费观看| 男的添女的下面高潮视频| 一级毛片电影观看| 韩国av在线不卡| 国产成人freesex在线| 啦啦啦在线观看免费高清www| 丝袜在线中文字幕| 国产熟女欧美一区二区| 久久午夜综合久久蜜桃| 老女人水多毛片| 街头女战士在线观看网站| 一区二区三区免费毛片| 免费少妇av软件| 中文天堂在线官网| 成人影院久久| 熟女人妻精品中文字幕| 91精品三级在线观看| 中文精品一卡2卡3卡4更新| 999精品在线视频| 亚洲欧美一区二区三区黑人 | 成年av动漫网址| 欧美精品人与动牲交sv欧美| 国产精品一区二区在线不卡| av在线app专区| 欧美日韩在线观看h| 99久久精品国产国产毛片| 在线精品无人区一区二区三| av又黄又爽大尺度在线免费看| 另类精品久久| 狠狠婷婷综合久久久久久88av| 在线观看国产h片| 十八禁高潮呻吟视频| 日本与韩国留学比较| 亚洲综合精品二区| 国产欧美亚洲国产| 国产黄色视频一区二区在线观看| 乱人伦中国视频| 国产av码专区亚洲av| 免费高清在线观看视频在线观看| 嫩草影院入口| 赤兔流量卡办理| 99热网站在线观看| 2022亚洲国产成人精品| 不卡视频在线观看欧美| 亚洲色图 男人天堂 中文字幕 | 如日韩欧美国产精品一区二区三区 | 国产综合精华液| 夜夜爽夜夜爽视频| 亚洲欧美成人综合另类久久久| 性色av一级| 热99久久久久精品小说推荐| 欧美人与性动交α欧美精品济南到 | 色吧在线观看| 日韩一区二区三区影片| 国产有黄有色有爽视频| 观看美女的网站| 黄色欧美视频在线观看| 人人妻人人澡人人看| 最近2019中文字幕mv第一页| 亚洲经典国产精华液单| 亚洲国产精品一区三区| 亚洲av成人精品一区久久| 免费观看a级毛片全部| 亚洲人与动物交配视频| 国产av精品麻豆| 国产综合精华液| 国产免费又黄又爽又色| 日本色播在线视频| 国产老妇伦熟女老妇高清| 亚洲人成77777在线视频| 青青草视频在线视频观看| 免费少妇av软件| 菩萨蛮人人尽说江南好唐韦庄| 国产无遮挡羞羞视频在线观看| 交换朋友夫妻互换小说| 日韩免费高清中文字幕av| 亚洲在久久综合| 成人漫画全彩无遮挡| 久久久欧美国产精品| 有码 亚洲区| 日本欧美视频一区| 菩萨蛮人人尽说江南好唐韦庄| 天堂俺去俺来也www色官网| 免费观看在线日韩| 嫩草影院入口| 91精品三级在线观看| 一级a做视频免费观看| 涩涩av久久男人的天堂| 观看av在线不卡| 久久精品国产亚洲网站| 视频在线观看一区二区三区| 国产成人aa在线观看| 国产成人精品无人区| 美女内射精品一级片tv| 在线精品无人区一区二区三| 欧美另类一区| 亚洲av成人精品一区久久| 成人国产麻豆网| 蜜桃久久精品国产亚洲av| 久久久久精品久久久久真实原创| 国产精品一二三区在线看| 婷婷色麻豆天堂久久| a 毛片基地| 我的老师免费观看完整版| 免费观看的影片在线观看| 国产男女超爽视频在线观看| 免费观看无遮挡的男女| 99re6热这里在线精品视频| 成人影院久久| 人妻 亚洲 视频| 午夜久久久在线观看| 欧美97在线视频| 色吧在线观看| videos熟女内射| 日本wwww免费看| 99久久人妻综合| 国产一区二区在线观看日韩| 啦啦啦啦在线视频资源| av网站免费在线观看视频| 一本久久精品| 五月开心婷婷网| 一级二级三级毛片免费看| 少妇被粗大的猛进出69影院 | 日韩,欧美,国产一区二区三区| 午夜久久久在线观看| 在线观看一区二区三区激情| 国产一区二区在线观看av| 妹子高潮喷水视频| 亚洲av欧美aⅴ国产| 亚洲国产精品成人久久小说| 狠狠婷婷综合久久久久久88av| 亚洲国产最新在线播放| 国产一区二区三区综合在线观看 | 免费不卡的大黄色大毛片视频在线观看| 丝瓜视频免费看黄片| 免费播放大片免费观看视频在线观看| 欧美亚洲日本最大视频资源| 国产黄频视频在线观看| 熟女人妻精品中文字幕| 精品人妻偷拍中文字幕| a 毛片基地| a级毛片在线看网站| 最近的中文字幕免费完整| 22中文网久久字幕| 国产精品一区www在线观看| 欧美日韩一区二区视频在线观看视频在线| 免费观看无遮挡的男女| 免费看光身美女| 制服人妻中文乱码| 少妇被粗大的猛进出69影院 | 国产免费现黄频在线看| 久久精品久久精品一区二区三区| 91精品一卡2卡3卡4卡| 国国产精品蜜臀av免费| 赤兔流量卡办理| a级毛片免费高清观看在线播放| 两个人免费观看高清视频| 欧美另类一区| 亚洲精品一二三| 久久久久久久精品精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩成人av中文字幕在线观看| 久久久精品免费免费高清| 高清av免费在线| 欧美一级a爱片免费观看看| 亚洲一级一片aⅴ在线观看| 国产一区有黄有色的免费视频| 亚洲av.av天堂| 免费少妇av软件| 亚洲精品国产色婷婷电影| 热99久久久久精品小说推荐| 18禁在线播放成人免费| 亚洲,欧美,日韩| 久久97久久精品| 国产精品一区二区三区四区免费观看| 精品少妇内射三级| 国产高清不卡午夜福利| av不卡在线播放| 国产视频首页在线观看| 少妇的逼水好多| 天美传媒精品一区二区| 少妇高潮的动态图| 成人无遮挡网站| 狠狠婷婷综合久久久久久88av| 精品一区二区三区视频在线| 男的添女的下面高潮视频| 夜夜骑夜夜射夜夜干| 寂寞人妻少妇视频99o| 老司机亚洲免费影院| 国产av码专区亚洲av| av不卡在线播放|