• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An efficien formulation based on the Lagrangian method for contact–impact analysis of flexibl multi-body system

    2016-09-06 11:38:32PengChenJinYangLiuJiaZhenHong
    Acta Mechanica Sinica 2016年2期

    Peng Chen·Jin-Yang Liu·Jia-Zhen Hong

    ?

    An efficien formulation based on the Lagrangian method for contact–impact analysis of flexibl multi-body system

    Peng Chen1·Jin-Yang Liu1·Jia-Zhen Hong1

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

    AbstractIn this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact-impact problems of fl xible multi-body systems. Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact-impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact-impact problems in fl xible multi-body system numerically.Meanwhile, the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimentalverificatio willcertifythereliabilityofthepresented formulationincontact-impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results. Finallythelimitationsoftheelementsizeindifferentregions are summarized to satisfy both the accuracy and efficien y.

    KeywordsMulti-body dynamics·Contact-impact

    analysis·Lagrangian method·Component mode synthesis

    1 Introduction

    In mechanical systems,contact-impact processes are frequently investigated.Due to their discontinuity and characteristics of high nonlinearity,it is difficul to describe this mechanical behavior in dynamic systems.

    When the fl xibility of the contact bodies is concerned, the resulted wave propagation should be investigated,which is a high frequency phenomena.For decades,the issue of contact-impact analysis in fl xible multi-body system has always been a research focus.The key points of this problem seemtobetheevaluationofthecontactforceandthedescriptionoftheinducedwavepropagationinafl xiblemulti-body system.

    In recent years,researchers proposed many classic theories and contact force models.There are mainly two approaches to evaluate the contact force.The firs approach, namely the continuous force models[1],assumes that the contact force can be expressed explicitly by fictitiou parameters and the state variables of the contact bodies,such as the Hertz contact theory[2-4]and the penalty method[5]. These parameters can be evaluated analytically or experimentally[6].Forsolvingcontact-impactproblemsinfl xible multi-body systems,the continuous force model shows great efficien y.An investigation by Flores[7]showed the influenc of different contact-impact force models on the dynamic response of multi-body systems.In this work,the choice of model parameters and indexes was also stated.In theworkofSeifried[8],thecoefficien ofrestitutionwasevaluated numerically for the investigation of repeated impacts, similar works combined with experimental researches can be seen in Schiehlen[9-11]and Seifried[12,13].Also, Lankarani[14]investigated the effect of contact damping. It was found that when dealing with practical engineeringproblems,the contact damping effects should be considered. However,for various contact force models,the definition of these non-physical parameters are different,and in many cases they are difficul to determine accurately.

    The second approach to evaluate the contact force is the Lagrangian method[4,15],which will be employed in this paper.Without the assumption that the contact effect is a force element,the Lagrangian method treats the interaction asconstraints,sothatthecontactforcecanbeevaluatedbythe Lagrange multiplier formulation[16-18];therefore,it is not necessarytorelyonindefinit parameters.However,sincethe modal reduction approach can not be applied,a tremendous number of degrees of freedom in the contact-impact problems will influenc the numerical efficien y significantl.

    The aspects of wave propagation in a fl xible multibody system also need special notice.The floatinframe of reference formulation is a typical method to describe the multi-body system with small elastic deformation.In common investigations,the complete finitelement model is mostly used for contact analysis;however,it is very time consuming because of the tremendous number of degrees of freedoms.Based on this consideration,Schiehlen et al.[9]proposedamodelcombinedfromtwosubmodels,anonlinear finit element(FE)model to describe the local deformation resulting from the contact-impact,and a modal model to describe the global elastodynamic behavior.Herein,another technique named the component mode synthesis method [19,20],canbeusedinthemodelingofthesystem.Bydefin ingthenodaldisplacementsofthecontactregionandthejoint connecting region as the boundary degrees of freedom,the simulationofthehighlynonlinearbehaviorwithinthecontact region is fairly precise.Because the interior nodal displacementscanbeexpressedbyasetofmodalcoordinatescoupled with the boundary degree of freedoms(DOFs)in the manner of the component mode synthesis method,as a consequence, the total DOFs of the system decrease significantl.

    In practical applications,the element size of the finit elementmodelsplaysanimportantroleinthenumericalsimulations.However,no such general laws on this aspect are concluded.In this paper,some limitations on the maximum element size of different regions of the contact bodies are investigated.

    The paper is organized in the following manner.Firstly, the formulation of fl xible multi-body systems based on the floatinframe of reference method will be obtained using the component mode synthesis technique.Then the contactimpact kinematic description and constraint implementation will be discussed,and the complete governing equations of the fl xible multi-body system with contact-impact are derived.Finally,the theoretical formulations are illustrated by numerical simulations.A typical numerical example is introduced to verify the proposed formulation by the comparison with the experiment result,and the penalty method is also investigated to show the drawbacks.Furthermore,the influence of the element size on the simulation results are discussed,and a few finit element meshing laws will be concluded.

    2 Dynamic formulation of flexibl multi-body systems

    2.1Kinematic description of a flexibl body

    For modeling fl xible multi-body systems experiencing small elastic deformations,the well-known floatinframe of reference formulation is most widely used.In this paper, both the rigid body motion and the elastic deformation are considered for the contact bodies,so this formulation will be used.AsdepictedinFig.1,twoframesaredefine todescribe the configuratio of a fl xible body,where e0is the inertial frame,and ebis the body-fi ed frame.The global position vector of an arbitrary point define in e0can be written as

    Within the reference frame,the relative position vector define in ebcan be depicted as

    where Aiisthetransformationmatrix,whichdefine theorientation of the body-fi ed frame with respect to the inertial frame,ρ′

    i0is the position vector in the un-deformed state described in the body-fi ed frame,and u′iis the deformation displacement vector described in the body-fi ed frame, which can be approximated by

    Fig.1 Description of a flxible body

    where Niis the shape function matrix,and piis the array of nodal deformation coordinates.In contact-impact analy-sis,piwill be a large dimension vector,when coupled with the rigid body motion coordinates,the system appears to be difficul to solve.Considering the situation of a small deformation,thecomponentmodesynthesistechniquecanbeused to reduce the dimension of pi.

    By usingthistechnique,pican be partitioned intoboundaryandinteriordegreesoffreedom,asrepresentedbyEq.(4) Consideringanelasticcomponentexperiencingfreestructural vibration,the linearized equations of motion are given in the following form

    According to Eq.(4),the structural matrices can be partitioned as Next,by introducing the Craig-Bampton method of component mode synthesis[21],a shape function is define as a transformation matrix

    whereΦKisasetofselectedfi ed-interfacecomponentnormal modes,which is obtained by performing a eigenvalue analysis for matrices mI Iand kI I,and the set of constraint modes ΦCtakes the form

    Then,atransformationfromfinit elementcoordinates pito component mode synthesis generalized coordinates y can be performed,which is given by where yi=akTpTJT,and akis the vector of modal coordinates corresponding to the normal modes.Finally,the configuratio of a single fl xible body can be described by a set of generalized coordinates

    where r0iand θirepresent the translation and rotation coordinates of the floatin frame of body i,and in this paper the vector of Carden angles θi=α β γTare used to describe the rotation of the fl xible body.

    Let ω′ibe the vector of angular velocity definein the body-fi ed frame,by differentiation of Eq.(1)and using the body-fi ed frame,by differentiation of Eq.(1)and using the expression At=Aiw and p==-p[23],.the global velocity of an arbiary point can be espressed as

    where

    Andω?iρ?irepresent the skew matrices corresponding toω′i,ρ′i,respectively.

    By differentiation of Eq.(11),the acceleration vector of an arbitrary point can be expressed as

    where

    Consideringtherelationshipbetweentheangularvelocity vector and the time derivative of the Carden angles ω′i= Kb˙qi[23],a transformation can be performed

    where Kbis a 3×3 matrix,which is the function of qi. Differentiation of Eqs.(16)leads to

    2.2Dynamic equations of a flexibl body

    The governing equations of a general fl xible multi-body system considering contact-impact can be derived using the Lagrangian method,based on the principle of virtual power. For a single fl xible body,the power of the external,internal, and inertial forces applied to the body must vanish

    where Eiand Siare the strain and stress vectors,and ΔPiEis the virtual power of the external forces,which is used to obtain the vector of generalized external forces fiE

    Substituting Eqs.(11)and(13)into the firs term of Eq.(18),the virtual power done by the inertial forces can be written as

    where

    In the situation of a small deformation analysis,a linear relationbetweenthestrainvectorandthedeformationvector exists,and according to Eq.(9),the virtual power of the internal forces takes the form

    where kiis the stiffness matrix.Considering Eq.(14),this item can be written as

    where fSiis the vector of the internal forces

    Substituting Eqs.(19),(20)and(23)into Eq.(18),the dynamicvariationalequationsofafl xiblebodyareobtained as

    Substituting Eqs.(16)and(17)into Eq.(25),the variational equations of motion read

    where

    2.3Contact–impact description

    For frictionless contact problems,the well-known Kuhn-Tucker condition[22]can be stated as

    Fig.2 Description of a gap function

    Fig.3 Description of a contact pair

    where gNis the gap function in a normal direction between point P and its projection point Q,as demonstrated in Fig.2. When gNequals zero,the contact takes place,and a normal component of the stress vector will take effect.

    In an actual situation,the contact-impact behavior is an interactionbetweentwoareasofdifferentbodies.However,it isalmostimpossibletodescribethisinteractioninsimulation. With the finit element approximation,a set of contact pairs will be efficien to formulate the contact.

    For a contact pair in discrete form,a slave node P and a matching master segment R are define first as shown in Fig.3.Then the projection point Q in the segment corresponding to the slave node P can be determined,and a local coordinate system with an origin of Q is established accordingly.

    Intheformulationofacontinuousforcemodel,thenormal gap function is allowed to be negative,which means the penetrationexists.Ageneralrelationbetweenthenormalcontact force and the penetration reads as

    Then,a couple of resisting forces acting on the points P and Q take effect,which are equal and opposite

    However,the stiffness parameter P relies on the material behavior and the mesh properties,and it is not definite In practice,this parameter is obtained by a convergence procedure.When a small stiffness is taken,the contact force shows a low amplitude and long duration characteristics.On thecontrary,itisnumericallydifficul tosolvewhenthestiffness is too large.

    Toavoidnon-physicalparameters,theLagrangianmethod can be used.When a contact pair is activated,a set of constraint equations should be added to the system

    This constraint equation restricts the slave node P from penetratingthemastersegment,whichwillberemovedwhen the contact pair is detected to be separate.

    When the contact pair P-Q is activated for the firs time, point P and Q should have the same velocity in the normal direction,whichmeansanumericalprocessingwillbeimplemented[20].

    In time discretization form,the time derivative formulation of the constraint equations seems to be more convenient to use.If the contact-impact process is very short,we ignore the time derivative terms of nj,and then twice the derivative of Eq.(31)can be given as

    According to Eq.(13),it reads as

    In this paper,the contact-impact of a fl xible multi-body system is investigated.The vector of the generalized coordinates of the system is assembled by q=qT1qT2···qTN

    T,

    and the relation between qiand q is given by

    The assembled constrained equations associated with contact-impact are given by

    Substituting Eqs.(16)and(34)into Eq.(33),the acceleration constraint equation can be expressed as

    where ΦCqjis the Jacobian matrix of the j-th contact pair, which is given by

    Takingallthecontactpairsintoaccount,thetotalJacobian matrix of the contact constraint equations can be assembled as

    Itmightalsobenotedthatthenumberoftheactivatedcontact pairs is time-variant,so the size of thisJacobian matrix changes with time.

    2.4Dynamic equations of a flexibl multi-body system

    Foranunconstrainedsystem,thedynamicequationscansimply be assembled by Eq.(26),which read

    where

    The motion of fl xible bodies represented by Eq.(38)is independent of each other without constraints.

    Forconstrainedfl xiblemultibodysystems,theconstraint equations aredenoted byΦJ,andtheJacobian matrixisΦJq. Then,the dynamic equations of a fl xible multi-body system with contact-impact are expressed as

    where λJand λCare the vectors of Lagrange multipliers correspondingtothejointconstraintsandthecontact-impact constraints,respectively.Typically,it is a set of differentialalgebraic equations combined with the constraint equations ΦJ=0 and ΦC=0.Equations of motion(42)are solved combined with the acceleration equation

    where γJand γCare the right sides of the acceleration equations corresponding to the joint constraints and the contact-impact constraints,respectively.

    Fig.4 Impact between a steel pendulum and an aluminum rod

    Table 1 Material data of the two bodies

    3 Numerical examples

    To verify the formulation proposed in this paper,a typical fl xible multi-body system with joint constraints will be investigated.This system consists of a steel pendulum and a suspendedaluminumrod;thegeometriesareshowninFig.4, and the material data of the two bodies are summarized in Table 1.The pendulum is released from an initial angle and impacts with the rod when the pendulum falls to the vertical position.This example was presented by Seifried et al.[12], which was simulated using the penalty method and verifie experimentally.

    3.1The verificatio of the proposed formulation

    To verify the formulation proposed in this paper,the experimental results in Ref.[12]will be used as a reference.A contact process with 2 milliseconds is simulated,and the time history of the velocity of the point marked by a black triangle in Fig.4 is given,which is right behind the contact point on the pendulum.As a comparison,the simulation result of Ref.[12]is also given.

    AsshowninFig.5,theformulationproposedinthispaper issufficientl preciseinthesimulationofthecontact-impact process of the fl xible multibody system.In addition,the DOF used in this formulation is much less than the finit element method.As for this example,153 nodes and 20 modal coordinates are used to describe the rod instead of total 2261 nodes,while 128 nodes and 20 modal coordinates are used to describe the pendulum instead of 5373 nodes.Therefore, the DOFs needed to describe the deformation of the contact bodies are reduced remarkably,which can be seen from Table 2.

    Fig.5 Time history of the pendulum velocity by different approaches

    Table 2 DOFs to describe the deformation

    3.2Comparison of the Lagrangian method and the penalty method

    The penalty method is highly dependent on various nonphysical parameters.For the simulation of contact-impact problems,differentsetsofcontactstiffnesswillleadtototally differentresults,whiletheLagrangianmethodisindependent on any parameters.

    The time history of the contact force and the velocity of the pendulum in the line of impact are given in Figs.6 and 7.The formulation proposed in this paper is labeled as theLagrangianmethod,asacomparison,thepenaltymethod by LS-DYNA is implemented with a list of incremental contact stiffness.Figures 6 and 7 show a typical convergenceprocedure,for the uncertainty of the contact stiffness,differentsetsofstiffnessmustbetesteduntilthesimulatedcontact force converges.

    Fig.6 Time history of contact force by different models

    Fig.7 Pendulum velocity in the line of impact

    3.3Finite element mesh of the contact bodies

    For the investigation of the contact-impact problems,the high frequency of the wave propagation must be considered, which means that there is a restriction on the maximum element size[6].Furthermore,the contact region should be discretized with sufficien contact elements to guarantee the accuracy of the contact force,and the mesh size in the impactdirectionofcertainregionisstricterthanotherinterior regions.

    As shown in Fig.8,the pendulum in this example is divided into the contact region and the interior region.To investigate the influenc of the mesh size on the simulation results,4 sets of pendulum meshes will be used,while the rod meshes are the same and dense enough.The maximum element size in different regions of the meshes is given in Table 3.

    Fig.8 Schematic of the pendulum

    Table 3 Maximum element size in different regions

    The contact force and the velocity of the back point of the pendulum in the impact direction are depicted in Figs.9 and 10,simulated by four sets of pendulum meshes. It can be obviously seen that the maximum element size of the contact bodies has a significan influencon the numerical results.The precision of the interior mesh size affects not only the wave propagation,but also the contact force.

    It can be concluded as follows:

    (1)To simulate the wave propagation precisely,the smallest interesting wavelength should be discretized by at least 20elements,whichhasthesameconclusionasthatgiven by Seifried in the literature[6].The maximum element size in wave propagation becomes

    In this example,the interesting maximum frequency of the pendulum is about 30 kHz from the experimentalresults,so that the maximum element size in the wave propagation is about 8.5 mm.

    (2)In the impact direction,special attention should be paid tothemeshsize,especiallywhenthelengthinthisdirection is relatively small.In this example,the maximum element size in the impact direction is only one-fourth of the element size of other regions.General laws will be investigated in the follow-up studies.

    (3)Withinthecontactregion,sufficien contactpairsshould be guaranteed to obtain an accurate simulation result. In this example,the contact region is a circle with a radius of about 0.8 mm,and the model with mesh 1, which has an element size of 0.6 mm,can provide only 4 contact pairs.By the investigation of this kind of low speed impact problems,we can conclude that at least 9 contact pairs are needed.

    (4)With an optimized mesh that uses different grids in different regions,a small amount of elements are enough to satisfy the accuracy of the simulation,and this will improve the efficien y significantl.

    Fig.9 Contact force by different meshes

    3.4Application to a flexibl multi-body system

    To apply this formulation to a complicated fl xible multibody system,a slider-crank mechanism involving contact is investigated.AsshowninFig.11,4bodiesareinvolvedinthis system,the geometrical and material parameters are listed in Table 4.

    The crank B1 can be considered as a rigid body,while B2,B3,and B4 are modeled as fl xible bodies.The crank is driven by a coil spring with a stiffness of 5N·M/rad,and the initial angle θ1is set as 0.29 rad.All frictions are ignored and the gravity acceleration is given by 9.8m/s2.

    The contact force between B3 and B4 is given by Fig.12, and the constraint force of the joint between B2 and B3 in x and y directions are given by Fig.13.

    Fig.11 A slider-crank mechanism involving contact

    Table 4 Geometrical and material parameters of the bodies

    Fig.12 Time history of the contact force

    Fig.13 Time history of the constraint force

    4 Conclusions

    This article focuses on two problems existing in contactimpactanalysisofafl xiblemulti-bodysystem,theaccuracy ofthecontactmodel,andtheefficien yoftheentireformulation.A formulation combining the component mode synthesismethodandtheLagrangianmethodispresented.Different from the penalty method,the proposed formulation is independent of the non-physical parameters.Consequently,the contactmodelismoreaccuratewithoutestimatingthecontact stiffness.Furthermore,theuseofcomponentmodesynthesis method can significantl reduce the degrees of freedom of the system.

    For contact-impact analysis,the finitelement mesh determines the accuracy of the simulation results.Therefore, the limitations of the maximum element size of the contact bodies are investigated in this paper.By applying different element sizes in different regions,an optimized mesh can be obtained,which can avoid using a large number of unnecessary elements.

    AcknowledgmentsThe project was supported by the National Science Foundation of China(Grants 11132007,11272203).

    References

    1.Gilardi,G.,Sharf,I.:Literature survey of contact dynamics modelling.Mech.Mach.Theory 37,1213-1239(2002)

    2.Goldsmith,W.:Impact.Courier Dover Publications,New York (2001)

    3.Timoshenko,S.P.,Gere,J.M.,Prager,W.:Theory of Elastic Stability.J.Appl.Mech.29,220(1962)

    4.Taylor,R.L.,Papadopoulos,P.:On a finit element method for dynamic contact/impact problems.Int.J.Numer.Methods Eng. 36,2123-2140(1993)

    5.Lankarani,H.M.,Nikravesh,P.E.:A contact force model withhysteresisdampingforimpactanalysisofmultibodysystems.J.Mech. Des.112,369-376(1990)

    6.Seifried,R.,Hu,B.,Eberhard,P.:Numerical and experimental investigation of radial impacts on a half-circular plate.Multibody Syst.Dyn.9,265-281(2003)

    7.Flores,P.,Ambrósio,J.,Claro,J.C.P.,et al.:Influencof the contact-impactforcemodelonthedynamicresponseofmulti-body systems.Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics 220,21-34(2006)

    8.Seifried,R.,Schiehlen,W.,Eberhard,P.:Numerical and experimental evaluation of the coefficien of restitution for repeated impacts.Int.J.Impact Eng.32,508-524(2005)

    9.Schiehlen,W.,Seifried,R.,Eberhard,P.:Elastoplastic phenomena in multibody impact dynamics.Comp.Methods Appl.Mech.Eng. 195,6874-6890(2006)

    10.Schiehlen,W.,Guse,N.,Seifried,R.:Multibody dynamics in computational mechanics and engineering applications.Comp. Methods Appl.Mech.Eng.195,5509-5522(2006)

    11.Schiehlen,W.,Seifried,R.:Impactsystemswithuncertainty//IUTAM symposium on dynamics and control of nonlinear systems with uncertainty.Springer,Netherlands(2007)

    12.Seifried,R.,Schiehlen,W.:Computational analysis and experimental investigation of impacts in multibody systems//IUTAM Symposium on Multiscale Problems in Multibody System Contacts.Springer,Netherlands(2007)

    13.Seifried,R.,Schiehlen,W.,Eberhard,P.:The role of the coeffi cient of restitution on impact problems in multi-body dynamics. Proceedings of the Institution of Mechanical Engineers,Part K: Journal of Multi-body Dynamics 224,279-306(2010)

    14.Lankarani,H.M.,Nikravesh,P.E.:Continuouscontactforcemodels for impact analysis in multibody systems.Nonlinear Dyn.5,193-207(1994)

    15.Heinstein,M.W.,Mello,F.J.,Attaway,S.W.,etal.:Contact-impact modeling in explicit transient dynamics.Comp.Methods Appl. Mech.Eng.187,621-640(2000)

    16.Dong,F.X.,Hong,J.Z.,Zhu,K.,etal.:Numericalandexperimental studies on impact dynamics of a planar fl xible multibody system. Acta Mech.Sin.26,635-642(2010)

    17.Weyler,R.,Oliver,J.,Sain,T.,etal.:Onthecontactdomainmethod: acomparisonofpenaltyandLagrangemultiplierimplementations. Comp.Methods Appl.Mech.Eng.205,68-82(2012)

    18.Han,S.L.,Hong,J.Z.:Multi-variable method for fl xible multibodysystemswithcontact/impact.Chin.J.Theor.Appl.Mech.43, 886-893(2011)

    19.Bauchau,O.A.,Rodriguez,J.:Formulation of modal-based elements in nonlinear,fl xible multibody dynamics.Int.J.Multiscale Computat.Eng.1,161-180(2003)

    20.Chen,P.,Liu,J.Y.,Hong,J.Z.:Contact-impact formulation for multi-body systems using component mode synthesis.Acta Mech. Sin.29,437-442(2013)

    21.Castanier,M.P.,Tan,Y.C.,Pierre,C.:Characteristic constraint modes for component mode synthesis.AIAA J.39,1182-1187 (2001)

    22.Wriggers,P.:Finiteelementalgorithmsforcontactproblems.Arch. Comput.Methods Eng.2,1-49(1995)

    23.Hong,J.Z.:Computational multibody dynamics.High Education Press,Beijing(1999)

    8 February 2015/Revised:2 April 2015/Accepted:24 May 2015/Published online:16 September 2015

    ?Jin-Yang Liu

    liujy@sjtu.edu.cn

    1Department of Engineering Mechanics,School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiaotong University,200240 Shanghai,China

    亚洲国产中文字幕在线视频| 天堂√8在线中文| 亚洲九九香蕉| 夜夜夜夜夜久久久久| 中文字幕av电影在线播放| 一边摸一边做爽爽视频免费| 久久中文看片网| av有码第一页| 亚洲av成人av| 欧美乱码精品一区二区三区| av国产精品久久久久影院| 最近最新中文字幕大全电影3 | 大型av网站在线播放| 午夜福利,免费看| 国产欧美日韩精品亚洲av| 久久天堂一区二区三区四区| 国产精品久久久人人做人人爽| 久久精品国产亚洲av香蕉五月| 黄片小视频在线播放| 他把我摸到了高潮在线观看| 大陆偷拍与自拍| 成人手机av| 多毛熟女@视频| 一本综合久久免费| 亚洲精品国产区一区二| 国产一区在线观看成人免费| 亚洲中文av在线| 久久久久国内视频| 欧美成人免费av一区二区三区| 真人做人爱边吃奶动态| 国产乱人伦免费视频| 国产亚洲精品第一综合不卡| 日韩欧美一区二区三区在线观看| 天天添夜夜摸| 波多野结衣一区麻豆| 69精品国产乱码久久久| 女警被强在线播放| 亚洲精品国产色婷婷电影| 人人妻人人添人人爽欧美一区卜| 一本综合久久免费| 91字幕亚洲| 午夜免费观看网址| 男女床上黄色一级片免费看| 精品免费久久久久久久清纯| 国产国语露脸激情在线看| 法律面前人人平等表现在哪些方面| 久久久久久久久免费视频了| 日日夜夜操网爽| 热re99久久国产66热| 手机成人av网站| 99国产精品一区二区三区| 亚洲一区中文字幕在线| 久久婷婷成人综合色麻豆| 免费看a级黄色片| 国产午夜精品久久久久久| 国产精品久久久久久人妻精品电影| 在线观看午夜福利视频| 久久中文看片网| 91成年电影在线观看| 精品福利永久在线观看| 男人操女人黄网站| svipshipincom国产片| 啦啦啦在线免费观看视频4| 亚洲熟女毛片儿| 亚洲欧美日韩无卡精品| 视频区欧美日本亚洲| 成年人黄色毛片网站| 一进一出抽搐动态| 最近最新中文字幕大全电影3 | 91成人精品电影| 国产又爽黄色视频| 国产精品二区激情视频| 久久久精品欧美日韩精品| 久久午夜亚洲精品久久| 国产高清videossex| 中文字幕高清在线视频| 又黄又爽又免费观看的视频| 国产av在哪里看| 日韩欧美三级三区| 电影成人av| 一级作爱视频免费观看| 欧美精品一区二区免费开放| 亚洲成国产人片在线观看| 成人精品一区二区免费| 12—13女人毛片做爰片一| 88av欧美| 色综合站精品国产| av网站免费在线观看视频| 欧美成狂野欧美在线观看| 一级作爱视频免费观看| 欧美黄色淫秽网站| 国产高清国产精品国产三级| 91九色精品人成在线观看| 老熟妇乱子伦视频在线观看| 老汉色∧v一级毛片| 精品一区二区三卡| 成年人免费黄色播放视频| 高清黄色对白视频在线免费看| 桃红色精品国产亚洲av| 久久这里只有精品19| 制服人妻中文乱码| 国产一区二区三区视频了| 国产黄a三级三级三级人| 国产成人一区二区三区免费视频网站| 激情在线观看视频在线高清| 99国产精品免费福利视频| 欧美日韩一级在线毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美一区二区三区黑人| 国产aⅴ精品一区二区三区波| 老汉色∧v一级毛片| 成人免费观看视频高清| 老司机福利观看| 黑人巨大精品欧美一区二区mp4| a级片在线免费高清观看视频| 制服诱惑二区| 亚洲午夜理论影院| 波多野结衣av一区二区av| 久久99一区二区三区| 午夜成年电影在线免费观看| 日本免费一区二区三区高清不卡 | 精品国产一区二区久久| 色老头精品视频在线观看| 国产av一区二区精品久久| 国产色视频综合| 精品国内亚洲2022精品成人| 国产又爽黄色视频| 欧美色视频一区免费| 亚洲中文日韩欧美视频| 男女做爰动态图高潮gif福利片 | 国产亚洲欧美98| 在线十欧美十亚洲十日本专区| 两个人免费观看高清视频| 成人手机av| 亚洲中文日韩欧美视频| 日韩欧美一区二区三区在线观看| 久久久精品国产亚洲av高清涩受| 亚洲精品一卡2卡三卡4卡5卡| 99热只有精品国产| 国产精品亚洲av一区麻豆| 欧美日韩av久久| 黄片小视频在线播放| 一进一出抽搐动态| 久热爱精品视频在线9| 91精品三级在线观看| 国产麻豆69| 亚洲一区中文字幕在线| 亚洲精品粉嫩美女一区| 校园春色视频在线观看| 午夜视频精品福利| 免费人成视频x8x8入口观看| 国产精品一区二区在线不卡| 亚洲自拍偷在线| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久免费视频 | 91国产中文字幕| 真人做人爱边吃奶动态| 80岁老熟妇乱子伦牲交| 免费在线观看亚洲国产| 亚洲人成网站在线播放欧美日韩| 欧美激情高清一区二区三区| 精品一区二区三区av网在线观看| 亚洲国产精品sss在线观看 | 国产亚洲av高清不卡| 99在线人妻在线中文字幕| 在线av久久热| 亚洲精品国产区一区二| cao死你这个sao货| 精品一区二区三区av网在线观看| 精品一区二区三卡| 午夜老司机福利片| 女同久久另类99精品国产91| 免费高清在线观看日韩| 精品久久久久久久久久免费视频 | 两性夫妻黄色片| 日韩欧美在线二视频| 成年版毛片免费区| 久久久水蜜桃国产精品网| 国产黄色免费在线视频| 亚洲中文日韩欧美视频| 日韩欧美三级三区| 国产亚洲欧美精品永久| 国产成人欧美| 黄频高清免费视频| 日本一区二区免费在线视频| 久热爱精品视频在线9| 女性生殖器流出的白浆| 正在播放国产对白刺激| 精品久久久久久,| 国产黄色免费在线视频| 热99国产精品久久久久久7| 亚洲成人国产一区在线观看| 久久久久久亚洲精品国产蜜桃av| 国产视频一区二区在线看| 成人免费观看视频高清| 丰满迷人的少妇在线观看| 亚洲精品一区av在线观看| 中亚洲国语对白在线视频| 国产精品电影一区二区三区| 欧美午夜高清在线| 欧美日韩视频精品一区| 欧美不卡视频在线免费观看 | 在线国产一区二区在线| av视频免费观看在线观看| 欧美日韩视频精品一区| 在线十欧美十亚洲十日本专区| 亚洲成av片中文字幕在线观看| 最新在线观看一区二区三区| 久久婷婷成人综合色麻豆| 香蕉丝袜av| 一级片'在线观看视频| 亚洲精品中文字幕在线视频| 亚洲欧美一区二区三区黑人| 丁香六月欧美| 欧美激情 高清一区二区三区| 免费在线观看亚洲国产| 悠悠久久av| 国产成人精品无人区| 精品国产乱子伦一区二区三区| 久久久国产欧美日韩av| 18禁黄网站禁片午夜丰满| 一边摸一边抽搐一进一出视频| 成年人免费黄色播放视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲伊人色综图| a在线观看视频网站| 欧美乱码精品一区二区三区| 国产三级黄色录像| 黄色a级毛片大全视频| 亚洲自拍偷在线| 真人一进一出gif抽搐免费| 两性午夜刺激爽爽歪歪视频在线观看 | 性欧美人与动物交配| 国产无遮挡羞羞视频在线观看| 天堂中文最新版在线下载| 91老司机精品| 黄色女人牲交| 中文字幕色久视频| 女人高潮潮喷娇喘18禁视频| 午夜精品久久久久久毛片777| 欧美不卡视频在线免费观看 | 亚洲午夜精品一区,二区,三区| 黄色视频不卡| 久久伊人香网站| 亚洲精品一区av在线观看| 亚洲五月婷婷丁香| 色老头精品视频在线观看| videosex国产| 国产日韩一区二区三区精品不卡| 一区二区日韩欧美中文字幕| 精品日产1卡2卡| 久久久久久人人人人人| tocl精华| 亚洲五月色婷婷综合| 国产伦人伦偷精品视频| 色播在线永久视频| 亚洲精品国产精品久久久不卡| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 国产成人av教育| 日韩中文字幕欧美一区二区| 电影成人av| 国产亚洲精品一区二区www| 国产精品一区二区三区四区久久 | 精品福利永久在线观看| 日韩国内少妇激情av| 女性生殖器流出的白浆| 国产精品电影一区二区三区| 国产精品一区二区三区四区久久 | 久久天躁狠狠躁夜夜2o2o| 国产伦一二天堂av在线观看| 露出奶头的视频| 精品一区二区三区av网在线观看| 宅男免费午夜| 正在播放国产对白刺激| 两个人免费观看高清视频| 性欧美人与动物交配| 18禁观看日本| 午夜精品久久久久久毛片777| 变态另类成人亚洲欧美熟女 | 精品久久蜜臀av无| 午夜免费成人在线视频| 热99re8久久精品国产| 一区二区三区激情视频| 麻豆av在线久日| 高清欧美精品videossex| 女生性感内裤真人,穿戴方法视频| 久久久精品国产亚洲av高清涩受| 法律面前人人平等表现在哪些方面| 中亚洲国语对白在线视频| 精品久久久久久成人av| 国产视频一区二区在线看| 久久香蕉国产精品| 亚洲一区高清亚洲精品| 热99国产精品久久久久久7| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月天丁香| 丝袜美足系列| 精品一区二区三卡| 国产精品爽爽va在线观看网站 | 欧美乱码精品一区二区三区| 国产亚洲精品第一综合不卡| 久久99一区二区三区| 搡老乐熟女国产| 亚洲熟女毛片儿| 日韩欧美免费精品| 成年女人毛片免费观看观看9| 欧美乱色亚洲激情| 国产又色又爽无遮挡免费看| 99久久综合精品五月天人人| 美女大奶头视频| 国产精品秋霞免费鲁丝片| 亚洲精品中文字幕在线视频| 国产av又大| 一边摸一边做爽爽视频免费| 18禁裸乳无遮挡免费网站照片 | 久久久国产一区二区| 婷婷精品国产亚洲av在线| av福利片在线| 男人舔女人的私密视频| 人人妻人人澡人人看| 亚洲精品中文字幕在线视频| 久久精品成人免费网站| 又紧又爽又黄一区二区| 十八禁人妻一区二区| 国产乱人伦免费视频| 欧美成人性av电影在线观看| 免费日韩欧美在线观看| 最近最新中文字幕大全免费视频| 欧美精品啪啪一区二区三区| 久久久久久久精品吃奶| 亚洲色图av天堂| 日本免费a在线| 亚洲国产欧美网| 啦啦啦 在线观看视频| 不卡一级毛片| 国产精品久久久久久人妻精品电影| 欧美人与性动交α欧美软件| 日本a在线网址| 一本综合久久免费| 久久人妻熟女aⅴ| 91九色精品人成在线观看| 91成年电影在线观看| 看片在线看免费视频| 国产午夜精品久久久久久| 怎么达到女性高潮| 国产三级黄色录像| 亚洲国产欧美网| 淫秽高清视频在线观看| 搡老熟女国产l中国老女人| 国产亚洲欧美在线一区二区| 亚洲中文日韩欧美视频| 99精国产麻豆久久婷婷| 欧美人与性动交α欧美软件| 满18在线观看网站| av免费在线观看网站| 久久亚洲真实| 亚洲一区中文字幕在线| 最近最新免费中文字幕在线| 国产亚洲精品久久久久久毛片| 1024视频免费在线观看| 中文亚洲av片在线观看爽| 国产精品久久视频播放| 九色亚洲精品在线播放| 午夜免费激情av| 夜夜看夜夜爽夜夜摸 | 亚洲自偷自拍图片 自拍| 日韩欧美免费精品| 色老头精品视频在线观看| 男女之事视频高清在线观看| 手机成人av网站| 精品福利永久在线观看| 女同久久另类99精品国产91| 欧美乱妇无乱码| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 不卡一级毛片| 黄色片一级片一级黄色片| 精品电影一区二区在线| 性少妇av在线| 国产成人系列免费观看| 日韩欧美在线二视频| 两个人免费观看高清视频| 男女高潮啪啪啪动态图| 99热只有精品国产| 中文字幕av电影在线播放| 美女高潮到喷水免费观看| 可以在线观看毛片的网站| 成年人免费黄色播放视频| 黄色毛片三级朝国网站| 国产精品自产拍在线观看55亚洲| 欧美乱色亚洲激情| 母亲3免费完整高清在线观看| 老司机在亚洲福利影院| 十八禁人妻一区二区| 亚洲精品在线美女| bbb黄色大片| 99国产极品粉嫩在线观看| 97超级碰碰碰精品色视频在线观看| 乱人伦中国视频| 十分钟在线观看高清视频www| 村上凉子中文字幕在线| 久久草成人影院| 久久狼人影院| 成人影院久久| 一二三四社区在线视频社区8| 国产人伦9x9x在线观看| 一区福利在线观看| 国产高清国产精品国产三级| 婷婷六月久久综合丁香| 久久精品国产99精品国产亚洲性色 | 亚洲一区中文字幕在线| 久久狼人影院| 欧美日韩福利视频一区二区| av电影中文网址| 欧美午夜高清在线| 亚洲成国产人片在线观看| 巨乳人妻的诱惑在线观看| 亚洲男人的天堂狠狠| 日韩 欧美 亚洲 中文字幕| 法律面前人人平等表现在哪些方面| 另类亚洲欧美激情| 国产99久久九九免费精品| 成年人免费黄色播放视频| 黑人欧美特级aaaaaa片| 国产精品日韩av在线免费观看 | ponron亚洲| 久9热在线精品视频| 97碰自拍视频| 精品午夜福利视频在线观看一区| 在线永久观看黄色视频| 亚洲精品久久午夜乱码| 亚洲性夜色夜夜综合| 一本大道久久a久久精品| 日韩av在线大香蕉| 在线观看66精品国产| 欧美成狂野欧美在线观看| 男人舔女人的私密视频| 精品久久蜜臀av无| 宅男免费午夜| 一级毛片高清免费大全| 免费观看人在逋| 99国产精品一区二区三区| 国产精品 国内视频| 久久久久久免费高清国产稀缺| 国产欧美日韩综合在线一区二区| 亚洲美女黄片视频| 夫妻午夜视频| 日韩三级视频一区二区三区| 精品久久久精品久久久| a级毛片在线看网站| 黄网站色视频无遮挡免费观看| 中文字幕人妻熟女乱码| 亚洲av成人不卡在线观看播放网| 人妻久久中文字幕网| 另类亚洲欧美激情| 99国产精品免费福利视频| www.熟女人妻精品国产| 成年人免费黄色播放视频| 咕卡用的链子| 久久精品91无色码中文字幕| 动漫黄色视频在线观看| 日本vs欧美在线观看视频| 国产又爽黄色视频| 久久热在线av| 淫秽高清视频在线观看| 亚洲av五月六月丁香网| 一区在线观看完整版| 神马国产精品三级电影在线观看 | 久久中文看片网| 国产精品野战在线观看 | 91在线观看av| 亚洲九九香蕉| 亚洲色图av天堂| 久久午夜亚洲精品久久| 村上凉子中文字幕在线| 午夜成年电影在线免费观看| 19禁男女啪啪无遮挡网站| 精品久久久精品久久久| 视频在线观看一区二区三区| 18禁观看日本| 亚洲avbb在线观看| 久久久水蜜桃国产精品网| 成人永久免费在线观看视频| 日韩高清综合在线| 亚洲伊人色综图| www.精华液| 亚洲熟妇熟女久久| 欧美性长视频在线观看| 大香蕉久久成人网| 女人高潮潮喷娇喘18禁视频| 国产精品永久免费网站| videosex国产| 水蜜桃什么品种好| 欧美日韩一级在线毛片| 美女午夜性视频免费| 亚洲在线自拍视频| 国产精品av久久久久免费| 国产精品98久久久久久宅男小说| 精品熟女少妇八av免费久了| 亚洲国产看品久久| 国产99久久九九免费精品| 性色av乱码一区二区三区2| 久久国产精品影院| 人人妻人人澡人人看| 国产三级在线视频| 午夜成年电影在线免费观看| 国产精品日韩av在线免费观看 | 日韩成人在线观看一区二区三区| 亚洲精品国产色婷婷电影| videosex国产| 一二三四在线观看免费中文在| 日韩有码中文字幕| 男人舔女人下体高潮全视频| 精品国内亚洲2022精品成人| 最近最新中文字幕大全免费视频| 国产成人欧美| 色综合欧美亚洲国产小说| 黄片小视频在线播放| 亚洲欧美一区二区三区久久| 18禁裸乳无遮挡免费网站照片 | 搡老熟女国产l中国老女人| 视频在线观看一区二区三区| 国产精品影院久久| 中文字幕最新亚洲高清| 黑丝袜美女国产一区| 欧美精品亚洲一区二区| 国产国语露脸激情在线看| 日本 av在线| 亚洲 欧美一区二区三区| 日本a在线网址| 欧美日韩黄片免| 性欧美人与动物交配| 波多野结衣一区麻豆| 天天影视国产精品| 精品国内亚洲2022精品成人| 久久久久久久精品吃奶| 日本免费一区二区三区高清不卡 | 777久久人妻少妇嫩草av网站| 中文字幕人妻熟女乱码| 日本 av在线| 一区二区三区国产精品乱码| 国产精品久久视频播放| av中文乱码字幕在线| 久久影院123| 久久人妻福利社区极品人妻图片| 动漫黄色视频在线观看| 中出人妻视频一区二区| 91精品三级在线观看| 色婷婷久久久亚洲欧美| 欧美日韩福利视频一区二区| 久热这里只有精品99| 在线国产一区二区在线| 超色免费av| 日韩成人在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 国产成人精品无人区| 亚洲专区中文字幕在线| 日本三级黄在线观看| 一个人免费在线观看的高清视频| 久热爱精品视频在线9| 99久久精品国产亚洲精品| 在线免费观看的www视频| 国产免费男女视频| 午夜精品久久久久久毛片777| avwww免费| 丝袜美足系列| 国产精品偷伦视频观看了| 亚洲国产精品999在线| 欧美最黄视频在线播放免费 | 欧美人与性动交α欧美软件| 久久久国产成人免费| 欧美黑人精品巨大| 精品国产国语对白av| 91国产中文字幕| 巨乳人妻的诱惑在线观看| 免费一级毛片在线播放高清视频 | 中文字幕最新亚洲高清| 欧美日韩乱码在线| 一进一出抽搐gif免费好疼 | 欧美日韩中文字幕国产精品一区二区三区 | 在线国产一区二区在线| 一区二区三区精品91| 欧美在线黄色| 一级毛片高清免费大全| 桃红色精品国产亚洲av| 欧美在线黄色| 丝袜美足系列| 欧美乱妇无乱码| 一区福利在线观看| 91九色精品人成在线观看| 后天国语完整版免费观看| 男女下面进入的视频免费午夜 | 免费不卡黄色视频| 91精品三级在线观看| 水蜜桃什么品种好| 女人精品久久久久毛片| 欧美日本中文国产一区发布| 久热爱精品视频在线9| 性欧美人与动物交配| 国产一区二区激情短视频| 国产亚洲av高清不卡| 婷婷丁香在线五月| 亚洲av日韩精品久久久久久密| 亚洲人成网站在线播放欧美日韩| 久久久久国产一级毛片高清牌| 欧美日韩中文字幕国产精品一区二区三区 | 美国免费a级毛片| 欧美人与性动交α欧美精品济南到| 国产蜜桃级精品一区二区三区| 国产亚洲精品一区二区www| 午夜精品久久久久久毛片777| 精品国产美女av久久久久小说| 国产精品乱码一区二三区的特点 | 欧美日韩国产mv在线观看视频|