• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact toughness of a gradient hardened layer of Cr5Mo1V steel treated by laser shock peening

    2016-09-06 11:38:29WeiguangXiaLeiLiYanpengWeiAiminZhaoYacongGuoChenguangHuangHongxiangYinLingchenZhang
    Acta Mechanica Sinica 2016年2期

    Weiguang Xia·Lei Li·Yanpeng Wei·Aimin Zhao·Yacong Guo· Chenguang Huang·Hongxiang Yin·Lingchen Zhang

    ?

    Impact toughness of a gradient hardened layer of Cr5Mo1V steel treated by laser shock peening

    Weiguang Xia1·Lei Li2·Yanpeng Wei1·Aimin Zhao3·Yacong Guo1· Chenguang Huang1·Hongxiang Yin3·Lingchen Zhang4

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

    AbstractLaser shock peening(LSP)is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts.Cr5Mo1V steel exhibits a gradient hardened layer after a LSP process. A new method is proposed to estimate the impact toughnessthatconsidersthechangingmechanicalpropertiesinthe gradient hardened layer.Assuming a linearly gradient distribution of impact toughness,the parameters controlling the impact toughness of the gradient hardened layer were given. The influence of laser power densities and the number of laser shots on the impact toughness were investigated.The impact toughness of the laser peened layer improves compared with an untreated specimen,and the impact toughness increases with the laser power densities and decreases with the number of laser shots.Through the fracture morphology analysis by a scanning electron microscope,we established that the Cr5Mo1V steel was fractured by the cleavage fracture mechanism combined with a few dimples.The increase in the impact toughness of the material after LSP is observed because of the decreased dimension and increased fraction of the cleavage fracture in the gradient hardened layer.

    KeywordsLaser shock peening·Gradient hardened layer·Plastically affected depth·Impact toughness· Cleavage fracture

    1 Introduction

    Laser shock peening(LSP)is an advanced surface treatment technique that has been successfully applied to improve the wear resistance and impact performance of metallic components[1-3].During an LSP process,a shock wave with high-amplitudepressureisgeneratedandpropagatesintothe target material through the interaction of a high-power density pulsed laser and a thin absorption layer on the target surface.Plastic deformation occurs,and plenty of dislocationsaregeneratednearthematerialsurfaceoncethepressure oftheshockwaveexceedstheHugoniotelasticlimit(HEL)of thematerial.Thus,residualcompressivestressesareinduced in the shocked region,resulting in a hardened layer near the target surface,which displays good performance considering wear and impact.It was found by Yasnii et al.[4]that the impact toughness of 15Kh13MF steel increases up to twofold after LSP with a power density ranging from 5×108to 2×109W·cm?2.The mechanism of the increase of impact toughness is mainly from two aspects:residual stresses and dislocations in the hardened layer[1,5-9].Prefabricated residual compressive stress can improve the stress threshold of crack growth.Using a laser quenching technique,Kong and Zhang[6]introduced residual compressive stresses into the 40CrNiMo steel,and the residual compressivestresscaneffectivelyretraincrackextensionandimprove impacttoughnessofthesample.Additionally,therefinemen ofcrystallinegrainorthegenerationofdislocationanddeformation twinning can effectively restrain the generation of acrack.ByreducingthemeangrainsizeofaMg-3Al-Znalloy to less than 3μm,Liao et al.[7]reported that the impact toughness is greatly improved due to enhancement of the dynamic strength and dynamic plastic deformation ability.It wasreported byMatset al.[9]that theincreaseoftheimpact toughness for the steel 15Kh2NMFA upon high-temperature ultrasonic treatment of various durations is due to the formation of a uniform defect structure.For the LSP processing technology,the mechanical properties of the hardened layer are not uniform[1,2,10-12].By the micro-hardness tests acrosstheLSPpeenedlayer,Peyreetal.[10]reportedthatthe hardness decreases gradually from surface to the base material.Using the X-ray diffraction(XRD)measurement,Dane et al.[11]reported that the residual compressive stresses induced by LSP process are gradually decreased along the depth and finall reach a level identical to the base material. Nodiscontinuitysurfaceisgeneratedattheinterfacebetween the hardened layer and base material.Thus,the laser peened layer can be seen as a gradient hardened layer(GHL)whose impact toughness needs to be investigated comprehensively.

    Although the integral impact toughness of a structural component is the main concern in the engineering application,the local impact toughness of GHL given in this study hasitsadvantages.Whenthelocalimpacttoughnessofaconfiguratio is determined,the integral impact toughness can becalculatedthroughaspecifi model.Evenmoreimportant, theintegralimpacttoughnessofvariousgeometricconfigura tionscanalsobepredictedthroughthelocalimpacttoughness of GHL for the same processing parameters that may save much cost of detection.

    In this paper,the laser peened layer of Cr5Mo1V steel is considered to be a GHL.The control parameters of impact toughness of GHL are define for a linearly gradient distribution.The value of the control parameters is experimentally determined from Charpy impact tests and hardness tests using an empirical equation.Additionally,the influence of laser power densities and the number of laser shots on the impacttoughnesswereinvestigated.Thefracturemechanism ofGHLwascharacterizedonascanningelectronmicroscope (SEM).

    2 Experimental

    2.1Materials

    Cr5Mo1V steel materials were provided by the University of Science and Technology of Beijing(China).The nominal alloy composition is shown in Table 1.The steel was heattreated inafurnace at 850-870?Cfor3-4 h,andthen cooled to 740-760?C for 3-4 h,and then cooled in the furnace to 50?C,and finall cooled in the air.The microstructure consistsofbimodal crystallinegrainswhose size variesfrom 15 to 90μm(see Fig.1).Prior to LSP,the specimen surface was ground with sandpaper and finall polished with 50 nm SiO2of turbid liquid.

    Table 1 The composition of Cr5Mo1V steel(wt%)

    Fig.1 The microstructure of Cr5Mo1V steel

    Fig.2 The schematic of LSP experiment

    2.2LSP experiment

    Figure 2 shows the schematic of the LSP experiment.The shocked surface of the Cr5Mo1V steel sample is glued with an aluminum foil(40μm thick)as an ablative overlay,and confine by flwing water against the laser irradiation.The aluminum foil is meanwhile used to increase the shock wave intensity and to protect the sample surface from laser ablation and melting.The flwing water is used to confin the expanding plasma to obtain higher shock pressure. Another Cr5Mo1V steel sample was attached to the back of the Cr5Mo1V steel specimen to match the impendence.A Q-switched high power Nd:YAG pulsed laser(Spectra Physics)operating at 1064 nm wavelength was used in the LSP experiment.The maximum output energy of a singlelaser pulse is 2.4 J and the pulse width(full width at half maximum)is about 10 ns.A focusing lens was utilized to adjust the laser spot size in order to obtain different laser power densities.The laser power density varied from 2.6 to 4.4 GW·cm?2.

    2.3Property characterizations

    The micro-hardness of the LSP-treated specimen was measured by a MH-6 micro-hardness tester with a load of 200 g and a holding time of 10 s at room temperature.The depth of the GHL of the Cr5Mo1V specimen after LSP was obtained throughamicro-hardnessdistributionalongthecross-section of LSP-treated specimen.The surface micro-hardness of the shocked region was measured to characterize the surface strengthening effect.

    At room temperature,the Charpy impact test was performed using an impact testing machine with a JBDW-300D pendulum bob for samples treated with LSP.The Charpy specimenswerepreparedaccordingtotheGB/T229standard test method for Charpy pendulum impact of metallic materials[13].As the laser spot size is small(at the level of 3 mm),massive laser shots were applied on the sample surface in order to obtain a large laser-treated area.The overlapping ratiowas60%controlledbyanx-ytable.Theshockedregion isshowninFig.3,withadimensionof10 mm×8 mm.Both of the two sides are peened by LSP.To obtain a greater depth of the peened layer,different numbers of laser shots were used,varying from one to fi e shots.After the impact test, the impact energy of each sample was recorded.

    2.4Microstructure observations

    A scanning electron microscope(Nova NanoSEM operated at10kV)wasusedtocharacterizetheCharpyimpactfracture morphology.

    3 Results and discussion

    3.1Modeling of the impact toughness of a gradient

    hardened layer

    The classical impact toughness is defineas ak=Ak/A undertheassumptionthatmechanicalpropertiesinthecrosssection are uniform,where Akis the impact work,and A is the cross-section area[14-17].Moreover,Zhou et al. [14]reported that the average impact toughness of 2Crl3 martensitestainlesssteelincreasedasthelaserpowerdensity increased(within an appropriate range).However,the material treated by LSP presents nonuniformity,and the increase in the impact toughness is mainly attributed to the hardened layer.However,the classical equation cannot reflec the impact toughness of the gradient hardened layer because of the dimensional effect.

    The distribution of impact toughness of GHL can be perceived as a function of depth.To simplify the model,the function is assumed to be linear according to the hardness and residual stress distribution tests across the peened layer section of former studies[10,11].By measuring the microhardnessacrossthecross-sectionoftheGHL,Peyreetal.[10]foundthatthehardnessesdecreasesalmostlinearlyalongthe depth and finallreach a level identical to the base material.The impact toughness is highest at the surface of the specimen and decreases linearlyalong the GHL.The highest impacttoughnessofGHLisdenotedasak1inthetopsurface. The impact toughness of the base material is denoted as ak0. Thus,the gradient of the impact toughness from surface to the boundary,denoted as k,can be calculated as follows:

    where h is the depth of the GHL layer after LSP.Therefore, the impact toughness during the peened layer can be calculated as follows:

    Fig.3 Scheme of the laser shock peening and dimensions of the specimen

    Fig.4 ModelingtheimpacttoughnessoftheGHL.aTheschematicof afractureoftheCharpyspecimen.bThecross-sectionofalaserpeened layer.c The distribution of the impact toughness at the cross-section of the peened layer

    where x is the distance from the surface to the internal peened layer,as shown in Fig.4.The parameters controlling the impact toughness of the gradient hardened layer are thesurface impact toughness,ak1,andthegradient,k,forthe assumption of linearly gradient distribution of impact toughness during the peened layer.

    Charpy impact tests are widely used to determine the impact toughness of material[18-20].Figure 4a shows the schematic of fracture of a Charpy specimen at impact load. Figure 4b shows the cross-section including the laser peened layer and the base material.Figure 4c shows the distribution of the impact toughness at the cross-section.To simplify the model,several assumptions are drawn:

    (1)The crack propagation surface is always perpendicular to the head surface.

    (2)The mechanical properties are assumed to have a linearlygradient distributionduringthelaserpeenedlayer. The properties of the GHL boundary are equal to the properties of the base material.

    During the Charpy impact tests,the impact work is obtained.ThefracturesofboththeGHLandthebasematerial contribute to the impact work.Therefore,the surface impact toughness after LSP can be calculated as follows: where,b is the distance from the notch to the undersurface (seeFig.3),and Akistheimpactwork.Theimpacttoughness of the base material,ak0,can be obtained from an untreated sample.The depth of GHL,h,has a significan influenc on thesurfaceimpacttoughness,ak1,andthegradient,k,inEqs. (1)and(3).The depth of GHL,h,can be obtained from the distribution of the micro-hardness along the cross-section of a laser peened specimen.Therefore,the surface impact toughness after LSP can be calculated from Eqs.(1)and(3).

    3.2Depth of the GHL

    The depth of GHL can be obtained through the microhardness distribution along the cross-section of laser peened sample[10-12].According to Chen et al.[21]and Carlsson andLarsson[22],theinducedresidualcompressivestresscan enhance the hardness of material.Meanwhile,the improvement of impact toughness is also related to the compressive residual stress[6,8].So,we speculate that the gradients of the hardness and impact toughness have the similar distribution.Thus,the hardness along the cross-section of peened sample can be used to determine the depth of GHL.Using the micro-hardness test,the depth of GHL of the Cr5Mo1V steeltreatedwithdifferentlaserpowerdensitiesanddifferent numbers of shots was measured,as shown in Fig.5a,b.For thesampletestatalaserpowerdensityof3.8 GW·cm?2,the micro-hardness test along the cross-section of a laser-treated sample shows that the micro-hardness increases at the surfaceoftheGHL,andthengraduallydecreasestothevalueof theuntreatedregionatadepthof(1.00±0.05)mm,asshown in Fig.5a.The result indicates that the thickness of GHL is (1.00±0.05)mm at a laser power density of 3.8 GW·cm?2. The depth of the GHL at other laser parameters can be obtained through this method.The relationship between the depthoftheGHLandlaserpowerdensityisshowninFig.6a. The depth of the GHL increases with laser power density for laser power densities lower than 3.8 GW·cm?2and slightly decreasesatlaserpowerdensitieshigherthan3.8GW·cm?2. This behavior is because the laser induced shock pressure is proportionaltothesquarerootoflaserpowerdensityaccordingtoFabbro’smodel[23],i.e.,thehigherlaserpowerdensity is,the higher the laser induced shock pressure is.According totheresearchofBallardetal.[24],plasticallyaffecteddepth is proportional to the difference between shock pressure and HEL.Thus,higher shock pressure induces deeper plastically affected depth.That is why the depth of GHL increases with laser power density when the laser power density is lower than 3.8 GW·cm?2.However,when the laser power density exceeds a critical value,the surface of the confinin overlay will become opaque to the laser.Thus,the effective laser energy on the shocked surface will decrease.As a result,the depth of GHL will decrease.That is why the depth of GHLslightly decreases while the laser power density increases to 4.4 GW·cm?2.

    Fig.5 Hardnessasafunctionofdepthonthecross-sectionofapeened sample:adifferentlaserpowerdensitiesand bdifferentnumberoflaser shots

    Figure 6b shows the relationship between the depth of the GHL and the number of laser shots.The depth of GHL is proportional to the laser shots,which is consistent with the experimental resultsofDaneetal.[11]andMasseetal.[25]. It was found by Dane et al.[11]that the depth of residual compressive stressesgenerated bytwosuccessivelasershots is higher than that of a single shot.Also,Masse et al.[25]found that the plastically affected depth increases from 0.86 to 1.80 mm when the number of laser shots increases from one to three.So the more the number of laser shots are,the higher the depth of GHL is.

    Fig.6 The plastically affected depth of different laser power densities and numbers of laser shots:a different laser power densities and b different numbers of laser shots

    3.3Impact toughness

    From the Charpy impact tests,the impact work is shown in Table 2.The impact work increases with increasing laser power densities when the laser power density is lower than 3.8 GW·cm?2.When the laser power density exceeds

    3.8GW·cm?2,the impact work is almost unchanged.The depthoftheGHLalsohastheidentical trendwiththeimpact work.Based on Eqs.(1)-(3)combined with the depth of the GHL,the surface impact toughness,ak1,and the gradient,k,of the peened samples can be calculated as shown in Fig.7a.The impact toughness and the gradient k both increase as the laser power density increases from 2.6 to 4.4 GW·cm?2.This increase is consistent with Zhou et al. [14]whose results demonstrate that the impact toughness of the 2Crl3 martensite stainless steel increases with increasing laser power densities when the laser power density is lower than 8.57 GW·cm?2.The reason for this increase is due to the residual compressive stress induced by a laser induced shockwhichcanrestrainthegrowthofthecrack[1,2,14,26]. As the residual compressive stress increases with increasing laser power densities within an appropriate range,the surfaceimpacttoughnessincreaseswiththelaserpowerdensity.This can be reflecte through the surface hardness afterLSP.In Table 2,the surface hardness increases from 236.8 to 246.1 kg·mm?2as the laser power density increases from 2.6 to 4.4 GW·cm?2,which has the identical trend with the experimental results of Clauer and Fairand[27].Clauer and Fairand[27]found that the average surface hardness of 2024-T351 increases with peak shock pressure while the peakpressureisproportionaltothesquarerootoflaserpower density.The increase in the gradient can be ascribed to the fact that the increasing rate of impact toughness is higher than the increasing rate of the depth of the GHL according to Eq.(1).

    Table 2 Characteristics of the GHL with different laser power densities

    Fig.7 Impact toughness,ak1,and the gradient,k,for different laser power densities and different numbers of laser shots:a different laser power densities and b different numbers of laser shots

    The impact work with different numbers of laser shots is shown in Table 3.Comparing with untreated samples, the impact work increases after LSP.The increase in the impact work shows no dependence on the numbers of laser shots.According to Eqs.(1)-(3)and the depth of the GHL, the impact toughness,ak1,and the gradient,k,of a peened specimen can be calculated as shown in Fig.7b.As the impact work is almost unchanged,and the depth of the GHL increases with the numbers of laser shots,the surface impact toughness decreases with the numbers of laser shots according to Eq.(3).The gradient k of the peened samples also decreases with increasing numbers of laser shots according to Eq.(1).Using finit element analysis to simulate the LSP process of 35CD4 steel alloy,Ding and Ye[28]reported that the surface compressive residual stress is almost unchanged while the plastically affected depth increases from 0.74 to 1.4mmwhenthenumbersoflasershotsincreasesfromoneto three.Surfacecompressiveresidualstressplaysanimportant role on the magnitude of surface impact toughness through restraining the generation and growth of crack.As a result, the gradient k decreases with increasing the number of laser shot according to our model,due to the fact that the depth of GHL increases rapidly while the surface compressive residual stressisalmost unchanged withincreasingthenumber of laser shots.

    3.4Mechanisms of fracture of treated specimens

    Figure 8 shows the fracture mechanism of specimens treated with laser induced shock at the laser power density of 4.4GW·cm?2with three laser shots.Figure 8a shows the fracture morphology from an LSP-treated surface to an untreatedregion.Themainmechanismoffractureiscleavage fracture combined with a few dimples.The microstructure of a fracture surface is similar to a river pattern.The dimension of the cleavage fracture decreases from the surface to the untreated region.Cleavage fracture with smaller dimensions can absorb more energy during fracture,resulting in higherimpactwork.Figure8b-dshowthemorphologyofthe cleavage fractures from untreated region to the LSP treated surface.Figure 8b shows the morphology of the cleavage fractures of the untreated region.The number of cleavage fractures is relatively low and the dimensions of cleavage fracturesarelarge,atthelevelof80-90μm.Figure8cshows the morphology of the cleavage fractures at the region away from the surface of the GHL.The number of cleavage fractures increases,and the dimension of the cleavage fracture (at the level of 50-60μm)is smaller compared with the untreatedregion.Therefore,theimpacttoughnessintheGHL ishigherthantheuntreatedregiontoughnessastheincreased cleavagefracturescanabsorbmoreenergyduringtheimpact. Figure 8d shows the morphology of the cleavage fractures beneath the surface of the GHL.This region has the largest number of cleavage fractures and smallest dimensions(at the level of 25-35μm)of the cleavage fracture.Thus,more energycanbeabsorbedduringimpact.Therefore,theimpact toughness is higher at the LSP-treated surface and decreases along the depth of the GHL as the dimension of the cleavage fracture increases with depth.Thus,the GHL is formed during the laser induced shock.The increased number of cleavage fractures and decreased dimension of the cleavage fractures are due to the residual compressive stresses and density of dislocations induced by the laser shock wave.It wasreported byTrdan etal.[26]that ashock wave generates residual compressive stresses to a depth of above 0.78 mm, and density of dislocations with various types,including dislocation cells,dislocation lines,dislocation tangles,and the formation of dislocation walls for the Al-Mg-Si alloy.At the same time,the microstructure of the material is rather refine due to the effect of strain deformations induced by the LSP process.As a result,the impact toughness increasesbecause of the increased number and decreased dimensions of the cleavage fractures.

    Table 3 Characteristics of GHL with different numbers of laser shots

    Fig.8 Fracture morphology of a laser peened Charpy specimen for a laser power density of 4.4 GW·cm?2and three laser shots.a Fracture morphology from the LSP-treated surface to the untreated region.b Amplifie image of cleavage fractures from region B of the untreated region. c Amplifie image of cleavage fractures from region C in the GHL.d Amplifie image of cleavage fractures from region D beneath the LSP-treated surface

    4 Conclusions

    The Cr5Mo1V steel was processed by laser shock peening,and a GHL was exhibited.A new method to estimate the impact toughness that considers the GHL was proposed. When assuming a linearly gradient distribution for impact toughness,the parameters describing the impact toughness ofthepeenedlayerwereprovided.Theinfluence ofthelaser power densities and number of laser shots on the impact toughness were investigated.The impact toughness of the laser peened layer improves when compared with untreated specimens,and increases in the laser power densities and decreasesinthenumberoflasershotsalsoimprovethetoughness.Through the fracture morphology analysis by SEM, we established that the Cr5Mo1V steel was fractured by a cleavage mechanism combined with a few dimples.The increase in the impact toughness of the material after LSP results from the cleavage fracture with smaller dimensions and increased fraction component in the fracture process. Therefore,Cr5Mo1V steels with higher impact toughness canbepreparedwithLSPforapplicationsintherollindustry.

    AcknowledgmentsThe project was supported by the National Natural Science Foundation of China(Grants 11002150,11332011,and 11402277)and the Basic Research Equipment Project of the Chinese Academy of Sciences(YZ200930)for financia support.

    References

    1.Montross,C.S.,Wei,T.,Ye,L.,etal.:Lasershockprocessingandits effects on microstructure and properties of metal alloys:a review. Int.J.Fatigue 24,1021-1036(2002)

    2.Peyre,P.,Fabbro,R.:Laser shock processing:a review of the physics and applications.Opt.Quantum Electron.27,1213-1229 (1995)

    3.Zhang,Y.K.,Lu,J.Z.,Luo,K.Y.:Laser Shock Processing of FCC Metals,1st edn.Springer,Berlin(2013)

    4.Yasnii,P.V.,Marushchak,P.O.,Nikiforov,Y.M.,et al.:Influenc of laser shock-wave treatment on the impact toughness of heatresistant steels.Mater.Sci.46,425-429(2010)

    5.Shukla,P.P.,Lawrence,J.:Fracture toughness modificatioby using a fibr laser surface treatment of a silicon nitride engineering ceramic.J.Mater.Sci.45,6540-6555(2010)

    6.Kong,D.J.,Zhang,L.:Effects of laser quenching on impact toughness and fracture morphologies of 40CrNiMo high strength steel. J.Mater.Eng.Perform.23,3695-3702(2014)

    7.Liao,J.S.,Hotta,M.,Kaneko,K.,etal.:Enhancedimpacttoughness of magnesium alloy by grain refinement Scripta Mater.61,208-211(2009)

    8.Chaudhury,J.N.:Effect of heat treatment,pre-stress and surface hardening on fracture toughness of micro-alloyed steel.J.Mater. Eng.Perform.23,152-168(2014)

    9.Mats,A.V.,Netesov,V.M.,Sokolenko,V.I.:Dislocation structure andimpacttoughnessofreactorpressurevesselsteel15Kh2NMFA upon ultrasonic treatment.Strength Mater.43,515-518(2011)

    10.Peyre,P.,Fabbro,R.,Merrien,P.,et al.:Laser shock processing of aluminium alloys.Application to high cycle fatigue behaviour. Mater.Sci.Eng.A 210,102-113(1996)

    11.Dane,C.B.,Hackel,L.A.,Daly,J.,et al.:Laser peening of metalsenabling laser technology.Adv.Mater.Process.5,13-27(1997)

    12.Wang,X.,Xia,W.G.,Wu,X.Q.,etal.:MicrostructureandmechanicalpropertiesofanausteniteNiTishapememoryalloytreatedwith laser induced shock.Mater.Sci.Eng.A 578,1-5(2013)

    13.GB/T229-2007:Standard Test Method for Charpy Pendulum Impact of Metallic Materials.Standards Press of China,Beijing (2007).(in Chinese)

    14.Zhou,P.C.,Feng,A.X.,Nie,G.F.,etal.:Impacttoughnessof2Cr13 martensitestainlesssteelinducedbylaser.LaserInfrared42,1235-1238(2012).(in Chinese)

    15.Marushchak,P.O.,Bishchak,R.T.,Gliha,B.,et al.:Influenc of temperatureontheimpacttoughnessanddynamiccrackresistance of 25Kh1M1F steel.Mater.Sci.46,568-572(2011)

    16.Zhang,N.,Shi,Y.W.,Xia,Z.D.,etal.:ComparisonofimpacttoughnessandfracturemorphologiesbetweenPb-containingandPb-free solder joints subject to the Charpy impact test.J.Electron.Mater. 37,1631-1639(2011)

    17.Barbangelo,A.:Influenc of alloying elements and heat treatment on impact toughness of chromium steel surface deposits.J.Mater. Sci.25,2975-2984(1990)

    18.Buirette,C.,Huez,J.,Gey,N.,et al.:Study of crack propagation mechanisms during Charpy impact toughness tests on both equiaxedandlamellarmicrostructuresofTi-6Al-4Vtitaniumalloy. Mater.Sci.Eng.A 618,546-557(2014)

    19.Yang,X.L.,Xu,Y.B.,Tan,X.D.,et al.:Influence of crystallography and delamination on anisotropy of Charpy impact toughness in API X100 pipeline steel.Mater.Sci.Eng.A 607,53-62(2014)

    20.Demirci,M.T.,Tarakcioglu,N.,Avci,A.,et al.:Fracture toughness of filamen wound BFR and GFR arc shaped specimens with Charpy impact test method.Compos.B 66,7-14(2014)

    21.Chen,X.,Yan,J.,Karlsson,A.M.:Onthedeterminationofresidual stress and mechanical properties by indentation.Mater.Sci.Eng. A 416,139-149(2006)

    22.Carlsson,S.,Larsson,P.L.:On the determination of residual stress and strain field by sharp indentation testing.:Part I:theoretical and numerical analysis.Acta Mater.49,2179-2191(2001)

    23.Fabbro,R.,Fournier,J.,Ballard,P.,et al.:Physical study of laserproducedplasmainconfine geometry.J.Appl.Phys.68,775-784 (1990)

    24.Ballard,P.,Fournier,J.,Fabbro,R.,etal.:Residualstressesinduced by laser-shocks.J.Phys.IV 1,487-494(1991)

    25.Masse,J.E.,Barreau,G.:Surface modificatioby laser induced shock waves.Surf.Eng.11,131-132(1995)

    26.Trdan,U.,Skarba,M.,Grum,J.:Laser shock peening effect on the dislocation transitions and grain refinemen of Al-Mg-Si alloy. Mater.Charact.97,57-68(2014)

    27.Clauer,A.,Fairand,B.:Interaction of laser-induced stress waves with metals.In:Metzbower,E.(ed.)Metals Park,pp.291-315. American Society for Metals,Ohio(1979)

    28.Ding,K.,Ye,L.:Simulation of multiple laser shock peening of a 35CD4steelalloy.J.Mater.Process.Technol.178,162-169(2006)

    8 March 2015/Revised:6 April 2015/Accepted:3 May 2015/Published online:21 September 2015

    ?Yanpeng Wei

    weiyanpeng@imech.ac.cn

    1Key Laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    2Sinosteel Scie-tech Development Company Limited, Beijing 100080,China

    3Metallurgical Engineering Research Institute,University of Science and Technology Beijing,Beijing 100083,China4Center of Library and Information,Institute of Mechanics, Chinese Academy of Sciences,Beijing 100190,China

    久久久久久久久久久丰满| 一级av片app| 精品国产国语对白av| 精品久久国产蜜桃| 精品国产一区二区久久| 在线观看av片永久免费下载| 大话2 男鬼变身卡| 日本免费在线观看一区| 性高湖久久久久久久久免费观看| 99国产精品免费福利视频| 80岁老熟妇乱子伦牲交| 99热这里只有精品一区| 久久精品国产亚洲网站| 插阴视频在线观看视频| 久久精品久久精品一区二区三区| a级毛片免费高清观看在线播放| 丰满人妻一区二区三区视频av| 少妇人妻 视频| av福利片在线| 如日韩欧美国产精品一区二区三区 | 在线观看国产h片| 欧美国产精品一级二级三级 | 亚洲人成网站在线播| 国产精品久久久久久久久免| 人妻系列 视频| 国产日韩欧美视频二区| 国产视频内射| 午夜激情福利司机影院| 免费黄色在线免费观看| 亚洲欧美中文字幕日韩二区| 久久99热6这里只有精品| 在现免费观看毛片| 色婷婷久久久亚洲欧美| 老司机亚洲免费影院| 国产片特级美女逼逼视频| 婷婷色综合www| 最近手机中文字幕大全| 国产成人免费无遮挡视频| 国产精品女同一区二区软件| 噜噜噜噜噜久久久久久91| 有码 亚洲区| 日本猛色少妇xxxxx猛交久久| 2018国产大陆天天弄谢| 中国三级夫妇交换| av又黄又爽大尺度在线免费看| 特大巨黑吊av在线直播| 国产片特级美女逼逼视频| 下体分泌物呈黄色| 人妻少妇偷人精品九色| 狂野欧美白嫩少妇大欣赏| 国产精品一区www在线观看| 午夜激情福利司机影院| 人妻系列 视频| 欧美成人精品欧美一级黄| 亚洲精品一区蜜桃| 国产日韩欧美在线精品| 中文字幕久久专区| 人人妻人人看人人澡| a级片在线免费高清观看视频| www.av在线官网国产| 你懂的网址亚洲精品在线观看| 欧美三级亚洲精品| av网站免费在线观看视频| 天天躁夜夜躁狠狠久久av| 男人舔奶头视频| 亚洲熟女精品中文字幕| 久久久久精品久久久久真实原创| 日韩不卡一区二区三区视频在线| 99久久中文字幕三级久久日本| 免费久久久久久久精品成人欧美视频 | 丰满乱子伦码专区| 视频中文字幕在线观看| 免费观看无遮挡的男女| 人妻人人澡人人爽人人| 人妻少妇偷人精品九色| 在线免费观看不下载黄p国产| 性色av一级| 亚洲美女搞黄在线观看| 久久精品国产鲁丝片午夜精品| 国产免费又黄又爽又色| 两个人免费观看高清视频 | 91久久精品国产一区二区三区| 国产视频首页在线观看| 国产高清有码在线观看视频| 午夜老司机福利剧场| 亚洲国产色片| 国产精品久久久久久精品古装| 亚洲精品乱码久久久v下载方式| 国产免费又黄又爽又色| 久久久欧美国产精品| 国产精品.久久久| 精品熟女少妇av免费看| 国产极品天堂在线| 少妇丰满av| 大片电影免费在线观看免费| 99九九线精品视频在线观看视频| 久久99热这里只频精品6学生| 丰满少妇做爰视频| 麻豆成人午夜福利视频| 国产精品久久久久久精品古装| 亚洲精品一区蜜桃| 男人添女人高潮全过程视频| 国产探花极品一区二区| 一级毛片黄色毛片免费观看视频| 久久久午夜欧美精品| 日韩精品有码人妻一区| av免费在线看不卡| a级毛片免费高清观看在线播放| 久久 成人 亚洲| 国产精品一区www在线观看| 国产精品伦人一区二区| 亚洲国产毛片av蜜桃av| 亚洲性久久影院| 大香蕉久久网| 高清午夜精品一区二区三区| freevideosex欧美| 丰满人妻一区二区三区视频av| 欧美性感艳星| 久久 成人 亚洲| 狂野欧美白嫩少妇大欣赏| 亚洲美女搞黄在线观看| 国产又色又爽无遮挡免| 尾随美女入室| 免费av不卡在线播放| a级毛片在线看网站| 少妇被粗大猛烈的视频| 中国三级夫妇交换| 一级毛片久久久久久久久女| 亚洲av免费高清在线观看| 国产精品一二三区在线看| 精品人妻一区二区三区麻豆| 18+在线观看网站| 国产黄片美女视频| 免费观看av网站的网址| 国产 一区精品| 最黄视频免费看| 日韩av免费高清视频| 国产高清有码在线观看视频| 婷婷色综合www| 妹子高潮喷水视频| 国产亚洲av片在线观看秒播厂| 日韩在线高清观看一区二区三区| 黄色配什么色好看| 久久热精品热| 少妇被粗大猛烈的视频| 日韩三级伦理在线观看| 综合色丁香网| 99久久精品国产国产毛片| 亚洲精品成人av观看孕妇| 极品少妇高潮喷水抽搐| 久久亚洲国产成人精品v| 午夜福利,免费看| 欧美激情极品国产一区二区三区 | 一二三四中文在线观看免费高清| 我要看黄色一级片免费的| 在线观看www视频免费| 十八禁高潮呻吟视频 | 一级a做视频免费观看| 久久99热这里只频精品6学生| 最近2019中文字幕mv第一页| 久久久久久人妻| 亚洲第一av免费看| 欧美+日韩+精品| 亚洲国产精品一区二区三区在线| 26uuu在线亚洲综合色| 有码 亚洲区| 久久午夜福利片| 麻豆乱淫一区二区| 国产一区有黄有色的免费视频| 99re6热这里在线精品视频| 22中文网久久字幕| 桃花免费在线播放| 午夜免费鲁丝| 在现免费观看毛片| 国产爽快片一区二区三区| 国产在线男女| 久久女婷五月综合色啪小说| 国产极品天堂在线| 美女国产视频在线观看| 国产高清国产精品国产三级| 男男h啪啪无遮挡| 久久99热6这里只有精品| 亚洲第一av免费看| 五月开心婷婷网| 亚洲精品自拍成人| 黑人高潮一二区| 国产成人a∨麻豆精品| 妹子高潮喷水视频| 精品一品国产午夜福利视频| 国产有黄有色有爽视频| 精品久久久久久久久亚洲| 久久影院123| 日韩免费高清中文字幕av| 妹子高潮喷水视频| a级一级毛片免费在线观看| 欧美最新免费一区二区三区| 国产精品无大码| 97超视频在线观看视频| 最近中文字幕高清免费大全6| 国产精品99久久99久久久不卡 | 国产亚洲91精品色在线| av卡一久久| 人妻系列 视频| 亚洲三级黄色毛片| 欧美日韩综合久久久久久| 亚洲精品日韩av片在线观看| 大片电影免费在线观看免费| 午夜福利视频精品| 啦啦啦啦在线视频资源| 欧美97在线视频| 日本-黄色视频高清免费观看| av在线观看视频网站免费| 男女啪啪激烈高潮av片| 成人二区视频| 久久av网站| 99九九线精品视频在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 五月伊人婷婷丁香| 97在线视频观看| 亚洲va在线va天堂va国产| 亚洲av综合色区一区| 国产成人午夜福利电影在线观看| 国产免费福利视频在线观看| 一本色道久久久久久精品综合| 黄色毛片三级朝国网站 | 一级,二级,三级黄色视频| 中国三级夫妇交换| 免费观看无遮挡的男女| 另类精品久久| 欧美老熟妇乱子伦牲交| 2022亚洲国产成人精品| 黑人高潮一二区| 国产成人免费无遮挡视频| 青春草国产在线视频| 在线观看免费视频网站a站| 一级毛片黄色毛片免费观看视频| 视频区图区小说| 啦啦啦视频在线资源免费观看| 晚上一个人看的免费电影| 午夜免费观看性视频| 三级国产精品欧美在线观看| 日韩精品有码人妻一区| 欧美精品国产亚洲| 大片免费播放器 马上看| 男人狂女人下面高潮的视频| 国产欧美日韩精品一区二区| 国产有黄有色有爽视频| 亚洲av成人精品一二三区| 嫩草影院新地址| 成人二区视频| 午夜福利,免费看| 只有这里有精品99| 一本—道久久a久久精品蜜桃钙片| 一二三四中文在线观看免费高清| 欧美3d第一页| 欧美高清成人免费视频www| 91午夜精品亚洲一区二区三区| 日韩制服骚丝袜av| 日日爽夜夜爽网站| 免费观看的影片在线观看| 亚洲怡红院男人天堂| 国产欧美另类精品又又久久亚洲欧美| 校园人妻丝袜中文字幕| 婷婷色av中文字幕| 人人妻人人看人人澡| 亚洲av日韩在线播放| 亚洲精品乱久久久久久| 精品卡一卡二卡四卡免费| 黑人巨大精品欧美一区二区蜜桃 | 色视频在线一区二区三区| 久久精品夜色国产| 精品一品国产午夜福利视频| 纵有疾风起免费观看全集完整版| 国产男人的电影天堂91| 国产精品嫩草影院av在线观看| 精品一品国产午夜福利视频| 纵有疾风起免费观看全集完整版| 一级片'在线观看视频| 春色校园在线视频观看| av在线老鸭窝| 亚洲第一区二区三区不卡| xxx大片免费视频| 国产亚洲精品久久久com| 精品人妻一区二区三区麻豆| 99精国产麻豆久久婷婷| 日日撸夜夜添| 99久国产av精品国产电影| 国产一区有黄有色的免费视频| 国产av精品麻豆| 亚洲综合色惰| 国产免费一区二区三区四区乱码| 国产乱人偷精品视频| 人人妻人人澡人人爽人人夜夜| 亚州av有码| 少妇人妻精品综合一区二区| 午夜福利,免费看| 五月伊人婷婷丁香| 一级毛片久久久久久久久女| 高清毛片免费看| 色94色欧美一区二区| 精品一区二区免费观看| 最后的刺客免费高清国语| av线在线观看网站| 一级毛片黄色毛片免费观看视频| 777米奇影视久久| 少妇 在线观看| 久久精品国产亚洲av涩爱| 深夜a级毛片| 啦啦啦视频在线资源免费观看| 高清在线视频一区二区三区| 波野结衣二区三区在线| 18禁裸乳无遮挡动漫免费视频| 亚洲国产色片| 国产精品不卡视频一区二区| 69精品国产乱码久久久| 国产成人a∨麻豆精品| tube8黄色片| 亚洲精品日韩在线中文字幕| 色视频在线一区二区三区| 免费黄网站久久成人精品| 亚洲电影在线观看av| 高清av免费在线| 99热这里只有是精品在线观看| 国产毛片在线视频| 99热国产这里只有精品6| 亚洲成人手机| 国产成人精品一,二区| 男人舔奶头视频| 啦啦啦视频在线资源免费观看| 一个人免费看片子| 成人毛片a级毛片在线播放| av天堂久久9| 国产深夜福利视频在线观看| 亚洲av日韩在线播放| 亚洲情色 制服丝袜| 妹子高潮喷水视频| 亚洲经典国产精华液单| 五月玫瑰六月丁香| 麻豆乱淫一区二区| 五月开心婷婷网| 大码成人一级视频| 黄色视频在线播放观看不卡| 蜜桃在线观看..| 婷婷色综合大香蕉| 精品久久久精品久久久| 欧美97在线视频| 午夜日本视频在线| 卡戴珊不雅视频在线播放| av在线老鸭窝| 亚洲一区二区三区欧美精品| 天堂8中文在线网| 99热这里只有是精品50| 一区二区三区精品91| 成人无遮挡网站| 成人午夜精彩视频在线观看| 国产真实伦视频高清在线观看| 亚洲精品国产av成人精品| 国产精品国产av在线观看| 少妇被粗大猛烈的视频| 国产精品久久久久成人av| 日韩成人伦理影院| 99久久精品热视频| 水蜜桃什么品种好| 人人妻人人爽人人添夜夜欢视频 | 精品少妇内射三级| 中文字幕久久专区| 中文欧美无线码| 中文字幕精品免费在线观看视频 | av国产精品久久久久影院| 国产一区有黄有色的免费视频| 自拍偷自拍亚洲精品老妇| 精品久久久精品久久久| 赤兔流量卡办理| 3wmmmm亚洲av在线观看| 热99国产精品久久久久久7| 欧美人与善性xxx| 十分钟在线观看高清视频www | 日韩视频在线欧美| 日韩人妻高清精品专区| 色视频在线一区二区三区| 久久久a久久爽久久v久久| 这个男人来自地球电影免费观看 | 精华霜和精华液先用哪个| 日本欧美国产在线视频| 久久精品国产亚洲av涩爱| 亚洲一级一片aⅴ在线观看| 国产69精品久久久久777片| 欧美日本中文国产一区发布| 中国三级夫妇交换| 妹子高潮喷水视频| 免费观看av网站的网址| 色视频在线一区二区三区| 成人美女网站在线观看视频| 婷婷色麻豆天堂久久| 九九爱精品视频在线观看| 高清午夜精品一区二区三区| 在线观看美女被高潮喷水网站| 一级爰片在线观看| 亚洲精品日韩av片在线观看| 免费观看的影片在线观看| 十八禁网站网址无遮挡 | 九九爱精品视频在线观看| 国产永久视频网站| 18禁在线无遮挡免费观看视频| 美女中出高潮动态图| 欧美日韩在线观看h| 国产片特级美女逼逼视频| 女性生殖器流出的白浆| 国国产精品蜜臀av免费| 久久久久久久久久久丰满| 欧美亚洲 丝袜 人妻 在线| 亚洲四区av| 亚洲性久久影院| 亚洲自偷自拍三级| 欧美 日韩 精品 国产| 日本免费在线观看一区| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 亚洲真实伦在线观看| 中文字幕精品免费在线观看视频 | 久久韩国三级中文字幕| 免费人成在线观看视频色| 亚洲国产精品专区欧美| 丰满饥渴人妻一区二区三| 你懂的网址亚洲精品在线观看| 一级毛片久久久久久久久女| 精品亚洲乱码少妇综合久久| 久久99精品国语久久久| av不卡在线播放| 亚洲欧美日韩东京热| 97在线视频观看| 又爽又黄a免费视频| 亚洲熟女精品中文字幕| 狂野欧美激情性bbbbbb| 欧美日韩综合久久久久久| 黄色怎么调成土黄色| av专区在线播放| 亚洲欧洲国产日韩| 国产片特级美女逼逼视频| 国产精品一区二区在线观看99| 久久影院123| 中文字幕久久专区| 婷婷色综合大香蕉| 麻豆成人午夜福利视频| 大陆偷拍与自拍| 我要看日韩黄色一级片| 国产一区有黄有色的免费视频| 99热国产这里只有精品6| 久久久久网色| www.av在线官网国产| 欧美国产精品一级二级三级 | 视频区图区小说| 少妇熟女欧美另类| 人体艺术视频欧美日本| 免费观看性生交大片5| 久久精品熟女亚洲av麻豆精品| 少妇人妻 视频| 99热这里只有是精品在线观看| 九九爱精品视频在线观看| 久久女婷五月综合色啪小说| 人人妻人人添人人爽欧美一区卜| 成年女人在线观看亚洲视频| 久久久久久久久大av| 欧美 日韩 精品 国产| 国产极品天堂在线| 在现免费观看毛片| av天堂中文字幕网| 久久综合国产亚洲精品| 80岁老熟妇乱子伦牲交| 在线观看三级黄色| 高清毛片免费看| 深夜a级毛片| 99热全是精品| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产av成人精品| 不卡视频在线观看欧美| 精品久久久久久久久av| 中文在线观看免费www的网站| 搡女人真爽免费视频火全软件| 美女视频免费永久观看网站| 久久久午夜欧美精品| 亚洲精品日本国产第一区| .国产精品久久| 国产黄片视频在线免费观看| 少妇被粗大的猛进出69影院 | 欧美日韩亚洲高清精品| 久久免费观看电影| 女性被躁到高潮视频| 欧美日韩综合久久久久久| 久久韩国三级中文字幕| 日本黄色日本黄色录像| 亚洲情色 制服丝袜| 少妇的逼水好多| 一边亲一边摸免费视频| 91成人精品电影| 亚洲国产av新网站| 国产爽快片一区二区三区| 精华霜和精华液先用哪个| 少妇熟女欧美另类| 在线观看av片永久免费下载| 老司机影院成人| 免费观看av网站的网址| 国产精品久久久久久av不卡| a级片在线免费高清观看视频| 夫妻午夜视频| 男人添女人高潮全过程视频| 各种免费的搞黄视频| 一个人免费看片子| 桃花免费在线播放| 亚洲精品一区蜜桃| 国产伦精品一区二区三区视频9| 久久久久久久国产电影| 日本色播在线视频| 麻豆精品久久久久久蜜桃| 这个男人来自地球电影免费观看 | 国产成人91sexporn| 国产69精品久久久久777片| 一区二区三区精品91| 亚洲精品第二区| 伊人亚洲综合成人网| 国产精品一区www在线观看| 国产精品一区二区性色av| 99久久精品国产国产毛片| 夜夜看夜夜爽夜夜摸| 亚洲综合精品二区| 国产熟女欧美一区二区| 99九九在线精品视频 | 久久国产亚洲av麻豆专区| 99国产精品免费福利视频| 亚洲情色 制服丝袜| 色5月婷婷丁香| 美女xxoo啪啪120秒动态图| 国产成人一区二区在线| 狂野欧美激情性xxxx在线观看| 午夜免费男女啪啪视频观看| 欧美少妇被猛烈插入视频| h视频一区二区三区| 一级毛片电影观看| 少妇的逼水好多| 黑人猛操日本美女一级片| 亚洲人成网站在线观看播放| 免费观看在线日韩| 国内精品宾馆在线| 人妻夜夜爽99麻豆av| 久久久久精品性色| 国产永久视频网站| 久久久久国产精品人妻一区二区| 一级,二级,三级黄色视频| 国产精品久久久久久精品电影小说| 精品国产露脸久久av麻豆| 人妻人人澡人人爽人人| 欧美日韩一区二区视频在线观看视频在线| 性色avwww在线观看| av.在线天堂| 成年人午夜在线观看视频| av网站免费在线观看视频| 水蜜桃什么品种好| 亚洲精品日韩在线中文字幕| 人妻系列 视频| 国产 一区精品| 亚洲av不卡在线观看| 亚洲av成人精品一二三区| 97在线人人人人妻| 99久久中文字幕三级久久日本| 国产高清三级在线| 久久久国产一区二区| 成人午夜精彩视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 天天操日日干夜夜撸| 99久国产av精品国产电影| 国产免费一级a男人的天堂| 熟女人妻精品中文字幕| 亚洲精品亚洲一区二区| a级毛色黄片| 最黄视频免费看| 黑人巨大精品欧美一区二区蜜桃 | 成人午夜精彩视频在线观看| 97在线视频观看| 人妻一区二区av| 久久6这里有精品| av福利片在线观看| 大香蕉97超碰在线| 美女大奶头黄色视频| 99热全是精品| 日本色播在线视频| 亚洲不卡免费看| 免费不卡的大黄色大毛片视频在线观看| 夜夜爽夜夜爽视频| 亚洲精品国产成人久久av| 国产探花极品一区二区| 国产成人a∨麻豆精品| 你懂的网址亚洲精品在线观看| 中文乱码字字幕精品一区二区三区| 亚洲一区二区三区欧美精品| 男人狂女人下面高潮的视频| 人人妻人人澡人人看| 久久精品国产鲁丝片午夜精品| 亚洲av.av天堂| 久久久久久久亚洲中文字幕| 又粗又硬又长又爽又黄的视频| 青春草视频在线免费观看| 一级片'在线观看视频| 少妇被粗大的猛进出69影院 | 久久久久久久久久久丰满| 菩萨蛮人人尽说江南好唐韦庄| 高清毛片免费看| 亚洲国产欧美在线一区| 久久毛片免费看一区二区三区| 综合色丁香网| 人妻制服诱惑在线中文字幕| videossex国产| 亚洲av日韩在线播放| a级毛色黄片| 观看av在线不卡| 免费黄频网站在线观看国产|