• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Correcting the initialization of models with fractional derivatives via history-dependent conditions

    2016-09-06 11:38:31MaolinDuZaihuaWang
    Acta Mechanica Sinica 2016年2期

    Maolin Du·Zaihua Wang

    ?

    Correcting the initialization of models with fractional derivatives via history-dependent conditions

    Maolin Du1·Zaihua Wang2,3

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

    AbstractFractional differential equations are more and more used in modeling memory(history-dependent,nonlocal,or hereditary)phenomena.Conventional initial values of fractional differential equations are defineat a point, while recent works defin initial conditions over histories. We prove that the conventional initialization of fractional differential equations with a Riemann-Liouville derivative is wrong with a simple counter-example.The initial values were assumed to be arbitrarily given for a typical fractional differentialequation,butwefin oneofthesevaluescanonly be zero.We show that fractional differential equations are of infinit dimensions,and the initial conditions,initial histories,are define as functions over intervals.We obtain the equivalent integral equation for Caputo case.With a simple fractional model of materials,we illustrate that the recovery behavior is correct with the initial creep history,but is wrong with initial values at the starting point of the recovery.We demonstrate the application of initial history by solving a forced fractional Lorenz system numerically.

    KeywordsFractional derivative·Differential equation· Initial value·Initial history

    1 Introduction

    The fractional derivative has a history of more than 300 years[1-4].A simple application of the fractional derivative is Scott Blair’s model[5]of viscoelastic materials, where the stress is proportional to the α-th order derivative of the strain.The model is a generalization[6]of Hooke’s law(α=0)for elastic materials,Newton’s law(α=1)for viscous materials,and Newton’s second law of motion (α=2).Other applications in physics,for example,are found in models of materials[7-13],the anomalous diffusion of particles[14-18],the chaotic dynamics of fractional Lorenz system[19],nondiffusive transport in plasma turbulence[20],and quantum physics[21].Books about the applications of the fractional derivative in physics are published in e.g.Refs.[22-24].The fractional derivative has also been used in chemistry[25],biology[26-28],and psychology[29],etc.Nevertheless,somefundamentalproblems have prevented the popularization of fractional calculus.For fractional differential equations with the Riemann-Liouville derivative,for example,the physical meanings of the initial values are unknown[1,30].The Caputo derivative[31](or Gerasimov-Caputo derivative[32])was introduced to avoid thisdifficult.TheinitialvaluesintheCaputocasearesimilar to that of integer-order differential equations,so the physical meanings are known.However,it“can be applied only to special conditions”in polynomial form[33].For a fractional differential equation,it has been well-accepted that the initial conditions are define at a point[1,2].However,some works indicate that initial histories rather than initial values at a point have to be considered[30,33-39].A work worthy of mention is the initialized operator[34-36],in which a term of history is imposed into a conventional fractional derivative at the initial point.The initialized operator givesclear physical meanings of the initial conditions.Nonetheless,the initialized operator follows the conventional form because the imposed term maps/transforms the history into a point.An alternative study taking into account the history is to construct a partial differential equation[30,38], where the initial state is a vector of infinit dimensions.As pointedout,“practicalinitializationbasedonstateestimation by observers has to be investigated”[30].Other works are the straightforward versions[33,39]of initial history for the Riemann-Liouville derivative.Despite these recent works, most researchers still follow the conventional initialization theory of fractional differential equations.The established theory of point initializations seems sound,but we fin it is wrong.

    2 History-dependent initializations for equations with the Riemann–Liouville derivative

    The α-th order Riemann-Liouville derivative is define as where t=a is the starting point,m is the integer that satisfie m?1≤α<m,and Γ is the Euler Gamma function defineby Γ(x)=∫0+∞tx?1e?tdt for x>0.It holds that Γ(x+1)=xΓ(x).The Riemann-Liouville derivative is a generalization of an integer order derivative and integral.For etxample,aDαty(t)=dy(t)/dt if α=1,andaDtαy(t)=∫ay(t)dt,if α=?1.

    A typical conventional initial value problem of fractional differential equation[4]is define as

    What the physical meanings are of the initial values bkhas been an open problem.The equivalent integral equation[4]of the conventional initial value problem Eq.(2)takes the form

    It is conventionally assumed that the initial value bmin Eq. (2)is arbitrarily given,but we fin that the value can only be zero.In fact,for any continuous solution define in a closed right-neighborhood of the initial instant,there is a positive constant C such that y(t)≤C,then

    It follows that

    As pointed out in Ref.[40]and demonstrated with Example 1 below,the correct way is to defin an initial condition over an interval[39],and we refer to the initial condition as initial history.A typical initial history problem is

    The equivalent integral equation of Eq.(6)takes the form [39]

    where for t>c,

    Note that yc(t)is improperly denoted byaDc?(m?α)y(t)in Ref.[39].The initial condition of Eq.(6)has clear physical meaning.

    Especially,if y(t)=0 for t≤c,Eqs.(6)and(7),respectively,become

    and

    Intheworksaboutinitializedoperator,thehistoryconcept was already proposed.However,the terminal initialization “is analogous to choosing an arbitrary constant value to ini-tialize the integration of dy/dt in the solution of an ODE.”[36]Here,ODE stands for ordinary differential equation.

    3 History-dependent initializations for equations with Caputo derivative

    The Caputo derivative is define by

    where m is the integer satisfie m?1≤α<m.A typical conventionalinitialvalueproblem[4]withCaputoderivative is in the form of

    and the equivalent integral equation[4]of Eq.(12)is

    Equation(13)is a Volterra integral equation of the second kind.In view of history dependency,we defin an initial history problem

    where y(t)hascontinuous(m?1)-thderivativeatt=c.The equivalent integral equation is

    where,for t>c,

    Letcapproacha,andthephysicalmeaningofthesecondterm ontheright-handsideofEq.(15)isnotknown.Actually,this term is unnoticed in Eq.(13).

    To prove Eq.(15),from Eq.(14),we have

    Inversely,

    On both sides of Eq.(18),adding,then applying,and assuming that y(t)=?(t)for a<t≤c,we obtain Eq.(14).

    To validate Eq.(15),we consider a function

    For t>1,we have

    Equations(19)and(20)show that for t>1,y(t)=1 is the solution of

    Actually,noting c=1 and ?(t)=t and using Eq.(15), for t>1

    4 Examples

    4.1Example 1

    Asimplefractionaldifferentialequation,ScottBlare’smodel [5],can be used to model memory phenomena such as the creep and recovery of nitrocellulose compound[5]and SiA-lYON ceramics[39],Ebbinghause’s learning and forgetting tests,and protein adsorption kinetics[29].The model is

    where μ is a physical constant.In viscoelastic material modeling,ε(t)is the strain,and σ(t)the stress.A standard test is usually performed with constant σ(t)=σ0in creep (0<t≤tM)then σ(t)=0 in recovery(t>tM).With zero history ε(t)=0 for t≤0,using the equivalent integral Eq.(10),the solutions of Eq.(23)are

    Some works describe history-dependent phenomena with power-law,forexample,inRefs.[41-45].Althoughthesame solutionEq.(24)ofEq.(23)isobtainedwithzerohistoryand with conventional zero initial values,the physical meaning of the initial conditions are different.The former is clear, while the latter is not.Without loss of the physical property,let α=0.5,μ=1,σ0=1 for 0<t≤1,and σ=0 for t>1,Eq.(24)denotes the creep and recovery of a viscoelastic material as shown in Fig.1a.Replacing the Riemann-Liouville derivative with the Caputo derivative in Eq.(23),the solution has the same form of Eq.(24).

    If the starting point is chosen to be t=1,for t>1,we construct an initial history problem

    Using the equivalent integral Eq.(7),the recovery behavior Eq.(24)still holds for t>1.However,in a conventional way,if the starting point is t=1,in the recovery stage the deformation is governed by

    Fig.1 Right and wrong initial conditions.a For the recovery stage, the red line represents the correct initial history.b The conventional initialization.The creep histories are removed and initializations are at point t=1.The dashed line represents the solution with the Caputo derivative,andthesolidlineisthesolutionwiththeRiemann-Liouville derivative

    The solution of Eq.(26)is b(t?1)?0.5/Γ(0.5).Since the physical meaning of the initial value b is unclear,we fi the initial value b=1 at will.As shown in Fig.1b the strain ε(t)goes to infinit as t approaches 1.Obviously this solution doesnotreflec therecoveryofanyviscoelasticmaterial.For the Caputo derivative,in the recovery stage,

    The solution of Eq.(27)is a constant,namely ε(t)=ε(1)= 1/Γ(1.5)for t>1.This constant solution,as shown in Fig.1b,also does not agree with the recovery behavior of real materials.

    4.2Example 2

    Inapplication,theanalysisbecomesmucheasierifaproblem can be constructed with zero history.For demonstration,we consider a forced fractional Lorenz system

    where σ=10,r=28,b=3/8,Fx=σF,and Fy=?F throughoutthisexample.Equation(28)isageneralizationof the model of monsoon prediction,and it is a strange attractor when F=1[46].If F=0 and α=0.99,Eq.(28)with dimension 2.97<3,under conventional initial condition (10,0,10),has a chaotic solution[19].

    We assume

    With zero history x(t)=0,y(t)=0,z(t)=0 for t≤0, we determine the solutions of Eq.(28)numerically withα= 0.99 and step size 0.0005[47].The solutions are shown in Figs.2,3,4.

    Fig.2 The x components of the forced Lorenz system.a A=1.For t≤A and t>A,the x(t)components are shown in red and black lines,respectively.b A=33.For A=1,2,...,33,the behaviors of the system are similar

    Fig.3 Phase-space portrait of the forced Lorenz system for A=34 and t∈[0,100]

    If x(t),y(t),and z(t)are measured in advance for t≤A, for example,x(t)shown in red lines in Fig.2,we can construct a history problem given these non-zero initial conditions.For t>A,the solutions are the same as that of the modelbeginatt=0,butthecalculationismorecomplicated withEq.(7).Figure2showsthatthesolutionsarenotchaotic when A=1,2,...,33.Theyaredifferentfromthecommon Lorenz system[48],which is globally chaotic with σ=10, r=28,b=3/8.In this case the behaviors of fractional dynamical systems are more convenient to predict than that of the corresponding integer order systems.Increasing A to 34,chaos occurs as shown in Figs.3 and 4.

    Fig.4 The x components of the forced Lorenz system.(a-c)Respectively,very closed initial conditions A=33.9995,34,and 34.0005 yield far apart solutions

    5 Conclusions

    Weshowthattheconventionalinitializationoffractionaldifferential equation is wrongly define at a point.We propose and validate history-dependent initializations.In this way, the dimension of a fractional differential equation is infinit because the initial conditions are define in function spaces. Since our finding are fundamental,many established theories and applications require modification

    AcknowledgmentsThisworkwassupportedbytheNationalNatural Science Foundation of China(Grants 11372354 and 10825207).

    References

    1.Podlubny,I.:Fractional Differential Equations.Academic Press, San Diego(1999)

    2.Oldham,K.B.,Spanier,J.:The Fractional Calculus.Academic Press,New York(1974)

    3.Miller,K.S.,Ross,B.:An Introductory to the Fractional Calculus and Fractional Differential Equations.John Wiley&Sons Inc., New York(1993)

    4.Kilbas,A.A.,Srivastava,H.M.,Trujillo,J.J.:Theory and Applications of Fractional Differential Equations.Elsevier,Amsterdam (2006)

    5.Stiassnie,M.:Ontheapplicationoffractionalcalculusforformulationofviscoelasticmodels.Appl.Math.Model.3,300-302(1979)

    6.Velasco,M.P.,Vzquez,L.:On the fractional Newton and wave equation in one space dimension.Appl.Math.Model.38,3314-3324(2014)

    7.Tan,W.C.,Xu,M.Y.:Unsteadyflwsofageneralizedsecondgrade fluiwith the fractional derivative model between two parallel plates.Acta Mech.Sin.20,471-476(2004)

    8.Qi,H.T.,Jin,H.:Unsteady rotating flws of a viscoelastic flui withthefractionalMaxwellmodelbetweencoaxialcylinders.Acta Mech.Sin.22,301-305(2006)

    9.Hayat,T.,Khan,M.,Asghar,S.:On the MHD flw of fractional generalized Burgers’flui with modifie Darcy’s law.Acta Mech. Sin.23,257-261(2007)

    10.Hu,K.X.,Zhu,K.Q.:The exact solution of Stokes second problem includingstart-upprocesswithfractionalelement.ActaMech.Sin. 25,577-582(2009)

    11.Jamil,M.,Fetecau,C.,Fetecau,C.:Unsteady flw of viscoelastic flui between two cylinders using fractional Maxwell model.Acta Mech.Sin.28,274-280(2012)

    12.Rossikhin,Y.A.,Shitikova,M.V.:Applicationoffractionalcalculus for dynamic problems of solid mechanics:novel trends and recent results.Appl.Mech.Rev.63,101080(2010)

    13.Papoulia,K.D.,Panoskaltsis,V.P.,Kurup,N.V.,et al.:Rheological representation of fractional order viscoelastic material models. Rheol.Acta 49,381-400(2010)

    14.Metzler,R.,Jeon,J.-H.,Cherstvy,A.G.,etal.:Anomalousdiffusion models and their properties:non-stationarity,non-ergodicity,and ageing at the centenary of single particle tracking.Phys.Chem. Chem.Phys.16,24128-24164(2014)

    15.Lutz,E.:Fractional langevin equation.Phys.Rev.E 64,051106 (2001)

    16.Mandelbrot,B.B.,Ness,J.W.V.:Fractionalbrownianmotions,fractional noises and applications.SIAM Rev.10,422-437(1968)

    17.Friedrich,R.,Baule,F.J.A.:Anomalous diffusion of inertial, weakly damped particles.Phys.Rev.Lett.96,230601(2006)

    18.Bisquert,J.:Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk.Phys.Rev.Lett.91,010602(2003)

    19.Grigorenko,I.,Grigorenko,E.:Chaotic dynamics of the fractional Lorenz system.Phys.Rev.Lett.91,034101(2003)

    20.delCastillo-Negrete,D.,Carreras,B.A.,Lynch,V.E.:Nondiffusive transport in plasma turbulence:a fractional diffusion approach. Phys.Rev.Lett.94,065003(2005)

    21.Laskin,N.:Fractionalquantummechanics.Phys.Rev.E 62,3135-3145(2000)

    22.Uchainkin,V.V.:Fractional Derivative for Physicists and Engineers,vol.II.Applications.High Education Press,Beijing(2013)

    23.Herrmann,R.:FractionalCalculus:AnIntroductionforPhysicists. World Scientific Hackensack(2011)

    24.Hilfer,R.:Applications of Fractional Calculus in Physics.World Scientific Singapore(2000)

    25.Toledo-Hernandez,R.,Rico-Ramirez,V.,Iglesias-Silva,G.A., et al.:A fractional calculus approach to the dynamic optimization of biological reactive systems.Part I:Fractional models for biological reactions.Chem.Eng.Sci.117,217C228(2014)

    26.Magin,R.L.:Fractional calculus in bioengineering.Crit.Rev.Biomed.Eng.32,1-104(2004)

    27.Davis,G.B.,Kohandel,M.,Sivaloganathan,S.,et al.:The constitutive properties of the brain paraenchyma:Part 2.Fractional derivative approach.Med.Eng.Phys.28,455-459(2006)

    28.Lundstrom,B.N.,Higgs,M.H.,Spain,W.J.,et al.:Fractional differentiation by neocortical pyramidal neurons.Nat.Neurosci.11, 1335-1342(2008)

    29.Du,M.L.,Wang,Z.H.,Hu,H.Y.:Measuring memory with the order of fractional derivative.Sci.Rep.3431(2013)

    30.Trigeassou,J.C.,Maamri,N.,Sabatier,J.,etal.:Statevariablesand transients of fractional order differential systems.Comput.Math. Appl.64,3117-3140(2012)

    31.Caputo,M.:Linear models of dissipation whose Q is almost frequency independent-II.Geophys.J.R.Astron.Soc.13,529-539 (1967).Reprinted.In:Fractional Calculus&Applied Analysis 11, 4-14(2008)

    32.Uchainkin,V.V.:Fractional Derivative for Physicists and Engineers,vol.I.Background and Theory.High Education Press, Beijing(2013)

    33.Fukunaga,M.,Shimizu,N.:Role of prehistories in the initial value problems of fractional viscoelastic equations.Nonlinear Dyn.38, 207-220(2004)

    34.Lorenzo,C.F.,Hartley,T.T.:Initialization,conceptualization,and applicationinthegeneralizedfractionalcalculus.NASATP1998-208415.National Aeronautics and Space Administration,Lewis Research Center(1998)

    35.Lorenzo,C.F.,Hartley,T.T.:Initialized fractional calculus,NASA TP2000-209943.NationalAeronauticsandSpaceAdministration, Glenn Research Center(2000)

    36.Lorenzo,C.F.,Hartley,T.T.:Initialization of fractional-order operators and fractional differential equations.J.Comput.Nonlinear Dyn.3,021101(2008)

    37.Hartley,T.T.,Lorenzo,C.F.,Trigeassou,J.-C.,et al.:Equivalence of history-function based and infinite-dimensional-stat initializations for fractional-order operators.J.Comput.Nonlinear Dyn.8, 041014(2013)

    38.Trigeassou,J.C.,Maamri,N.:Initial conditions and initialization of linear fractional differential equations.Signal Process.91,427-436(2011)

    39.Du,M.L.,Wang,Z.H.:Initialized fractional differential equations with Riemann-Liouville fractional-order derivative.Eur.Phys.J. Spec.Top.193,49-60(2011)

    40.Bandyopadhyay,B.,Kamal,S.:Stabilization and Control of Fractional Order Systems:A Sliding Mode Approach.Springer, Heidelberg(2015)

    41.Nutting,P.G.:A new general law of deformation.J.Frankl.Inst. 191,679-685(1921)

    42.Chaplain,R.A.:Simple viscoelastic model for the stress relaxation of rubber vulcanizates.Nature 220,1028-1029(1968)

    43.Cherstvy,A.G.,Metzler,R.:Population splitting,trapping,and non-ergodicity in heterogeneous diffusion processes.Phys.Chem. Chem.Phys.15,20220-20235(2013)

    44.Cherstvy,A.G.,Chechkin,A.V.,Metzler,R.:Ageing and confine ment in non-ergodic heterogeneous diffusion processes.J.Phys.A 47,485002(2014)

    45.Cherstvy,A.G.,Chechkin,A.V.,Metzler,R.:Particle invasion, survival,and non-ergodicity in 2D diffusion processes with spacedependent diffusivity.Soft Matter 10,1591-1601(2014)

    46.Mittal,A.K.,Dwivedi,S.,Pandey,A.C.:Bifurcation analysis of a paradigmatic model of monsoon prediction.Nonlinear Process. Geophys.12,707-715(2005)

    47.Diethelm,K.,Ford,N.J.,Freed,A.D.:A predictor-corrector approach for the numerical solution of fractional differential equations.Nonlinear Dyn.29,3-22(2002)

    48.Lorenz,E.N.:Deterministic nonperiodic flw.J.Atmos.Sci.20, 130-141(1963)

    15 February 2015/Revised:2 May 2015/Accepted:6 May 2015/Published online:14 August 2015

    ?Zaihua Wang

    zhwang@nuaa.edu.cn

    1Institute of National Defense Engineering,PLA University of

    Science and Technology,Nanjing 210007,China

    2Institute of Science,PLA University of Science and

    Technology,Nanjing 211101,China

    3State Key Laboratory of Mechanics and Control of

    Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    很黄的视频免费| 男女午夜视频在线观看| 亚洲第一欧美日韩一区二区三区| 国产亚洲av高清不卡| 老鸭窝网址在线观看| 久久精品aⅴ一区二区三区四区| 12—13女人毛片做爰片一| 亚洲中文日韩欧美视频| 日本a在线网址| 可以在线观看毛片的网站| 亚洲无线在线观看| 亚洲美女黄片视频| 久久香蕉精品热| 不卡av一区二区三区| 日本免费a在线| 99re在线观看精品视频| 99热这里只有是精品50| 日韩av在线大香蕉| 国产午夜精品久久久久久| 少妇粗大呻吟视频| 男女床上黄色一级片免费看| 窝窝影院91人妻| 精品欧美国产一区二区三| 欧美在线一区亚洲| av有码第一页| 久热爱精品视频在线9| 久久伊人香网站| 在线观看午夜福利视频| 免费av毛片视频| 夜夜看夜夜爽夜夜摸| 脱女人内裤的视频| 在线观看午夜福利视频| 国产亚洲欧美在线一区二区| 午夜福利18| 亚洲人成网站高清观看| 亚洲国产欧洲综合997久久,| 又紧又爽又黄一区二区| 亚洲国产中文字幕在线视频| 久久天躁狠狠躁夜夜2o2o| 丰满的人妻完整版| 成人特级黄色片久久久久久久| 国产高清videossex| 亚洲黑人精品在线| 久久天堂一区二区三区四区| 麻豆成人av在线观看| 在线播放国产精品三级| 黄片大片在线免费观看| 美女高潮喷水抽搐中文字幕| 色哟哟哟哟哟哟| 色综合婷婷激情| 国产区一区二久久| 亚洲av日韩精品久久久久久密| 日韩成人在线观看一区二区三区| 久久久国产成人精品二区| 久久精品影院6| 亚洲中文字幕日韩| 亚洲色图av天堂| 久久久久免费精品人妻一区二区| 黑人欧美特级aaaaaa片| 中国美女看黄片| 麻豆国产97在线/欧美 | 99久久久亚洲精品蜜臀av| 校园春色视频在线观看| 深夜精品福利| 激情在线观看视频在线高清| 精品国内亚洲2022精品成人| 国产精品一区二区免费欧美| 亚洲人与动物交配视频| 亚洲成人中文字幕在线播放| 亚洲专区字幕在线| 成熟少妇高潮喷水视频| 久9热在线精品视频| 香蕉国产在线看| 听说在线观看完整版免费高清| videosex国产| 2021天堂中文幕一二区在线观| 欧美日韩黄片免| 手机成人av网站| 校园春色视频在线观看| 亚洲精品久久国产高清桃花| 成人午夜高清在线视频| 波多野结衣高清作品| 精品高清国产在线一区| xxxwww97欧美| 后天国语完整版免费观看| 久久午夜亚洲精品久久| 久久天堂一区二区三区四区| 国产视频一区二区在线看| 亚洲成av人片在线播放无| 亚洲欧洲精品一区二区精品久久久| 国产成人aa在线观看| a级毛片在线看网站| 露出奶头的视频| 美女大奶头视频| 免费在线观看影片大全网站| 日本熟妇午夜| 三级毛片av免费| 久久中文字幕一级| 国产蜜桃级精品一区二区三区| 欧美成人一区二区免费高清观看 | 亚洲一区高清亚洲精品| 久久精品国产亚洲av高清一级| 男女床上黄色一级片免费看| 免费看a级黄色片| 精品少妇一区二区三区视频日本电影| 日韩大尺度精品在线看网址| 欧美一级毛片孕妇| tocl精华| 日本免费a在线| 国产欧美日韩一区二区三| 91字幕亚洲| 国产熟女xx| 夜夜夜夜夜久久久久| cao死你这个sao货| 色精品久久人妻99蜜桃| 丰满人妻一区二区三区视频av | 精品久久久久久久久久免费视频| 亚洲男人的天堂狠狠| 亚洲av电影不卡..在线观看| 国产片内射在线| av片东京热男人的天堂| 国产成人精品无人区| 岛国在线免费视频观看| 国产成人精品久久二区二区91| 精品免费久久久久久久清纯| 午夜福利在线观看吧| 国产精品久久久人人做人人爽| 香蕉久久夜色| 级片在线观看| 特大巨黑吊av在线直播| 日本三级黄在线观看| 免费一级毛片在线播放高清视频| 国产精品国产高清国产av| 一二三四在线观看免费中文在| 欧美日韩黄片免| 欧美乱色亚洲激情| 亚洲avbb在线观看| 狂野欧美激情性xxxx| 国产成人影院久久av| 香蕉丝袜av| 亚洲一码二码三码区别大吗| 亚洲aⅴ乱码一区二区在线播放 | 国产成人一区二区三区免费视频网站| 99精品久久久久人妻精品| 精品熟女少妇八av免费久了| а√天堂www在线а√下载| 国产黄色小视频在线观看| 99国产精品一区二区蜜桃av| 两个人视频免费观看高清| 在线观看午夜福利视频| 两个人视频免费观看高清| 国产在线观看jvid| 久久久久久九九精品二区国产 | 日韩 欧美 亚洲 中文字幕| 午夜福利高清视频| 757午夜福利合集在线观看| 看黄色毛片网站| 怎么达到女性高潮| 欧美大码av| 欧美国产日韩亚洲一区| 免费看日本二区| aaaaa片日本免费| 久久久精品国产亚洲av高清涩受| 国产精品美女特级片免费视频播放器 | 亚洲七黄色美女视频| 麻豆国产97在线/欧美 | 国产男靠女视频免费网站| 国产三级中文精品| 久久久久久免费高清国产稀缺| 亚洲人成网站在线播放欧美日韩| 精品高清国产在线一区| 一级毛片女人18水好多| 高潮久久久久久久久久久不卡| www.熟女人妻精品国产| tocl精华| 好男人在线观看高清免费视频| 久久天躁狠狠躁夜夜2o2o| 给我免费播放毛片高清在线观看| 桃色一区二区三区在线观看| xxxwww97欧美| 国产精品自产拍在线观看55亚洲| 亚洲欧美一区二区三区黑人| 国产精华一区二区三区| 亚洲色图 男人天堂 中文字幕| 伊人久久大香线蕉亚洲五| 欧美日韩国产亚洲二区| 久久久久免费精品人妻一区二区| 熟女少妇亚洲综合色aaa.| 亚洲五月婷婷丁香| 香蕉国产在线看| 亚洲色图 男人天堂 中文字幕| 久久久国产成人免费| 免费在线观看成人毛片| 午夜福利成人在线免费观看| 黄色片一级片一级黄色片| 最近在线观看免费完整版| 精品熟女少妇八av免费久了| 国产亚洲av嫩草精品影院| 久久九九热精品免费| 久久精品国产99精品国产亚洲性色| 欧洲精品卡2卡3卡4卡5卡区| 国产又黄又爽又无遮挡在线| 欧美中文综合在线视频| xxx96com| 欧美精品啪啪一区二区三区| 成年版毛片免费区| 国产免费男女视频| 在线观看免费视频日本深夜| 一进一出抽搐gif免费好疼| 亚洲国产精品999在线| 国产一区在线观看成人免费| 欧美av亚洲av综合av国产av| 亚洲国产高清在线一区二区三| 亚洲欧美日韩东京热| 婷婷亚洲欧美| 悠悠久久av| 日韩欧美国产一区二区入口| 女同久久另类99精品国产91| 亚洲国产精品合色在线| 天天一区二区日本电影三级| 亚洲欧美日韩东京热| 岛国在线观看网站| www日本在线高清视频| 亚洲一区二区三区不卡视频| 日韩国内少妇激情av| 老熟妇乱子伦视频在线观看| 999久久久国产精品视频| 天天躁狠狠躁夜夜躁狠狠躁| 91字幕亚洲| 婷婷精品国产亚洲av在线| 99国产极品粉嫩在线观看| 成人国产一区最新在线观看| 亚洲成人久久性| 99久久久亚洲精品蜜臀av| 国产野战对白在线观看| 久久人人精品亚洲av| 少妇被粗大的猛进出69影院| 欧美一区二区国产精品久久精品 | 日本免费a在线| 九九热线精品视视频播放| 露出奶头的视频| 最近视频中文字幕2019在线8| 这个男人来自地球电影免费观看| 午夜精品久久久久久毛片777| 两人在一起打扑克的视频| 伦理电影免费视频| 精品久久久久久成人av| 久久久久久久久中文| 全区人妻精品视频| 少妇人妻一区二区三区视频| 久久久水蜜桃国产精品网| 欧美日韩乱码在线| 亚洲激情在线av| av欧美777| 日韩成人在线观看一区二区三区| 国产真人三级小视频在线观看| 床上黄色一级片| 亚洲五月天丁香| 美女 人体艺术 gogo| 可以在线观看的亚洲视频| 精品欧美一区二区三区在线| 国产激情久久老熟女| 成熟少妇高潮喷水视频| 一级毛片高清免费大全| 午夜两性在线视频| 国内揄拍国产精品人妻在线| 国产精品av久久久久免费| 国产亚洲av嫩草精品影院| 精品日产1卡2卡| 精品久久久久久久久久免费视频| 老司机深夜福利视频在线观看| 亚洲精品在线美女| 午夜视频精品福利| 国产私拍福利视频在线观看| 国产精品精品国产色婷婷| 青草久久国产| 国产成人啪精品午夜网站| 日日夜夜操网爽| 夜夜躁狠狠躁天天躁| 99热这里只有精品一区 | 一区二区三区激情视频| 中文字幕人成人乱码亚洲影| 男人舔奶头视频| 亚洲自拍偷在线| 久久婷婷人人爽人人干人人爱| 久久精品影院6| 国产1区2区3区精品| 黄色毛片三级朝国网站| 免费无遮挡裸体视频| 精品国产超薄肉色丝袜足j| 午夜免费成人在线视频| 他把我摸到了高潮在线观看| 99在线人妻在线中文字幕| 久久午夜亚洲精品久久| 精品久久久久久久久久免费视频| 国产激情欧美一区二区| 麻豆成人av在线观看| avwww免费| 天天躁狠狠躁夜夜躁狠狠躁| 国内少妇人妻偷人精品xxx网站 | netflix在线观看网站| 欧美精品啪啪一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产爱豆传媒在线观看 | 18禁美女被吸乳视频| av超薄肉色丝袜交足视频| 两性夫妻黄色片| 亚洲成a人片在线一区二区| 久久久久精品国产欧美久久久| 日日摸夜夜添夜夜添小说| 老熟妇乱子伦视频在线观看| 999久久久国产精品视频| 欧美黑人精品巨大| 18禁美女被吸乳视频| bbb黄色大片| 亚洲人成网站高清观看| 全区人妻精品视频| 2021天堂中文幕一二区在线观| 亚洲成人国产一区在线观看| 19禁男女啪啪无遮挡网站| 一本一本综合久久| 国产又黄又爽又无遮挡在线| 久久国产精品影院| 久久亚洲精品不卡| 叶爱在线成人免费视频播放| 午夜福利视频1000在线观看| 精品欧美一区二区三区在线| 亚洲精品av麻豆狂野| 成年版毛片免费区| 一区福利在线观看| 亚洲国产欧美一区二区综合| 欧美乱妇无乱码| 亚洲欧美精品综合久久99| 欧美一级a爱片免费观看看 | 午夜两性在线视频| 久久欧美精品欧美久久欧美| 精品国产美女av久久久久小说| 男女视频在线观看网站免费 | av福利片在线观看| 最好的美女福利视频网| 变态另类丝袜制服| 亚洲五月天丁香| 亚洲第一欧美日韩一区二区三区| 国产激情偷乱视频一区二区| 成年版毛片免费区| 99re在线观看精品视频| 69av精品久久久久久| 亚洲第一欧美日韩一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 伊人久久大香线蕉亚洲五| 村上凉子中文字幕在线| 男女做爰动态图高潮gif福利片| 高清毛片免费观看视频网站| 午夜成年电影在线免费观看| 国产激情偷乱视频一区二区| 亚洲一区二区三区色噜噜| 国产av一区二区精品久久| 国产精品 国内视频| 国内久久婷婷六月综合欲色啪| 成人永久免费在线观看视频| 亚洲专区国产一区二区| ponron亚洲| 深夜精品福利| 色播亚洲综合网| 欧美一级毛片孕妇| 757午夜福利合集在线观看| 在线观看www视频免费| 久久99热这里只有精品18| 亚洲精品中文字幕一二三四区| 美女 人体艺术 gogo| 人妻丰满熟妇av一区二区三区| 亚洲专区国产一区二区| 国产在线观看jvid| 亚洲性夜色夜夜综合| 狂野欧美白嫩少妇大欣赏| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉精品热| 深夜精品福利| 99riav亚洲国产免费| 亚洲国产中文字幕在线视频| netflix在线观看网站| 亚洲成人久久性| 国产精品久久久久久精品电影| 亚洲精品中文字幕一二三四区| 国产日本99.免费观看| 夜夜躁狠狠躁天天躁| 国产一级毛片七仙女欲春2| 国产高清视频在线观看网站| 欧美人与性动交α欧美精品济南到| 啦啦啦观看免费观看视频高清| 12—13女人毛片做爰片一| 免费在线观看完整版高清| 大型av网站在线播放| 午夜福利视频1000在线观看| 精品日产1卡2卡| 亚洲色图av天堂| 国产av一区二区精品久久| 丝袜人妻中文字幕| 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站 | 小说图片视频综合网站| 日本在线视频免费播放| 啦啦啦观看免费观看视频高清| 国产男靠女视频免费网站| 免费看美女性在线毛片视频| 91麻豆av在线| 小说图片视频综合网站| 国产精品一区二区三区四区久久| 亚洲精品久久国产高清桃花| 亚洲第一电影网av| 日韩精品中文字幕看吧| 嫩草影视91久久| 久久婷婷人人爽人人干人人爱| 51午夜福利影视在线观看| 精品午夜福利视频在线观看一区| 中文字幕高清在线视频| 久久国产乱子伦精品免费另类| 搡老妇女老女人老熟妇| 免费在线观看亚洲国产| 天堂av国产一区二区熟女人妻 | 最近最新中文字幕大全电影3| 国产精品免费视频内射| 美女黄网站色视频| 久久久国产成人免费| 黄色毛片三级朝国网站| 亚洲国产精品999在线| 国产精品一区二区三区四区久久| 大型av网站在线播放| 欧美极品一区二区三区四区| 午夜两性在线视频| 丰满人妻一区二区三区视频av | 哪里可以看免费的av片| 在线看三级毛片| 欧美激情久久久久久爽电影| 午夜a级毛片| 色综合站精品国产| 最近在线观看免费完整版| 久久久精品大字幕| 男人舔奶头视频| 免费人成视频x8x8入口观看| 久久九九热精品免费| 日本精品一区二区三区蜜桃| 大型av网站在线播放| 丝袜人妻中文字幕| 中文在线观看免费www的网站 | 欧美精品啪啪一区二区三区| 国产亚洲精品久久久久久毛片| 欧美在线黄色| 国产精品,欧美在线| 俺也久久电影网| 久久人妻av系列| 亚洲中文字幕日韩| 亚洲av美国av| 好男人在线观看高清免费视频| 国产片内射在线| 我的老师免费观看完整版| 亚洲性夜色夜夜综合| 国产激情久久老熟女| 欧美日韩黄片免| 亚洲狠狠婷婷综合久久图片| 精品一区二区三区四区五区乱码| 一区二区三区国产精品乱码| 我的老师免费观看完整版| 啦啦啦免费观看视频1| 亚洲国产欧美一区二区综合| 真人做人爱边吃奶动态| 巨乳人妻的诱惑在线观看| 香蕉丝袜av| 中出人妻视频一区二区| 欧美成人一区二区免费高清观看 | 亚洲av日韩精品久久久久久密| 欧美3d第一页| 最近最新中文字幕大全电影3| 人妻夜夜爽99麻豆av| 黄片小视频在线播放| 夜夜爽天天搞| 国产成人av教育| 亚洲一区二区三区不卡视频| 免费av毛片视频| 十八禁人妻一区二区| 国产av麻豆久久久久久久| 日韩成人在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片| 美女扒开内裤让男人捅视频| 中文字幕高清在线视频| 伊人久久大香线蕉亚洲五| 黄色视频,在线免费观看| 法律面前人人平等表现在哪些方面| 免费在线观看影片大全网站| 男女之事视频高清在线观看| 最近最新中文字幕大全电影3| 日本一区二区免费在线视频| 最新美女视频免费是黄的| 亚洲美女黄片视频| 日韩大码丰满熟妇| 特级一级黄色大片| 丰满的人妻完整版| tocl精华| 久久久久免费精品人妻一区二区| 99re在线观看精品视频| 高清毛片免费观看视频网站| 成人精品一区二区免费| 国产一区在线观看成人免费| 日本一二三区视频观看| 9191精品国产免费久久| 两个人免费观看高清视频| 两性夫妻黄色片| 亚洲国产日韩欧美精品在线观看 | 亚洲精品美女久久久久99蜜臀| 成人手机av| 久久久久久久久中文| 精品久久久久久,| 18美女黄网站色大片免费观看| 50天的宝宝边吃奶边哭怎么回事| 日韩精品青青久久久久久| 亚洲av第一区精品v没综合| 午夜成年电影在线免费观看| 夜夜看夜夜爽夜夜摸| 变态另类丝袜制服| 国产成人一区二区三区免费视频网站| 无限看片的www在线观看| 两个人免费观看高清视频| 国产av又大| 亚洲自偷自拍图片 自拍| 久久婷婷人人爽人人干人人爱| tocl精华| 亚洲va日本ⅴa欧美va伊人久久| 国产成年人精品一区二区| 亚洲欧美激情综合另类| 777久久人妻少妇嫩草av网站| 99国产极品粉嫩在线观看| 亚洲七黄色美女视频| 女人被狂操c到高潮| 国产成人精品久久二区二区免费| 国产亚洲av高清不卡| 免费看美女性在线毛片视频| 一级毛片女人18水好多| av在线播放免费不卡| 亚洲欧美日韩高清专用| 国产精品国产高清国产av| 99热只有精品国产| 非洲黑人性xxxx精品又粗又长| 欧美不卡视频在线免费观看 | 日韩高清综合在线| 国产1区2区3区精品| 黄色女人牲交| 亚洲欧美激情综合另类| 亚洲精品在线美女| 亚洲七黄色美女视频| 夜夜躁狠狠躁天天躁| 日韩欧美精品v在线| 床上黄色一级片| 别揉我奶头~嗯~啊~动态视频| 99久久99久久久精品蜜桃| 国产爱豆传媒在线观看 | 精品一区二区三区四区五区乱码| 麻豆成人av在线观看| 国产黄色小视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲片人在线观看| 亚洲成a人片在线一区二区| 可以在线观看毛片的网站| 欧美又色又爽又黄视频| 日韩av在线大香蕉| 国产精品野战在线观看| 中文字幕人成人乱码亚洲影| 一本久久中文字幕| 欧美乱色亚洲激情| 哪里可以看免费的av片| 日本三级黄在线观看| 18禁观看日本| 给我免费播放毛片高清在线观看| 色老头精品视频在线观看| 亚洲性夜色夜夜综合| 国产成人av激情在线播放| 欧美在线黄色| 欧美日韩一级在线毛片| 国产视频一区二区在线看| 亚洲精品中文字幕一二三四区| 99精品在免费线老司机午夜| 精品久久久久久,| 久久性视频一级片| 免费无遮挡裸体视频| 亚洲九九香蕉| 丁香六月欧美| 亚洲18禁久久av| 伦理电影免费视频| 久久婷婷人人爽人人干人人爱| 法律面前人人平等表现在哪些方面| 黄色a级毛片大全视频| 久久香蕉精品热| 久久久久九九精品影院| 国产精品98久久久久久宅男小说| 国产成人精品无人区| 又黄又粗又硬又大视频| 黄频高清免费视频| 欧美日本视频| 国产黄色小视频在线观看| 欧美日韩瑟瑟在线播放| 欧美在线一区亚洲| 欧美精品亚洲一区二区| 欧美黑人巨大hd| av免费在线观看网站| 亚洲五月天丁香| 麻豆成人av在线观看| 一本久久中文字幕| 黄色 视频免费看| 99精品久久久久人妻精品| 神马国产精品三级电影在线观看 | 国产免费男女视频| 人成视频在线观看免费观看| 一级黄色大片毛片| 俺也久久电影网| 妹子高潮喷水视频| 久久久国产成人免费|