• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of torque transmitting behavior and wheel slip prevention control during regenerative braking for high speed EMU trains

    2016-09-06 11:38:21KunXuGuoQingXuChunHuaZheng
    Acta Mechanica Sinica 2016年2期

    Kun Xu·Guo-Qing Xu·Chun-Hua Zheng

    ?

    Analysis of torque transmitting behavior and wheel slip prevention control during regenerative braking for high speed EMU trains

    Kun Xu1,2·Guo-Qing Xu3·Chun-Hua Zheng1

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    AbstractThe wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability. Then,applications to the wheel slip prevention during brakingareinvestigated,andtheoptimalslipratiocontrolscheme isproposed,whichisbasedonanoveloptimalreferencegenerationoftheslipratioandarobustslidingmodecontrol.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulationresultsforuncertainslipperyrailsverifytheeffectiveness of the proposed methodology.

    KeywordsHigh speed electric multiple unit(EMU)train· Regenerative braking·Wheel-rail adhesion·Optimal slip ratio

    1 Introduction

    Fast-pacedtechnologicaladvancesinelectricrailwaypropulsion systems have significantl promoted the rapid development of high speed railways[1-3].This,in turn,produces higher demands for the safety and energy savings of high speed electric multiple unit(EMU)trains.The brake system isparticularlyimportantbecauseofitsdirectimpactonsafety andenergyconsumption.Brakesystemsfallintotwogroups: electrical braking(i.e.,regenerative braking)and mechanicalbraking.Theregenerativebrakingsystems(RBSs),which use the electric motors as the actuators to generate the braking torque,have many merits.The bi-directional power flw oftheelectricmotor/generatorcantransferthekineticenergy of an EMU train into electric energy that may be fed back to the grid so as to achieve high energy savings[4,5].Moreover,the electric braking torque generated from the motor has wider bandwidth than the frictional braking mechanism, which leads to a very fast braking response[6,7].

    A sophisticated regulated RBS via the adhesion control contributes not only to maintain the wheel-rail adhesion stability but also to maximize the adhesion utilization for shorteningthestoppingdistance,whilereducingtheabrasion ofwheelsandrailssoastoprolongtheservicelife.Moreover, it is beneficia to recover a significan quantity of energy[8]. There remain technical challenges in the adhesion control of RBS mainly because of the complex wheel-rail contact conditions.The adhesion phenomena between the wheel and the railisnonlinear,uncertain,andtime-varying[9,10].Withthe extensivespreadingofhighspeedrailsworldwide,thewheelrail conditions become more complex than before,e.g.,low griprailscoveredwithsnoworiceincoldareas.Additionally, with the increasing running speed of EMU trains presently, the adhesion stability during braking under various grip con-ditionsmustbeensured.Therefore,itiscrucialtodeveloping advanced adhesion control methodologies under complex grip conditions.

    The wheel-rail adhesion force has a close relation to the slip ratio[8-10].A proper slip ratio is beneficia to generate theadhesionforce.However,theexcessiveslipratiomaylead toasignifican reductionintheadhesionforcethatwillcause unstable wheel skidding or even locking.There is a critical operation point between the stable adhesion state and the unstable skidding state,wherein the adhesion force reaches amaximum.Therefore,thecriticalpointisalsonamedasthe optimaloperationpoint,whereintheslipratioisnamedasthe optimal slip ratio.Generally,the following crucial problems are considered in adhesion control:(1)to determine whether the current adhesion state is stable or not;(2)to maintain the adhesion stability particularly for low grip conditions. If severe wheel skidding is detected,the adhesion controller directly intervenes by regulating the traction/braking torque to maintain the operation point in the stable region.It is far better to maximize the wheel-rail adhesion so as to improve the traction/brake performance,especially under low grip conditions for fast running speed.

    The adhesion control during traction or braking has been studied in the literature[10-20].Several signals have been used to identify the wheel adhesion state and to prevent the unstable wheel skidding,including the speed difference between the wheel and the chassis,the differential signals of the wheel speed,and the slip ratio.Accordingly,existing adhesion control studies mainly fall into two categories:one is the conventional correction-based methodology;the other is the slip-based control.

    Correction-based control methods use the speed differenceorthedifferentialwheelspeedtodeterminetheadhesion state[8].Ifasevereslippingduringtractionoraskiddingduringbrakingisdetected,actuatorsdecreasethedrivetorqueor braketorqueaccordinglytoretaintheadhesion.Afterreturning to the stable adhesion state,the drive or brake torque will be slowly increased again,which makes the operation point far away from the adhesive peak,therefore leading to a low utilization of the wheel-rail adhesion.Additionally, these methods usually need to determine a preset value by experiments in advance,which may function under a certain specifi condition without adaptation.In some applications, the worst condition(e.g.,a very slippery wheel-rail condition)is considered to ensure the safety,which,however, sacrifice the optimal performance.

    The slip-based control drew more research interest recently due to the inherent relation between the slip ratio and the adhesion force[15-18,21].Controlling the slip ratio directly around its optimal value acquires the maximum utilization of the wheel-rail adhesion.However,determining the optimal slip ratio is very difficul because of the uncertainty and the variety of the wheel-rail contact conditions. To improve the adaptability associated with changed wheelrail conditions,some studies attempt to search the optimal point online[15-18].A methodology to generate the slip ratio reference that is adaptive to various wheel-rail conditions is proposed[15,16],which,however,may be affected by the measurement noise and system uncertainties.Fuzzy logicisintroducedtogeneratetheoptimalslipratiofromseveral typical wheel-rail contacts[17,18,21],which is still not the actual optimal value.We have proposed a novel adhesion stability detection methodology and slip prevention control strategiesforwheeledgroundvehicles[22],which,however, only investigates the traction manoeuver under low speeds that omits the resistance in the analysis.

    In this research,the torque transmitting behavior(from the input of the regenerative braking torque to the output of the adhesion torque)during regenerative braking is analyzed basedonthederivedtorquetransferfunction.Itisprovedthat the stability of the torque transfer function is equivalent with the wheel-rail adhesion stability that is composed of the slip ratio and the optimal slip ratio.Then,the optimal slip rate control for regenerative braking is proposed based on the optimal slip ratio generation and the sliding mode control in order to achieve the optimal wheel slip prevention during braking.Theproposedmethodologyfunctionstoachievethe optimalregenerativebrakingperformancewithoutthewheelrail contact knowledge.

    2 Torque transfer function of the wheel-rail contact

    2.1Longitudinal braking dynamics

    The longitudinal braking dynamics of EMU trains is presented by a simplifie single-axel model as shown in Fig.1a, which describes the fundamental dynamics during braking. The dynamic equations are shown as below.

    where Tbis the braking torque;Tdand Fdare the adhesion torque and force,respectively;Fzis the wheel normal force; Fdris the fitte total resistance;c0,c1,c2are the fittin coefficients ω and V are the wheel rotational speed(rad/s)and trainspeed(m/s),respectively;r istheeffectivewheelradius.

    Wheels and rails are not rigid,so that there is a contact patch due to the elastic contact deformation caused by the normal load between the wheel and the rail,as shown in Fig.1a.Hertz has proven that the shape of the contactpatch is elliptical[11,23].Such a contact patch generates the adhesion region and the slip/skid region due to the tension deformation or compression deformation.When the longitudinal force increases,the adhesion region is reduced,while theslip/skidregionisincreased.Ifonlytheslip/skidregionis left,the wheel spinning/locking phenomena will occur.The slip ratio define in Eq.(5)quantifie the difference between the wheel speed and the train speed.

    Fig.1 Wheel rail contact and the μ-λ curve.a Wheel-rail contact.b Typical wheel-rail adhesion curves

    Figure1bshowsthetypicalμ-λrelationshipswithvarious rail conditions[11,18,24].The adhesion coefficien behaves as a nonlinear function of the slip ratio.There is a critical operation point(i.e.,the peak point of the curve),wherein the optimal slip ratio and the maximum adhesion coefficien are reached.If the slip ratio is lower than the optimal value, the operation point is the stable adhesion.If the slip ratio is greater than the optimal value,it is an unstable operation point,wherein further increase of the slip ratio will lead to a significan reduction of the adhesion coefficient Additionally,in the stable region,the slope of the curve g=Δμ/△λ is positive.While in the unstable region,it is g<0.

    The shapes of the curves depend on the wheel-rail contact conditions.For example,the medium on the wheel tread and the rail surface(e.g.,ice,snow,frost,rain,or oil)may affect the adhesion ability.In low grip contact conditions, the drive wheels are prone to spin during traction and lock duringbraking,leadingtosevereadhesionlossandabrasion.

    2.2Linearized torque transfer function

    As the wheel-rail contact conditions are complex and uncertain,thispaperaimstodevelopanovelmethodologythatmay be independent of the specifi wheel-rail adhesion condi-tion.Inthispaper,wewillinvestigatethewheel-railadhesion fromthetorquetransmittingpointofview.Thetransferfunction from the wheel regenerative braking torque to the wheel adhesiontorquewillbederivedfirst Asthebrakingdynamics isnonlinearmainlybecauseofthewheel-railcontactfeatures andtheresistantforce,thesmallsignallinearizationtheoryis utilized here to obtain the linearized models as shown in the linearized equations(6)-(11).The system signal flw graph is presented in Fig.2.The transfer function G(s)is finall derived in Eq.(12)using Mason’s gain formula.

    Fig.2 The signal flw graph of the linearized braking dynamics

    3 Analysis of torque transmitting behavior

    3.1Analysis in the frequency domain

    The regenerative braking system utilizes the electric motor to generate the fast braking torque without the conventional frictional braking effect,which is an advantage in estimating the load torque,i.e.,the wheel-rail adhesion torque of the motor driving system.In this section,the torque transmitting behavior from the braking torque to the wheel-rail adhesion torque is analyzed based on the torque transfer function.

    Remark I During regenerative braking,the stability of the wheel-railadhesionisequivalenttothestabilityofthetorque transfer function.Specificall,(1)in the stable region of wheel-rail adhesion wherein g>0,the open-loop transfer function in Eq.(12)is stable,i.e.,both of the two poles are located in the left s-plane;(2)in the unstable region of wheel-rail adhesion wherein g<0,the open-loop transfer function in Eq.(12)is unstable,i.e.,there is one pole located in the right s-plane.

    Proof According to the linearized open-loop transfer function G(s)atanoperationpoint inEq.(12),thepoleshave the following relationship.

    Inthestableadhesionregionoftheμ?λcurvesinFig.1b, the slope of the stable region is positive,i.e.,g>0.The following relations are further derived in Eq.(15),which indicates that the two poles are both negative and located in the left half s-plane.Therefore,the open-loop system is stable.

    In the unstable skidding region,the slope of the curve is negative,i.e.,g<0.The relations in Eq.(16)are derived, which indicates that there are one positive pole and one negative pole.The system is unstable.

    The remark is thus proved.

    3.2Analysis in the time domain

    RemarkIdemonstratesthatthestabilityofthetorquetransfer function is consistent with the adhesion stability indicated in the μ-λ curves.Therefore,the wheel-rail adhesion stability during regenerative braking can be determined via the poles of the torque transfer function,instead of comparing the slip ratio and the optimal slip ratio.However,the poles of the torquetransferfunctionfunctionaredifficul todetermineon line due to the unknown parameters of the wheel rail contact (i.e.,the slope g).We further investigate the torque transmittingbehaviorinthetimedomainandderivethefollowing remark.Theproofoftheremarkissimilartotheacceleration case which can be referred to in Ref.[25].

    Remark II Considering a variation of the wheel regenerative braking torque at an operation point and introducing a new term named as the torque transmitting factor in the time domain as shown in Eq.(17),the sign of the torque transmitting factor indicates the stability of the wheel-rail adhesion,i.e.,(1)the sufficien and necessary condition for the operation point being unstable(i.e.,g<0)is Eq.(18); (2)the sufficien and necessary condition for an operation point being stable(i.e.,g>0)is Eq.(19).

    The remark above indicates that in the stable region, increasingthemotorregenerativetorqueleadstoanincreased adhesion torque.In the unstable region,the adhesion torque is contrary.The adhesion stability in turn can be determined by investigating the torque transmitting behavior in the time domain.

    3.3Adhesion torque estimation

    The wheel regenerative braking torque is measured directly from the motor current.However,the wheel-rail adhesion torque cannot be measured directly,which has to be estimated.As there is only one kind of actuator torque,i.e.,the motor’s regenerative torque in the regenerative braking system,it iseasy to estimate the adhesion torque[19,20,24,26]. The adhesion torque can be regarded as a load disturbance from the motor dynamic equation point of view.We design the following estimator of the adhesion torque that uses the measured motor torque Tband the wheel rotational speed ω. As the measurement of ω usually contains noise,an additional Kalman filte can be used.

    Let?Tdbe the estimated actual adhesion torque,then the estimation error is,

    The designed dynamics of the estimation error is,

    Then,the estimation equation is derived as shown in Eq.(22)with the assumption of the piecewise˙Td=0.

    4 Applications to wheel slip prevention during regenerative braking

    4.1Objectives of regenerative braking control

    The objectives of the regenerative braking control mainly include ensuring the safety or stability,improving the adhesion utilization,and achieving deep energy recovery.Figure 1b indicates that both the safety and large adhesion utilization can be realized by maintaining the slip ratio at its optimalvalue.Thefollowinganalysisaddressestherelationship between the slip prevention and the energy recovery. Duringregenerativebraking,thekineticenergyofthetrain is transmitted into electricity and fed back into the grid. Figure 3 shows the power flw derived from the braking dynamics equations,where the term FdVλ is the power loss induced by the wheel-rail friction.From the energy transfer point of view,the smaller the slip ratio is,the smaller is the power loss.Therefore,in order to improve the energy recovery,the slip ratio is expected to be as small as possible. Nevertheless,from the adhesion curve point of view,a certain quantity of slip ratio is essential to improve the adhesion force.Therefore,the slip ratio should be maintained around theoptimalslipratiosoastoensurethestabilityandimprove the adhesion while making the wheel/rail friction loss small.

    Fig.3 Powerflwduringregenerativebraking.Duringbraking,˙ω and ˙V are both negative

    Fig.4 Overall control scheme

    4.2Overall control scheme

    The torque transmitting behavior can reflec the wheel-rail adhesion stability from the aforementioned analysis.In this section,we will investigate its feasibility with applications to wheel slip prevention during regenerative braking.Figure 4 shows the overall control structure,which involves two subsystems:(1)the optimal slip reference generation and (2)the nonlinear slip ratio controller.This control methodology aims to maintain the slip ratio at its optimal reference by regulating the regenerative braking torque,based on which the maximum adhesion force and the shortest stop time can be achieved.

    4.3Optimal slip reference generation

    Due to the uncertainty of wheel-rail contact conditions,the optimal slip reference is difficul to obtain.We propose a methodology to determine the optimal slip reference via capturing the optimal operation point via monitoring theadhesion torque.We design the following steps to determine the optimal operation point during braking.

    Step 1:Themotorgeneratesanincreasedregenerativebrakingtorque,sothatapositive△Tb(t)isimplemented. Step 2:Estimating the wheel-rail adhesion torque,and calculating the differential signal△Td(t).

    Step 3:If△Td(t=k?1)>0 and△Td(t=k)≤0, the optimal operation point occurs during the time interval t∈(k?1,k],go to step 5;else,return to step 2.

    Step 4:Atthesteadystateofthecontroller,if|△Td(t)|>ξ, where ξ is a preset positive value,go to step 1.

    Step 5:The optimal slip ratio is approximately determined, i.e.,λ?≈λ(t=k?1).

    4.4Sliding mode control design

    The sliding mode control(SMC)is used for the wheel slip prevention because of its practical simplicity and robustness against parameter variations and disturbances.We derive the stateequationinEq.(23)fromEqs.(1)-(5)thattakestheslip ratio as the state variable.

    where,

    The control objective of the sliding mode controller is to reach and remain in the sliding surface that is define as

    The sliding condition is presented in Eq.(26),wherein η is a strictly positive constant,sat(·)is a saturation function forchatteringreductionwiththeboundarylayerwidthψ that is chosen carefully taking into account the frequency range of the unmodelled dynamics.

    The sliding mode control framework includes two terms: one is the equivalent control term that may maintain the slip ratio in the sliding surface with the assumption of a completely known system;the other is a switching term that

    Fig.5 Result of optimal operation point searching

    mayensuretherobustnessofthemodelinguncertainties.The SMC law is designed as

    5 Results and analysis

    5.1Simulation setup

    A numerical simulation is conducted to verify the proposed methodology.We use a motor car of an EMU set using the parameters listed in Table 1.The motor car is propelled by fourindependentlydrivenwheelsetsactuatedbyfourelectric motors.The total fitte resistance is,where ν is

    the train speed(km/h).In the simulation,the train brakes on straight fla rails actuated by the regenerative braking torques generated from the motors.The electric braking torqueincreasesuntilreachingitsmaximumlimit.Theinitial train speed and wheel speed are the same as 288 km/h.During braking,the controller does not know any information of the wheel-rail contact conditions,including the optimal slip ratio and the maximum friction coefficient

    Table 1 Parameters of the EMU train in the simulation

    5.2Results of the optimal slip ratio generation

    In the simulation,a low grip wheel-rail contact condition is usedtorepresentslipperyrails,asshowninFig.1b(thesolid curve).The optimal slip ratio is around 0.12.Figure 5 shows the results of the optimal slip ratio determination.With the increasing braking torque,the operation point has the following four stages:(1)the stable adhesion(e.g.,point A), where the adhesion torque is increased with respect to time, i.e.,with positive slope;(2)the optimal point(B),where the adhesiontorquereachesthemaximumvalue;(3)theunstable skidding(e.g.,pointC),wheretheadhesiontorqueisreduced obviously,i.e.,withnegative slope;(4)the completely wheel locking(e.g.,point D),where the adhesion torque reaches the minimum value.It isclear the optimal point B that corresponds to the optimal slip ratio λ?=0.12 can be determined dynamically using the proposed methodology in Sect.4.3. If the operation point is maintained at the optimal one,the maximum adhesion force is achieved.

    5.3Results of the adhesion control for wheel slip prevention

    Theproposedwheelslippreventioncontrolisevaluatedusing thelow-gripwheel-railcontactconditioninFig.1b,wherethe slip ratio reference is determined on line using the proposed methodpresentedinSect.4.3.Additionally,theconstantslip ratio references λ?=0.05 and λ?=0.25 are also used for comparison.Table 2 compares the performance in terms of the stop distance,the stop time,and the total energy that is transmitted from the car to the motors.Results indicate that the proposed control scheme has the shortest stop time and stop distance.The total energy for recovery is also high.

    Inordertoinvestigatethestabilityandadaptabilityincomplex unknown wheel-rail conditions,a changing wheel-rail condition is further verifiein the simulation.The wheelrail adhesion curve changes from the mid-grip condition to thelow-gripconditionatthetimet=15s.Themid-gripand low-gripcurvescanbeseeninFig.1b,wheretheoptimalslip ratioofthemid-gripcurveisλ?=0.175.Figure6showsthe results with the proposed regenerative braking control strategy.The operation point slides from point A to the optimal point B,andismaintainedaroundtheoptimalpointthereafter on the mid-grip rails.At the time t=15s,the rails change to low-grip rails.The operation point slides from point H to the optimal point I,and is maintained around the optimal point thereafter.The slip ratio is maintained around the optimal values of λ?=0.175,and λ?=0.12,respectively. It indicates that the proposed methodology is applicable to theunknownvaryingwheel-railcontactconditionsviadetermining the optimal slip ratio reference.

    Table2 Performancecomparisonforregenerativebrakingonlow-grip rails

    Fig.6 Results of regenerative braking on unknown slippery rails

    6 Conclusion

    This research analyzes the torque transmitting behavior during regenerative braking and proposes a novel wheel slip prevention control for the regenerative braking of high speed EMUtrains.Itisprovedthatthetorquetransmittingbehavior can indicate the wheel-adhesion stability during regenerative braking.Then,this research investigates the wheel slip prevention control for regenerative braking,and proposes a new optimal slip ratio controller,which can determine the optimal slip ratio reference via investigating the adhesion torque dynamically under the action of an increasing regenerative braking torque.The robust sliding mode controller is designed to track the slip ratio reference.Numerical simulation results indicate that the proposed methodology can determine the adhesion stability,search the optimal slipratio online,andachievetheoptimalslipratiocontrolunderuncertain wheel-rail conditions.The braking safety is ensured and the adhesion utilization is improved because the operation pointismaintainedarounditsoptimalonewithoutthewheelrail contact knowledge.

    Thisresearchcontributestoexploringanewmethodology for the wheel-rail adhesion detection and control from the torque transmitting point of view for the high speed EMU trains.Futureresearchwillfocusonimprovingtherobustness under various disturbances and parameter perturbations and the experimental verificatioto improve its feasibility for practical use.AcknowledgmentsThis work was supported by the National NaturalScienceFoundationofChina(Grant51305437)and Guangdong Innovative Research Team Program of China(Grant 201001D0104648280).

    References

    1.Xu,F.,Shi,L.M.,Li,Y.H.:The weighted vector control of speedirrelevant dual induction motors fed by the single inverter.IEEE Trans.Power Electron.28,5665-5672(2013)

    2.Bouscayrol,A.,Pietrzak-David,M.,Delarue,P.,et al.:Weighted control of traction drives with parallel-connected AC machines. IEEE Trans.Ind.Electron.53,1799-1806(2006)

    3.Eom,B.G.,Kang,B.B.,Lee,H.S.,et al.:A study on running stability assessment methods for 1/5 small scaled bogie of saemaul usingsmall-scaledderailmentsimulator.Int.J.Precis.Eng.Manuf. 14,589-598(2013)

    4.Dominguez,M.,Fernandez-Cardador,A.,Cucala,A.P.,et al.: Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles IEEE Trans.Autom.Sci.Eng.9,496-504(2012)

    5.Ragavan,S.V.,Kumar,J.M.,Ponnambalam,S.G.:Design of a mechatronic drive train with regenerative braking.Mech.Aerosp. Eng.Pts 1,5111-5117(2012)

    6.Teramoto,K.,Ohishi,K.,Makishima,S.,etal:Cooperativecontrol of regenerative brake and mechanical brake for a two coach train. In:Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society(Iecon 2012),1707-1712(2012)

    7.Yin,G.D.,Jin,X.J.:Cooperative control of regenerative braking and antilock braking for a hybrid electric vehicle.Math.Probl. Eng.,1-9(2013)

    8.Park,D.Y.,Kim,M.S.,et al.:Hybrid re-adhesion control method for traction system of high-speed railway.In:Proceedings of the 5th International Conference on Electrical Machines and Systems, Vols I and II,739-742(2001)

    9.Shirai,S.:Adhesion phenomena at high-speed range and performance of an improved slip-dectector.Q.Rep.Railw.Tech.Res. Inst.18,189-190(1977)

    10.Park,S.H.,Kim,J.S.,Choi,J.J.,et al.Modeling and control of adhesion force in railway rolling stockss.IEEE Control Syst.Mag. 28,44-58(2008)

    11.Zuo,J.Y.,Chen,Z.K.:Antiskid control of railway train braking based on adhesion creep behavior.Chin.J.Mech.Eng.25,543-549(2012)

    12.Watanabe,T.,Yamashita,M.:Basic study of anti-slip control without speed sensor for multiple motor drive of electric railway vehicles.Proc.Power Conver.Conf.3,1026-1032(2002)

    13.Ohishi,K.,Ogawa,Y.,Miyashita,I.,et al.:AntiSlip re-adhesion control of electric motor coach based on force control using disturbance observer.Ind.Appl.Conf.2,1001-1007(2000)

    14.Takaoka,Y.,Kawamura,A.:Disturbance observer based adhesion control for shinkansen.In:Proceedings of Advanced Motion Control 6th International Workshop,69-174(2000)

    15.Kawamura,A.,Furuya,T.,Takeuchi,K.,etal:Maximum adhesion control for shinkansen using the tractive force tester.In:Proceedings of IEEE 28th Annual Conference of the Industrial Electrics Society 1,567-572(2002)

    16.Ishikawa,Y.,Kawamura,A.:Maximum adhesion force control in super high speed train.Proc.Power Conver.Conf.2,951-954 (1997)

    17.Cheok,A.D.,Shiomi,S.:A fuzzy logic based anti-skid control system for railway application.Knowledge-Based Intell.Electron. Syst.1,195-201(1998)

    18.Park,S.H.,Kim,J.S.,Choi,J.J.:Reference slip ratio generation and adaptive sliding mode control for railway rolling stocks.Int.J. Precis.Eng.Manuf.10,39-44(2009)

    19.Ohishi,K.,Nakano,K.,Miyashita,I.,et al.:Anti slip control of electric motor coach based on disturbance observer.The 5th IEEE International Workshop on Advanced Motion Control,580-585 (1998)

    20.Watanabe,T.,Yamashita,M.:A novel anti-slip control without speed sensor for electric railway vehicles.In:Proceedings of the 27thAnnualConferenceoftheIEEEIndustrialElectronicsSociety, 1382-1387(2001)

    21.Wang,H.,Xiao,J.:Astudyonfuzzycontroloflocomotiveoptimal adhesion.AMSE Periodicals Model.B 72,57-71(2003)

    22.Xu,K.,Xu,G.Q.,Zheng,C.H.,et al:A novel adhesion stability detection methodology and slip prevention control strategies for wheeledgroundvehicles.In:ProceedingsoftheIEEEInternational Conference on Robotics and Biomimetics,76-81(2014)

    23.Wickens,A.H.:FundamentalsofRailVehicleDynamics:Guidance and Stability.Swets&Zeitlinger Publisher,Amsterdam(2003)

    24.Yamazaki,H.,Nagai,M.,Kamada,T.:A Study of adhesion force model for wheel slip prevention control.JSME Int.J.Series C 47, 496-501(2004)

    25.Xu,K.,Xu,G.Q.,Zheng,C.H.:Novel determination of wheelrail adhesion stability for electric locomotives.Int.J.Precis.Eng. Manuf.16,56-63(2015)

    26.Shimizu,Y.,Kadowaki,S.,Ohishi,K.,et al.:Evaluation and discussion of disturbance observer-based anti-slip/skip re-adhesion control for electric train.Electr.Eng.Jpn.169,55-64(2009)

    26 November 2014/Revised:13 January 2015/Accepted:26 July 2015/Published online:8 March 2016

    ?Guo-Qing Xu xugq1967@126.com;gq.xu@siat.ac.cn

    1Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,and The Chinese University of Hong Kong,Shenzhen 518055,China

    2Shenzhen College of Advanced Technology,University of Chinese Academy of Sciences,Shenzhen 518055,China3School of Electronics and Information,Tongji University, Shanghai 201804,China

    久久天躁狠狠躁夜夜2o2o| 黑人欧美特级aaaaaa片| 精品午夜福利视频在线观看一区| 国产真实乱freesex| 国产精品久久久久久人妻精品电影| 深爱激情五月婷婷| or卡值多少钱| 国产av不卡久久| 亚洲内射少妇av| 国产精品三级大全| 国产一区二区激情短视频| 亚洲av成人av| 十八禁网站免费在线| 高清日韩中文字幕在线| 黄片小视频在线播放| 色噜噜av男人的天堂激情| 日韩欧美精品v在线| 国内揄拍国产精品人妻在线| 97人妻精品一区二区三区麻豆| 91av网一区二区| 国语自产精品视频在线第100页| 99热精品在线国产| 在线播放国产精品三级| 国产在线精品亚洲第一网站| 在线a可以看的网站| 亚洲五月婷婷丁香| 精品免费久久久久久久清纯| 两个人视频免费观看高清| 男人的好看免费观看在线视频| 免费观看的影片在线观看| 午夜精品在线福利| 亚洲一区高清亚洲精品| 亚洲国产中文字幕在线视频| 精品人妻一区二区三区麻豆 | 老熟妇仑乱视频hdxx| 精品久久久久久,| 久久精品夜夜夜夜夜久久蜜豆| 久久婷婷人人爽人人干人人爱| 丰满的人妻完整版| 免费av毛片视频| 国产私拍福利视频在线观看| 亚洲av美国av| 国产黄a三级三级三级人| 亚洲av电影在线进入| 国产极品精品免费视频能看的| 亚洲性夜色夜夜综合| 久久精品91无色码中文字幕| 女人被狂操c到高潮| 男女那种视频在线观看| 非洲黑人性xxxx精品又粗又长| 少妇人妻精品综合一区二区 | 亚洲av五月六月丁香网| 亚洲电影在线观看av| 国产精品影院久久| 日韩欧美一区二区三区在线观看| 亚洲内射少妇av| 搡老妇女老女人老熟妇| 国产精品日韩av在线免费观看| 亚洲av一区综合| 久久久久国内视频| 午夜精品久久久久久毛片777| 婷婷丁香在线五月| 久久国产精品人妻蜜桃| 日日夜夜操网爽| 真人做人爱边吃奶动态| 免费观看精品视频网站| 亚洲国产日韩欧美精品在线观看 | 国产亚洲欧美在线一区二区| 极品教师在线免费播放| 搡老妇女老女人老熟妇| 亚洲精品久久国产高清桃花| 国产成人影院久久av| 1024手机看黄色片| 欧美乱妇无乱码| 欧美丝袜亚洲另类 | 亚洲精品亚洲一区二区| 日本与韩国留学比较| 他把我摸到了高潮在线观看| 深夜精品福利| 国产欧美日韩精品亚洲av| 偷拍熟女少妇极品色| 日本 欧美在线| 国产亚洲欧美98| 国产精品一区二区免费欧美| 小蜜桃在线观看免费完整版高清| 欧美日韩国产亚洲二区| 亚洲最大成人中文| av天堂中文字幕网| 亚洲专区中文字幕在线| 午夜福利欧美成人| 亚洲激情在线av| 一个人免费在线观看的高清视频| 岛国在线免费视频观看| 久久精品91无色码中文字幕| 国产日本99.免费观看| 级片在线观看| 制服人妻中文乱码| 久久人妻av系列| 午夜日韩欧美国产| 少妇高潮的动态图| 成人av一区二区三区在线看| 日韩成人在线观看一区二区三区| 草草在线视频免费看| 亚洲内射少妇av| 亚洲av第一区精品v没综合| 黄片大片在线免费观看| 国产中年淑女户外野战色| 99久久精品国产亚洲精品| 欧美一级毛片孕妇| 日本三级黄在线观看| 日韩大尺度精品在线看网址| 国产精品野战在线观看| 一个人看视频在线观看www免费 | 噜噜噜噜噜久久久久久91| 欧美黑人巨大hd| aaaaa片日本免费| 亚洲avbb在线观看| 一a级毛片在线观看| 两个人的视频大全免费| 日韩成人在线观看一区二区三区| 日韩欧美一区二区三区在线观看| 国产精品自产拍在线观看55亚洲| 中国美女看黄片| 免费在线观看成人毛片| 最新美女视频免费是黄的| 看片在线看免费视频| 99久久九九国产精品国产免费| 亚洲成人免费电影在线观看| 亚洲真实伦在线观看| 他把我摸到了高潮在线观看| 欧美一区二区国产精品久久精品| 免费大片18禁| 禁无遮挡网站| 久久久国产成人精品二区| 中文字幕人妻熟人妻熟丝袜美 | 亚洲国产欧洲综合997久久,| 狠狠狠狠99中文字幕| 狂野欧美白嫩少妇大欣赏| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区三区av网在线观看| 熟妇人妻久久中文字幕3abv| 三级国产精品欧美在线观看| 午夜影院日韩av| 国产免费av片在线观看野外av| 国产国拍精品亚洲av在线观看 | 久久久国产成人精品二区| 一区二区三区国产精品乱码| 变态另类成人亚洲欧美熟女| 日韩精品青青久久久久久| 日韩欧美精品v在线| 中文字幕人妻丝袜一区二区| 91在线精品国自产拍蜜月 | 亚洲精品一卡2卡三卡4卡5卡| 欧美三级亚洲精品| 亚洲专区中文字幕在线| 少妇丰满av| 欧美性猛交黑人性爽| 一区二区三区免费毛片| bbb黄色大片| 99热这里只有精品一区| 国产av麻豆久久久久久久| 婷婷亚洲欧美| 久久国产乱子伦精品免费另类| 国产欧美日韩一区二区三| 日韩欧美免费精品| 免费观看的影片在线观看| 国产单亲对白刺激| 啦啦啦韩国在线观看视频| 婷婷亚洲欧美| 此物有八面人人有两片| 国产91精品成人一区二区三区| 18禁在线播放成人免费| 久9热在线精品视频| svipshipincom国产片| 人人妻人人看人人澡| 99视频精品全部免费 在线| 91av网一区二区| 琪琪午夜伦伦电影理论片6080| 在线观看午夜福利视频| 国产视频内射| 欧美一级a爱片免费观看看| 免费无遮挡裸体视频| 国产野战对白在线观看| 国产亚洲欧美在线一区二区| 高清毛片免费观看视频网站| 国产成人啪精品午夜网站| 国产亚洲精品综合一区在线观看| 全区人妻精品视频| 国内揄拍国产精品人妻在线| 免费看美女性在线毛片视频| 成年免费大片在线观看| 日日夜夜操网爽| 夜夜看夜夜爽夜夜摸| 亚洲av免费在线观看| 日韩高清综合在线| 亚洲第一电影网av| 国产黄片美女视频| 啦啦啦免费观看视频1| 亚洲七黄色美女视频| 国产麻豆成人av免费视频| 亚洲人成网站高清观看| 在线观看66精品国产| eeuss影院久久| 俄罗斯特黄特色一大片| 无人区码免费观看不卡| 免费在线观看日本一区| 999久久久精品免费观看国产| 国产蜜桃级精品一区二区三区| 男女之事视频高清在线观看| 熟女人妻精品中文字幕| 啦啦啦观看免费观看视频高清| 麻豆成人av在线观看| av国产免费在线观看| 偷拍熟女少妇极品色| 免费在线观看成人毛片| 成人欧美大片| 欧美日韩黄片免| 国产精品,欧美在线| 一区二区三区免费毛片| 99热这里只有精品一区| 亚洲va日本ⅴa欧美va伊人久久| 又粗又爽又猛毛片免费看| 亚洲18禁久久av| 亚洲精品久久国产高清桃花| 内地一区二区视频在线| 在线观看舔阴道视频| 久久欧美精品欧美久久欧美| 天堂动漫精品| 性色avwww在线观看| 内地一区二区视频在线| 免费看光身美女| 亚洲自拍偷在线| 欧美日韩中文字幕国产精品一区二区三区| www.www免费av| 国产高清videossex| 国内久久婷婷六月综合欲色啪| 欧美高清成人免费视频www| 亚洲中文字幕日韩| 亚洲精品美女久久久久99蜜臀| 亚洲成av人片免费观看| 久久国产精品人妻蜜桃| 一级黄色大片毛片| 国产精品影院久久| 成年女人永久免费观看视频| 亚洲欧美日韩高清专用| 亚洲人成网站高清观看| 激情在线观看视频在线高清| 久久精品国产亚洲av香蕉五月| 国产精品 国内视频| 亚洲精品乱码久久久v下载方式 | 欧美日韩中文字幕国产精品一区二区三区| 可以在线观看的亚洲视频| 国产色婷婷99| 99久久久亚洲精品蜜臀av| 国产成人福利小说| 国产淫片久久久久久久久 | 久久久国产成人免费| 亚洲欧美日韩高清在线视频| 精品国产超薄肉色丝袜足j| 国产精品免费一区二区三区在线| 精品久久久久久久末码| 精品午夜福利视频在线观看一区| 日韩精品中文字幕看吧| 国产高清激情床上av| 欧美成人a在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品久久久久久成人av| 免费无遮挡裸体视频| 国产伦精品一区二区三区视频9 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 制服人妻中文乱码| 小说图片视频综合网站| 丰满人妻一区二区三区视频av | 亚洲在线观看片| 国产免费一级a男人的天堂| 18禁国产床啪视频网站| 给我免费播放毛片高清在线观看| 欧美大码av| 1000部很黄的大片| 亚洲18禁久久av| 国产美女午夜福利| 国产亚洲精品一区二区www| 午夜免费成人在线视频| 日本a在线网址| 成人亚洲精品av一区二区| 亚洲va日本ⅴa欧美va伊人久久| 3wmmmm亚洲av在线观看| 天天躁日日操中文字幕| 九色国产91popny在线| 精品人妻偷拍中文字幕| 国产一区二区三区在线臀色熟女| 97超级碰碰碰精品色视频在线观看| 内射极品少妇av片p| av欧美777| 国模一区二区三区四区视频| 怎么达到女性高潮| 午夜福利在线在线| 天美传媒精品一区二区| 日本在线视频免费播放| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区久久| 可以在线观看的亚洲视频| 国产伦在线观看视频一区| avwww免费| tocl精华| 午夜免费男女啪啪视频观看 | 国产精品香港三级国产av潘金莲| 成人无遮挡网站| 淫妇啪啪啪对白视频| 国产三级中文精品| 听说在线观看完整版免费高清| 在线看三级毛片| 欧美日韩精品网址| 欧美黄色片欧美黄色片| 在线观看免费午夜福利视频| 国产午夜精品论理片| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美精品免费久久 | 久久国产精品人妻蜜桃| 伊人久久大香线蕉亚洲五| 51午夜福利影视在线观看| 又爽又黄无遮挡网站| 国产伦一二天堂av在线观看| 国产野战对白在线观看| 91久久精品国产一区二区成人 | 免费无遮挡裸体视频| 美女黄网站色视频| 亚洲av免费高清在线观看| 看黄色毛片网站| 亚洲精品成人久久久久久| 国产成人影院久久av| 人妻丰满熟妇av一区二区三区| 日韩欧美国产一区二区入口| 91在线精品国自产拍蜜月 | 国产一区二区在线观看日韩 | 高清在线国产一区| 精品一区二区三区人妻视频| 女生性感内裤真人,穿戴方法视频| 欧美黄色淫秽网站| 欧美乱色亚洲激情| 久久精品国产亚洲av香蕉五月| 欧美色视频一区免费| 欧美日韩国产亚洲二区| 亚洲美女视频黄频| 18禁裸乳无遮挡免费网站照片| 国产av麻豆久久久久久久| 久久人人精品亚洲av| а√天堂www在线а√下载| 成人18禁在线播放| 身体一侧抽搐| 18禁在线播放成人免费| 国产精品永久免费网站| 夜夜看夜夜爽夜夜摸| 午夜福利免费观看在线| 99久国产av精品| 欧美区成人在线视频| 国产精品爽爽va在线观看网站| 亚洲av电影不卡..在线观看| 亚洲一区二区三区色噜噜| 国产淫片久久久久久久久 | 亚洲黑人精品在线| 欧美极品一区二区三区四区| 午夜两性在线视频| 久久香蕉国产精品| 女人被狂操c到高潮| 精品不卡国产一区二区三区| 亚洲精品粉嫩美女一区| 很黄的视频免费| 国产伦一二天堂av在线观看| 国产精品一及| 美女高潮的动态| 亚洲 欧美 日韩 在线 免费| АⅤ资源中文在线天堂| 欧美色欧美亚洲另类二区| 在线十欧美十亚洲十日本专区| 美女黄网站色视频| 亚洲人成伊人成综合网2020| h日本视频在线播放| 88av欧美| 国产日本99.免费观看| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久午夜电影| 欧美成人免费av一区二区三区| 国产在线精品亚洲第一网站| 91av网一区二区| 99国产精品一区二区蜜桃av| 免费一级毛片在线播放高清视频| 色在线成人网| 午夜免费激情av| 特级一级黄色大片| 日本精品一区二区三区蜜桃| 无人区码免费观看不卡| 一本综合久久免费| 国产蜜桃级精品一区二区三区| 无人区码免费观看不卡| 成人高潮视频无遮挡免费网站| 亚洲国产欧洲综合997久久,| 精品久久久久久成人av| 日本免费一区二区三区高清不卡| 欧美日韩乱码在线| 特大巨黑吊av在线直播| 精品国产亚洲在线| 女人十人毛片免费观看3o分钟| 成人精品一区二区免费| 男女做爰动态图高潮gif福利片| 女人被狂操c到高潮| 国产高清视频在线播放一区| 免费搜索国产男女视频| 国产亚洲精品综合一区在线观看| 高清日韩中文字幕在线| 国产v大片淫在线免费观看| 91久久精品电影网| 一本久久中文字幕| 免费看光身美女| 亚洲精品粉嫩美女一区| 亚洲人成网站在线播| 97碰自拍视频| 午夜福利视频1000在线观看| 亚洲av五月六月丁香网| 久久久国产成人免费| 亚洲成人久久性| 偷拍熟女少妇极品色| 国产欧美日韩精品一区二区| 亚洲国产日韩欧美精品在线观看 | 亚洲国产色片| 亚洲国产精品久久男人天堂| 在线观看一区二区三区| 国产视频内射| 又粗又爽又猛毛片免费看| 成人av在线播放网站| 国产免费男女视频| 日韩欧美免费精品| 欧美+日韩+精品| 日本免费a在线| 国产亚洲精品综合一区在线观看| 国产精品精品国产色婷婷| 国产激情偷乱视频一区二区| 国产成人福利小说| 老司机福利观看| av国产免费在线观看| 欧美极品一区二区三区四区| 久久这里只有精品中国| 观看免费一级毛片| 久久久久久久午夜电影| 日韩欧美在线乱码| 女生性感内裤真人,穿戴方法视频| 日韩欧美国产在线观看| 精品国产美女av久久久久小说| 亚洲av电影不卡..在线观看| av在线蜜桃| 中国美女看黄片| 三级男女做爰猛烈吃奶摸视频| 成人无遮挡网站| 免费无遮挡裸体视频| 欧美中文日本在线观看视频| x7x7x7水蜜桃| 国产又黄又爽又无遮挡在线| 韩国av一区二区三区四区| 在线观看舔阴道视频| 久久精品国产亚洲av涩爱 | 欧美色视频一区免费| 亚洲精品影视一区二区三区av| 国内毛片毛片毛片毛片毛片| 一本久久中文字幕| 欧美在线一区亚洲| 一级黄片播放器| 成年女人毛片免费观看观看9| 高潮久久久久久久久久久不卡| 一本综合久久免费| 好男人电影高清在线观看| 久久精品国产自在天天线| 九九热线精品视视频播放| 亚洲七黄色美女视频| 青草久久国产| www国产在线视频色| 亚洲第一电影网av| 岛国在线观看网站| 麻豆久久精品国产亚洲av| 丰满的人妻完整版| 91在线精品国自产拍蜜月 | av中文乱码字幕在线| 国产91精品成人一区二区三区| 欧美在线一区亚洲| 欧美一级毛片孕妇| 国产精品亚洲美女久久久| 成年版毛片免费区| 久久亚洲精品不卡| 亚洲国产精品成人综合色| 欧美极品一区二区三区四区| 国产老妇女一区| 欧美激情在线99| 亚洲在线自拍视频| 国产三级在线视频| 免费看十八禁软件| 9191精品国产免费久久| 午夜福利欧美成人| 久9热在线精品视频| 波多野结衣巨乳人妻| 色哟哟哟哟哟哟| 综合色av麻豆| 色av中文字幕| 在线十欧美十亚洲十日本专区| 免费高清视频大片| 亚洲精品456在线播放app | 亚洲av成人av| 黄色丝袜av网址大全| 国产野战对白在线观看| 别揉我奶头~嗯~啊~动态视频| 日本成人三级电影网站| 免费观看人在逋| 亚洲国产中文字幕在线视频| 国产午夜精品久久久久久一区二区三区 | 亚洲成人久久爱视频| 一个人看视频在线观看www免费 | 国产久久久一区二区三区| 国产熟女xx| 美女高潮喷水抽搐中文字幕| 内地一区二区视频在线| 午夜影院日韩av| 可以在线观看的亚洲视频| 亚洲 欧美 日韩 在线 免费| 国产精品自产拍在线观看55亚洲| 国产97色在线日韩免费| 变态另类成人亚洲欧美熟女| 久久99热这里只有精品18| 最近在线观看免费完整版| 欧美不卡视频在线免费观看| 久久久久久大精品| 国产探花在线观看一区二区| 丰满的人妻完整版| 黄色片一级片一级黄色片| 欧美大码av| 国产主播在线观看一区二区| 成人性生交大片免费视频hd| 国产av麻豆久久久久久久| 国产一区二区在线观看日韩 | 中文字幕人妻熟人妻熟丝袜美 | 欧美色视频一区免费| 白带黄色成豆腐渣| 日韩欧美免费精品| 中文资源天堂在线| 成年女人永久免费观看视频| 午夜久久久久精精品| 久久亚洲精品不卡| 精品99又大又爽又粗少妇毛片 | 国产久久久一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| www国产在线视频色| 成人三级黄色视频| 99久久精品国产亚洲精品| 日本免费一区二区三区高清不卡| 欧美乱妇无乱码| 精品国产亚洲在线| 给我免费播放毛片高清在线观看| 欧美最新免费一区二区三区 | 夜夜爽天天搞| 每晚都被弄得嗷嗷叫到高潮| 欧美3d第一页| www.999成人在线观看| 老司机深夜福利视频在线观看| 禁无遮挡网站| 美女免费视频网站| 国产成人a区在线观看| a级毛片a级免费在线| 日本熟妇午夜| 久久久久九九精品影院| 国产男靠女视频免费网站| 国产精品永久免费网站| 99精品欧美一区二区三区四区| 波多野结衣巨乳人妻| 一边摸一边抽搐一进一小说| 亚洲av成人不卡在线观看播放网| 国产av一区在线观看免费| 久久久国产精品麻豆| 三级男女做爰猛烈吃奶摸视频| 欧美色欧美亚洲另类二区| 香蕉av资源在线| 在线播放无遮挡| 久久九九热精品免费| 亚洲电影在线观看av| 久久性视频一级片| 欧美绝顶高潮抽搐喷水| 搞女人的毛片| 国产黄a三级三级三级人| 国产av一区在线观看免费| 国产一区在线观看成人免费| 国产欧美日韩一区二区精品| 欧美激情久久久久久爽电影| 99国产综合亚洲精品| 两人在一起打扑克的视频| 国产乱人视频| 欧美成狂野欧美在线观看| 网址你懂的国产日韩在线| 国产成人福利小说| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜福利成人在线免费观看| 91av网一区二区| 99久国产av精品| 欧美在线黄色| 亚洲av不卡在线观看| www日本黄色视频网| 亚洲第一欧美日韩一区二区三区| 精品一区二区三区人妻视频| 搡女人真爽免费视频火全软件 | 成人三级黄色视频| 99热这里只有精品一区| www.色视频.com| 欧美一级a爱片免费观看看| 国产亚洲欧美在线一区二区| 麻豆一二三区av精品| 露出奶头的视频| 欧美日韩瑟瑟在线播放| 美女cb高潮喷水在线观看| 亚洲精品亚洲一区二区| 首页视频小说图片口味搜索|