• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HCCI燃燒中NO與異辛烷相互作用簡(jiǎn)化動(dòng)力學(xué)模型構(gòu)建與分析

    2016-09-06 01:32:05鄭朝蕾呂祝梅
    物理化學(xué)學(xué)報(bào) 2016年5期
    關(guān)鍵詞:異辛烷重慶大學(xué)機(jī)理

    鄭朝蕾 呂祝梅

    (重慶大學(xué),低品位能源利用技術(shù)及系統(tǒng)教育部重點(diǎn)實(shí)驗(yàn)室,重慶400044)

    HCCI燃燒中NO與異辛烷相互作用簡(jiǎn)化動(dòng)力學(xué)模型構(gòu)建與分析

    鄭朝蕾*呂祝梅

    (重慶大學(xué),低品位能源利用技術(shù)及系統(tǒng)教育部重點(diǎn)實(shí)驗(yàn)室,重慶400044)

    為了分析廢氣再循環(huán)中NO對(duì)HCCI燃燒的影響,本文構(gòu)建了一個(gè)新的NO與異辛烷相互作用的化學(xué)動(dòng)力學(xué)機(jī)理,包括167種組分和835個(gè)反應(yīng),其中異辛烷分支反應(yīng)包括112種組分和467個(gè)反應(yīng)。NO分支的子機(jī)理是在Anderlohr等人對(duì)NO與異辛烷詳細(xì)機(jī)理研究的基礎(chǔ)上根據(jù)路徑分析而得到的。新IC8H18-NO機(jī)理的驗(yàn)證分為:IC8H18分支機(jī)理驗(yàn)證了在激波管中溫度范圍為855-1269 K,壓力范圍為2-6 MPa,化學(xué)計(jì)量比為0.5和1.0條件下的著火延遲時(shí)間;IC8H18-NO機(jī)理驗(yàn)證了在HCCI發(fā)動(dòng)機(jī)中NO添加濃度為0-500×10-6(體積分?jǐn)?shù)),同時(shí)也發(fā)現(xiàn)不同的NO添加濃度對(duì)IC8H18的HCCI燃燒的影響有所不同。因此,本文利用CHEMKIN PRO軟件中的零維單區(qū)化學(xué)動(dòng)力學(xué)模型,模擬了在不同NO濃度下NO對(duì)異辛烷燃燒影響。通過(guò)敏感性分析和產(chǎn)率分析,得出了NO添加后對(duì)異辛烷燃燒影響的關(guān)鍵性反應(yīng)為R476。在IC8H18燃燒初期通過(guò)R476產(chǎn)生活性基OH,從而體現(xiàn)對(duì)燃燒的促進(jìn)作用。但是在NO添加濃度較大時(shí),由于NO濃度較大結(jié)合活性基(如OH)的能力增強(qiáng),進(jìn)而NO對(duì)燃燒的促進(jìn)作用被削弱。

    反應(yīng)路徑;化學(xué)動(dòng)力學(xué);敏感性分析;產(chǎn)率分析;關(guān)鍵反應(yīng)

    1 Introduction

    Homogeneous charge compression ignition(HCCI)engine combines the advantages of a spark ignition engine with those of a compression ignition engine.However,ignition delay times and combustion rate are difficult to control.Studies have been conducted to overcome these difficulties,and advanced technologies have been applied to control HCCI combustion.For example, exhaust gas recirculation(EGR),including external EGR and internal EGR,has been extensively investigated as a means to modify inlet temperature and control ignition delay of gasolineand diesel-fueled HCCI combustion1-10.Moreover,internal EGR can be applied effectively to achieve HCCI combustion in a variable valve structure.

    EGR has drawn attention to research HCCI.The effects of EGR on HCCI combustion can be divided into four parts:a dilution effect,a thermal effect,a heat capacity effect,and a chemical effect1-9.The dilution,thermal,and heat capacity effects can be analyzed by thermodynamics,whereas the chemical effect can be analyzed by chemical kinetics.With several studies on HCCI combustion,the chemical effect drew more attention because its chemical kinetic mechanism is the key in controlling HCCI combustion1-4.EGR mainly includes active gases,such as carbon monoxide(CO)and nitrogen oxide(NO),carrying out the chemical effect.The chemical kinetic mechanism can be changed by NO,which is also an important component of environmental pollution.The active chemical property of NO has a significant influence on HCCI combustion and the emission process.

    Recently,NO has been proved a significant influence on hydrocarbon oxidation10-16.Moréac et al.10investigated the effects of NO on the oxidation of n-heptane(NC7H16),iso-octane(IC8H18), toluene,and methanol in a jet-stirred reactor.The NO effect was found related to temperature.Risberg et al.11carried out experiments on the effects of NO with concentrations from 0 to 476× 10-6(volume fraction)on an HCCI engine fueled with primary reference fuel(PRF)and toluene reference fuel(TRF)which have the same research octane number of 84.The NO concentration with maximum influence on ignition delay was obtained under two engine conditions,one at high intake pressure(0.2 MPa)and low intake temperature(40°C)and the other at high intake temperature(100°C)and atmospheric intake pressure.However, the effects of NO on HCCI combustion are too complicated to be understood only by engine experiments.Therefore,the effects of NO should be analyzed using the chemical kinetic model17-26.The interaction between NO and C1-C4at high temperature was analyzed by Frassoldati et al.17through the chemical kinetic model. Dayma et al.18investigated the interaction between NO and PRF using the models and experiments.PRF is a binary blend of IC8H18and NC7H16.The reaction paths of NO and IC8H18were used through the chemical kinetic models of NO and PRF,containing 1085 components and 4405 reactions.

    The above models17-19can describe the interaction between NO and hydrocarbons.However,the NO sub-mechanisms only describes the interaction between NO and small molecule hydrocarbons.

    Researches proved that the interaction between NO and large molecule hydrocarbons should not be neglected20-26.The detailed mechanism of NO and C4H10/C5H12was successfully developed up to five carbon atoms by Glaude et al.24.Anderlohr et al.15proposed a detailed mechanism of PRF-NO,which was validated on ignition delay and concentration of the intermediate components in a jet-stirred reactor and HCCI engine.It shows that the same trend can be obtained by the computational results of this detailed mechanism and the experiment under HCCI engine conditions. Meanwhile,the detailed mechanism of PRF-NO proposed by Anderlohr et al.15was developed up to eight carbon atoms.The interaction between NO and large molecule hydrocarbon should be considered to improve the effects of NO on the oxidation of large molecule hydrocarbons.Some detailed and skeletal mechanisms of hydrocarbons are shown in Table 1.

    The simplest and most essential surrogate fuel of gasoline is IC8H18,which is an alkane with similar ignition characteristics to gasoline.To investigate the effects of NO on gasoline-fueled HCCI combustion,the effects of NO on IC8H18oxidation should be analyzed.Recently,the effect of NO on IC8H18oxidation was investigated by Contino et al.19with the detailed mechanism of NO and PRF,containing 1062 components and 4494 reactions.Although validations of the detailed mechanism are in good agreement with experimental data,a defect exists in that the detailed mechanism do not contain the interaction between NO and large molecule hydrocarbons.In order to apply computational fluid dynamics,a smaller mechanism with less species and re-actions is needed.

    Table 1 Overview of NO mechanism

    In this study,a new IC8H18-NO mechanism is presented under extensive HCCI conditions to analyze the effects of NO on IC8H18in HCCI combustion,therefore understanding the chemical effect of EGR on IC Hin HCCI combustion.

    2 validation of the new IC8H18-NO model

    In this study,the IC8H18-NO mechanism consists of IC8H18and NO sub-mechanisms.

    2.1IC8H18sub-mechanism

    In this study,the IC8H18sub-mechanism is the mechanism of Kelley et al.27,consisting of 112 species and 467 reactions validated on laminar flame speeds and ignition delay time at different equivalence ratios and pressures.Curran28and Chaos29et al.obtained the mechanism by time-scale analysis with minimal loss of accuracy.The mechanism of Curran et al.28consisting of 860 species and 3600 reactions was not validated on high laminar flame speeds.Chaos et al.29proposed a PRF mechanism consisting of 106 species and 723 reactions.Comparison between the results of the above mechanisms and experiments is presented in Ref.29. Furthermore,the mechanism of Kelley et al.27can better describe IC8H18oxidation in HCCI combustion.Hence,the IC8H18mechanism of Kelley et al.27was chosen as the IC8H18sub-mechanism in this study.

    All validations presented in this study were carried out using a zero-dimensional model in CHEMKIN PRO software.When the simulations were carried out in a shock tube,autoignition delay time is defined as the time needed for the mixture to reach a temperature of 400 K above the initial temperature.For the simulations in HCCI engine,the ignition delay time is defined as the time needed for the temperature to reach the inflection point, which is the maximum value of the temperature slope20.

    Ignition delay times were also measured by Davidson et al.30in a shock tube with IC8H18.The temperature range was from 855 to 1269 K,and the equivalence ratios(φ)were 0.5 and 1.0.Computational results are in good agreement with experimental data at 2 and 6 MPa,as shown in Fig.1.Results show that the mechanism used in this study is closer to the experiment than the mechanism of Contino et al.19at both 2 and 6 MPa,as shown in Fig.1(a)and(b),respectively.These results indicate that the mechanism used in this study is more suitable for IC8H18oxidation than the mechanism of Contino et al.19.

    2.2NO sub-mechanism

    The interaction between IC8H18and NO not only concentrates on small molecules but also exists in large molecules20-26.Based on the research of Glaude et al.24on the interaction between NO and large molecule hydrocarbons,Anderlohr et al.21analyzed the interaction between NO and gasoline surrogate fuel systematically. Furthermore,they proposed a detailed mechanism of TRF-NO with the results of GRI-MECH 3.031,consisting of 536 species and 3000 reactions.The TRF-NO mechanism was validated on ignition delay in a rapid compression machine,a shock tube,a jetstirred reactor,a perfectly stirred reactor,and an HCCI engine. Computational results show that the same trend can be obtained by this detailed mechanism under HCCI engine conditions as shown in the experiments of Dubreuil4,Moréac10,and Risberg11et al.Based on the TRF-NO mechanism of Anderlohr et al.21, analysis of the productivity rate of nitride was carried out.The productivity rate of nitride,which mostly participates in the transformation of the IC8H18branch,is shown in Fig.2.As shown in Fig.2(a,b),the main reaction of the consumption of NO and production of NO2is R476,whereas the main reaction of the production of NO and transformation of HONO to NO and OH is R609.As shown in Fig.2(c,d),the main reaction of the consumption of HNO and production of HONO is R619,which also shows the transformation of HNO and NO2to HONO and NO. Therefore,through a similar analysis of the productivity rate of nitride,the reaction paths of NO sub-mechanism were proposed according to the detailed mechanism of TRF-NO21as shown in Fig.3.

    Fig.1 Comparison between experimental and calculated results in a shock tube(a)φ=0.5;(b)φ=1.0

    The reaction paths of NO sub-mechanism,with transformation of the IC8H18branch,contain the following parts:

    (1)The transformation of NO and NO2.RO and NO2were generated by the interaction between NO and hydroperoxyalkyl (RO2).The interaction between NO and oxohydroperoxy radical (HOOQOOH)occurred along with the formation of small molecules,including OH,NO2,aldehyde,and olefin.RO2and NO were generated by the interaction between NO2and alkane(RH).

    (2)The decomposition and formation of RNO2.The transfor-mation between the reactant RNO2and reactants RO and NO2occurred.

    (3)The transformation of NO to HNO.HNO and R were generated by the interaction between NO and alkane(RH).

    (4)The transformation of HONO and NO2.The transformation between the reactants RH and NO2and reactants R and HONO occurred.

    Considering the interaction between NO and all range of carbon atoms in IC8H18,the NO sub-mechanism in this study contains the following parts:

    Fig.2 Reaction rate of main nitrides(a)NO;(b)NO2;(c)HONO;(d)HNOR476:NO+HO2=NO2+OH,R477:NO+O+M=NO2+M,R478:NO2+O=NO+O2,R479:NO2+H=NO+OH,R502:NO+HO2=NO2+OH,R505:HNO+ OH=NO+H2O,R598:C2H5O+NO=CH3CHO+HNO,R563:HCCO+NO=HCNO+NO,R600:CO+NO2=CO2+NO,R604:C3H5-A+NO2=C2H3+CH2O, R606:NO2+HO2=HONO+O2,R609:NO+OH(+M)=HONO(+M),R610:CH3+NO2=CH3O+NO,R660:IC4H7+NO2=CH3+C2H3CHO+NO,R662:XC7H13+ NO2=IC4H9+C2H3CHO+NO,R619:HONO+NO=NO2+HNO,R729:NO+HCO=HNO+CO,R740:C2H3+NO=C2H2+HNO

    Fig.3 Reaction paths of NO

    (1)The interaction between NO and C0-C1.This part consists of the NO sub-mechanism in PRF-NO by Contino et al.19.Reactions R468-R488,with the results of GRI-MECH2.11,were updated with the results of GRI-MECH3.031.Based on the research of Anderlohr21and Wang22et al.,NO and CH2O can be generated by combining CH3NO2with active radicals such as OH.Therefore, when the NO sub-mechanism in this study was built,reactions R574-R577 were considered.

    CH3NO2+OH=CH2O+NO+H2O(R574)

    CH3NO2+O=CH2O+NO+OH(R575)

    CH3NO2+H=CH2O+NO+H2(R576)

    CH3NO2+CH3=CH2O+NO+CH4(R577)

    (2)The interaction between NO and C2-C8.This part consists of the NO sub-mechanism in TRF-NO by Anderlohr et al.21.Research demonstrated that NO initially reacts with large molecule hydrocarbons upon the addition of NO.Based on the analysis of Dayma et al.18on the interaction between NO and PRF,the effect of NO on PRF depends on reactions RO2+ NO=RO+NO2and NO+OH=HONO.When the NO submechanism in this study was built,reactions R595,R596,and R620-R626 were considered.The new NO sub-mechanism consists of 55 species and 368 reactions.

    CH3OO+NO=CH3O+NO2(R595)

    C2H5OO+NO=C2H5O+NO2(R596)

    IC3H7O2+NO=IC3H7O+NO2(R620)

    TC4H9O2+NO=TC4H9O+NO2(R621)

    IC4H9O2+NO=IC4H9O+NO2(R622)

    NEOC5H11O2+NO=NEOC5H11O+NO2(R623)

    AC8H17O2+NO=AC8H17O+NO2(R624)

    BC8H17O2+NO=BC8H17O+NO2(R625)

    CC8H17O2+NO=CC8H17O+NO2(R626)

    Combined with the results of Section 2.1,the new IC8H18-NO mechanism consists of 167 species and 835 reactions,as shown in the supplementary material.

    Fig.4 Comparison between experimental and calculated results in HCCI engine(a)φ=0.22;(b)φ=0.26.CAD:crank angle degree

    Table 2 Character of tested engine23

    Fig.5 Effect on main components with the different NO concentrations(a)IC8H18;(b)NO;(c)OH

    The comparison between the experimental and computational results is shown in Fig.4.The characteristics of the tested engine are listed in Table 2.Experiments on the effect of NO on IC8H18in HCCI engine were performed at 420 K and 0.14 MPa at the speed of 1000 r?min-1with equivalence ratios of 0.22 and 0.2623.The computational results are in good agreement with the experimental results on ignition delay times in HCCI engine,as shown in Fig.4.The computational results in this study can more successfully reproduce the trend of the experimental results than the computational results of Contino et al.19,especially at low concentrations of NO.The results of whether these reactions between NO and large molecules is included in the NO submechanism are also shown in Fig.4.The results of the mechanism with these reactions compared with those of mechanisms without such reactions are improved at all NO concentrations.

    Fig.6 Reaction rate of IC8H18at the NO concentrations of 50×10-6(a)and 500×10-6(b)R346:IC8H18=IC4H9+TC4H9,R348:IC8H18+H=AC8H17+H2,R350:IC8H18+H=CC8H17+H2,R351:IC8H18+H=DC8H17+H2,R354:IC8H18+O=CC8H17+OH, R356:IC8H18+OH=AC8H17+H2O,R357:IC8H18+OH=BC8H17+H2O,R358:IC8H18+OH=CC8H17+H2O,R359:IC8H18+OH=DC8H17+H2O

    Fig.7 Reaction rate of OH at the NO concentrations of 50×10-6(a)and 500×10-6(b)R7:CO+OH=CO2+H,R8:H+O2=O+OH,R10:O+H2O=OH+OH,R32:CH2O+OH=HCO+H2O,R42:HO2+O=OH+O2, R49:HO2+OH=H2O+O2,R51:OH+OH(+M)=H2O2(+M),R476:NO+HO2=NO2+OH

    From the above validations,the present IC8H18-NO mechanism is concluded suitable for studying the effects of NO on IC8H18in HCCI combustion.Though there are only 167 species and 835 reactions included in this model,it can provide excellent computational results similar to experimental results.

    3 Analysis of productivity rate

    The effects of NO on IC8H18in HCCI combustion differ at various NO concentrations.In order to explain this phenomenon, analysis of the productivity rate at different NO concentrations was proposed.

    The productive rates of the main components,including IC8H18, NO,and OH,at different mole fractions of NO are shown in Fig.5. As shown in Fig.5(a),the beginning and ending consumption times of IC8H18advanced with the appearance of NO,indicating an advance in the ignition delay time.The consumption and production of NO at different concentrations of NO shown in Fig.5 (b),indicates that NO is consumed at the beginning with the appearance of NO.The consumption and production of OH,which is the most important active radical,are shown in Fig.5(c).The higher the concentration of NO,the faster OH accumulates.

    The seven main reactions rates of IC8H18at NO concentrations of 50×10-6and 500×10-6were measured using the chemical kinetic model,as shown in Fig.6.The consumption of IC8H18is depicted in R356,which is the dehydrogenation reaction.IC8H18consumption time at 500×10-6is enhanced compared with that at 50×10-6.In addition,the main reaction rates of IC8H18remained constant at 500×10-6.It is seen from Fig.6 that the duration of IC8H18consumption is shortened because of the NO addition, respectively 17.5°CAand 13.5°CAfor the NO concentrations of 50×10-6and 500×10-6.

    Fig.8 Reaction rate of NO at the NO concentrations of 50×10-6(a)and 500×10-6(b)R476:NO+HO2=NO2+OH,R478:NO2+O=NO+O2,R604:C3H5-A+NO2=C2H3+CH2O+NO,R609:NO+OH(+M)=HONO(+M), R610:CH3+NO2=CH3O+NO,R660:IC4H7+NO2=CH3+C2H3CHO+NO,R662:XC7H13+NO2=IC4H9+C2H3CHO+NO

    Fig.9 Interaction between NO and IC8H18①the conversion between NO and NO2;②the decomposition of RNO2;③the conversion between NO and HNO;④the conversion between NO2and HONO

    The seven main reaction rates of OH at NO concentrations of 50×10-6and 500×10-6are shown in Fig.7.Reaction R476 contributes to the reaction rate of OH at 500×10-6but not at 50×10-6.The response time of R476 is earliest among the seven main reaction rates of OH at 500×10-6,indicating that the resource of OH at the initial IC8H18consumption is mainly from R476,which is the result of the promoting effect of NO on IC8H18consumption.

    Fig.10 Sensitivity coefficients at the NO concentrations of 0 and 50×10-6

    Fig.11 Sensitivity coefficients at the NO concentrations of 50×10-6and 500×10-6

    The seven main reaction rates of NO at NO concentrations of 50×10-6and 500×10-6are shown in Fig.8.The reaction rates of these main reactions are magnified by 5 to 6 times at 500×10-6compared with those at 50×10-6.Most reaction rates of NO consumption are from R476 regardless of the concentration of NO (Fig.8).The main production reactions at 50×10-6are R604, R609,and R660,whereas those at 500×10-6are R609,R610,and R660.The above reactions are generated by the addition of NO, which indicates that NO participates in the transformation of the IC8H18branch.

    The reaction paths of the IC8H18branch were obtained by analyzing the reaction paths.The new reaction paths in the IC8H18branch were found to have resulted from the addition of NO,as shown in Fig.9 as dashed line.Meanwhile,the original reaction paths in the IC8H18branch(without the addition of NO)are shown as solid line in Fig.9.The transformation of the IC8H18branch was accelerated by the new reaction paths(with the addition of NO), whereas the original reactions in the IC8H18branch weakened.This result also explains why the reaction rates of OH in the IC8H18branch are reduced with increasing NO concentration,as shownin Fig.7.

    4 Sensitivity analysis

    Sensitivity analysis at different NO concentrations was conducted,with temperature at 420 K,pressure at 0.14 MPa,and equivalence ratio of 0.22.

    As shown in Fig.10,the temperature sensitivity coefficients of the key reactions of IC8H18-NO mechanism without the addition of NO in HCCI engine include those in dehydrogenation reactions R364-R367,R389,and R390,showing the promoting effect on IC8H18combustion.On the other hand,the temperature sensitivity coefficients of those reactions at NO concentration of 50×10-6are lower,indicating that the original reactions in the IC8H18branch are weakened by the addition of NO,which in turn is in accordance with the conclusion from Section 3.

    As shown in Fig.11,the temperature sensitivity coefficients of the key reactions of IC8H18-NO mechanism at NO concentration of 500×10-6in HCCI engine consist of R476,R606,R610,R675, R683,and R798,showing the promoting effect on IC8H18combustion.On the other hand,the temperature sensitivity coefficient of R683 at NO concentration of 500×10-6is lower than that at 50×10-6,which is attributed to the enhanced ability of NO to combine with active radicals with increased NO concentration (R476).

    5 Conclusions

    (1)A new chemical kinetic model of IC8H18-NO,consisting of 167 species and 835 reactions,was developed by considering the effects of NO on large molecule hydrocarbons.The reaction paths of NO in IC8H18-NO mechanism were carried out.

    (2)The IC8H18sub-mechanism of IC8H18-NO mechanism was validated on ignition delay times in shock tubes.The experimental and computational results are in good agreement with ignition delay times at temperature range of 855 to 1269 K at pressures of 2 and 6 MPa with equivalence ratios of 0.5 and 1.0.The new IC8H18-NO mechanism was also validated in HCCI engine.The computational results are in good agreement with the experimental data on ignition delay time over an NO concentration range of 0-500×10-6.

    (3)Generally,the addition of NO in HCCI engine changes the reaction paths of the IC8H18branch.The transformation of the IC8H18branch is accelerated by the new reaction paths after the addition of NO.Meanwhile,the original reactions in the IC8H18branch are weakened by the addition of NO,which is in accordance with the results of the productivity rate analysis.Through the analysis of productivity rate,the response time of R476 was found to be earliest among the seven main reaction rates of OH at NO concentration of 500×10-6.This phenomenon indicates that the main resource of OH at the beginning of IC8H18consumption is R476,which is the result of the promoting effect of NO on IC8H18consumption.

    (4)The temperature sensitivity coefficients of the 20 key reactions in IC8H18-NO mechanism at NO concentration of 500× 10-6consist of R476,R606,R610,R675,R683,and R798,which show the promoting effect of NO on IC8H18combustion.The temperature sensitivity coefficient of R683 at NO concentration of 500×10-6is lower than that at NO concentration of 50×10-6, which is attributed to the enhanced ability of NO to combine with active radicals with increase in NO concentration,such as R476.

    References

    (1)Machrafi,H.Energ.Convers.Manage.2008,49(11),2956.

    doi:10.1016/j.enconman.2008.06.016

    (2)Machrafi,H.Energ.Convers.Manage.2010,51(10),2025.

    doi:10.1016/j.enconman.2010.02.036

    (3)Machrafi,H.;Guibert,P.;Cavadias,S.Combust.Sci.Technol. 2008,180(7),1245.doi:10.1080/00102200802049380

    (4)Dubreuil,A.;Foucher,F;Mouna?m-Rousselle,C.;Dayma,G.; Dagaut,P.Proc.Combust.Inst.2007,No.31,2879. doi:10.1016/j.proci.2006.07.168

    (5)Fathi,M.;Saray,R.K.;Checkel,M.D.Appl.Energ.2011,88 (12),4719.doi:10.1016/j.apenergy.2011.06.017

    (6)Lijima,A.;Yoshida,K.;Shoji,H.;Lee,J.T.Int.J.Automot. Techn.2007,8(2),137.

    (7)Piperel,A.;Montagne,X.;Dagaut,P.SAE Tech.Pap.Ser. 2007,2007-24-0087.doi:10.4271/2007-24-0087

    (8)Fu,J.Q.;Deng,B.L.;Wang,Y.;Yang,J.;Zhang,D.M.;Xu, Z.X.;Liu,J.P.Fuel 2014,No.124,102.doi:10.1016/j. fuel.2014.01.092

    (9)Kozarac,D.;Vuilleumier,D.;Saxena,S.;Dibble,R.W.Energ. Convers.Manage.2014,No.87,1186.doi:10.1016/j. enconman.2014.04.085

    (10)Moréac,G.;Dagaut,P.;Roesler,J.F.Combust.Flame 2006, 145(3),512.doi:10.1016/j.combustflame.2006.01.002

    (11)Risberg,P.;Johansson,D.;Andrae,J.;Kalghatgi,G.; Bj?rnbom,P.;?ngstr?m,H.E.SAE Tech.Pap.Ser.2006, 2006-01-0416.doi:10.4271/2006-01-0416

    (12)Dagaut,P.;Dayma,G.Combust.Flame 2005,143(1-2),135. doi:10.1016/j.combustflame.2005.06.006

    (13)Bendtsen,A,B.;Glarborg,P.;Dam-Johansen,K.Combust.Sci. Technol.2000,No.151,31.doi:10.1080/00102200008924214

    (14)Masurier,J.B.;Foucher,F.;Dayma,G.;Dagaut,P.Proc. Combust.Inst.2015,No.35,3125.doi:10.1016/j. proci.2006.07.168

    (15)Anderlohr,J.;Cruz,A.P.D.;Bounaceur,R.;Leclerc,F.B. Modeling of NO Sensitization of IC Engines Surrogate Fuels Auto-Ignition and Combustion.21st Int.Colloquium on the Dynamics of Explosions and Reactive Systems,Poitiers France,Jul 23-27,2007.

    (16)Piperel,A.;Dagaut,P.;Montagne,X.Proc.Combust.Inst. 2009,No.32,2861.doi:10.1016/j.proci.2008.08.004

    (17)Frassoldati,A.;Faravelli,T.;Ranzi,E.Combust.Flame 2003, 135(1-2),97.doi:10.1016/S0010-2180(03)00152-4

    (18)Dayma,G.;Ali,K.H.;Dagaut,P.Proc.Combust.Inst.2007,No.31,411.doi:10.1016/j.proci.2006.07.143

    (19)Contino,F.;Foucher,F.;Dagaut,P.;Lucchini,T.;D′Errico,G.;Mounaim-Rousselle,C.Combust.Flame 2013,160(8),1476.

    doi:10.1016/j.combustflame.2013.02.028

    (20)Faravelli,T.;Frassoldati,A.;Ranzi,E.Combust.Flame 2003, 132(1-2),188.doi:10.1016/S0010-2180(02)00437-6

    (21)Anderlohr,J.M.;Bounaceur,R.;Cruz,A.P.D.;Leclerc,F.B. Combust.Flame 2009,156(2),505.doi:10.1016/j. combustflame.2008.09.009

    (22)Wang,Y.;Zheng,Z.L.;He,Z.W.;Zhang,Q.F.;Wang,F. Energy Sources 2015,37(9),997.doi:10.1080/ 15567036.2011.601789

    (23)Wang,Y.An Experimental Investigation and Numerical Simulation about Effect of Nitric Oxide on HCCI Combustion. Ph.D.Dissertation,Chongqing University,Chongqing,2012.[王迎.一氧化氮對(duì)均質(zhì)壓燃燃燒影響的試驗(yàn)研究與數(shù)值模擬[D].重慶:重慶大學(xué),2012.]

    (24)Glaude,P.A.;Marinov,N.;Matsungaga,N.;Hori,M.Energy Fuels 2005,No.19,1839.doi:10.1021/ef050047b

    (25)Andrae,J.C.Energy Fuels 2013,27(11),7098.doi:10.1021/ ef401666c

    (26)Dayma,G.;Dagaut,P.Experimental and Kinetic Modeling Study of the Impact of NO and NO2on the Oxidation of a Primary Reference Fuels Mixture.Proceedings of the European Combustion Meeting,ViennaAustria,Apr 14-17, 2009.

    (27)Kelley,A.P.;Liu,W.;Xin,Y.X.;Smallbone,A.J.;Law,C.K. Proc.Combust.Inst.2011,33(1),501.doi:10.1016/j. proci.2010.05.058

    (28)Curran,H.J.;Gaffuri,P.;Pitz,W.J.;Westbrook,C.K. Combust.Flame 2002,129(3),253.doi:10.1016/S0010-2180 (01)00373-X

    (29)Chaos,M.;Kazakov,A.;Zhao,Z.;Dryer,F.L.Int.J.Chem. Kinet.2007,39(7),399.doi:10.1002/kin.v39:7

    (30)Davidson,D.F.;Gauthier,B.M.;Hanson,R.K.Proc. Combust.Inst.2005,30(1),1175.doi:10.1016/j. proci.2004.08.004

    (31)http://www.me.berkeley.edu/gri_mech/(accessed Feb 25, 2014).

    Generation and Analysis for a Skeletal Chemical Kinetic Model of IC8H18with Nitric Oxide in HCCI Combustion

    ZHENG Zhao-Lei*Lü Zhu-Mei
    (Key Laboratory of Low-grade Energy Utilization Technologies and Systems,Ministry of Education, Chongqing University,Chongqing 400044,P.R.China)

    A new mechanism for IC8H18with nitric oxide(IC8H18-NO)in homogeneous charge compression ignition(HCCI)combustion is presented to investigate the effects of NO in exhaust gas recirculation(EGR)on combustion.The IC8H18sub-mechanism consists of 112 species and 467 reactions.A NO sub-mechanism is developed through reaction path analysis.The reaction paths of NO are summarized on the basis of the detailed NO mechanism reported byAnderlohr to describe the effects of NO on IC8H18.Anew IC8H18-NO mechanism with 167 species and 835 reactions is described.The IC8H18sub-mechanism of IC8H18-NO mechanism was validated by the ignition delay times in a shock tube.Experimental and computational results are in good agreement with those of ignition delay times at 855 to 1269 K and at 2 and 6 MPa with equivalence ratios of 0.5 and 1.0.The new IC8H18-NO mechanism is also validated in an HCCI engine.Computational results are consistent with experimental data of ignition delay times at a NO concentration range of 0 to 500×10-6(volume fraction).The effects of NO on IC8H18differ as the NO concentration increases.Therefore,the effects of NO on IC8H18are simulated using a zero-dimensional model using the CHEMKIN PRO software.Key reactions at different NO concentrations are proposed by analyzing the sensitivity and productivity rates.The resource of OH for initial IC8H18consumption is mainly generated through R476,which occurs as a result of the promoting effect of NOon IC8H18consumption.The ability of NO to combine with active radicals,such as those in R476,is enhanced as the NO concentration is increased.

    November 20,2015;Revised:January 29,2016;Published on Web:February 17,2016.

    Reaction path;Chemical kinetics;Sensitivity analysis;Analysis of productivity rate; Key reaction

    O643

    10.3866/PKU.WHXB201602174

    *Corresponding author.Email:zhengzhaolei@cqu.edu.cn;Tel:+86-23-65102473.

    The project was supported by the Fundamental Research Funds for the Central Universities,China(CDJZR13 14 55 01).中央高校基本科研業(yè)務(wù)費(fèi)(CDJZR13 14 55 01)資助

    猜你喜歡
    異辛烷重慶大學(xué)機(jī)理
    重慶大學(xué)學(xué)報(bào)征稿簡(jiǎn)則
    增塑劑和異辛烷在丁腈橡膠中遷移過(guò)程的研究*
    隔熱纖維材料的隔熱機(jī)理及其應(yīng)用
    異辛烷純度標(biāo)準(zhǔn)物質(zhì)的研制
    煤層氣吸附-解吸機(jī)理再認(rèn)識(shí)
    Who Is The Master?
    大東方(2018年9期)2018-10-21 15:29:02
    霧霾機(jī)理之問(wèn)
    “精益管理五原則”在高校圖書館社區(qū)服務(wù)中的應(yīng)用——以重慶大學(xué)城為例
    異辛烷的防護(hù)
    DNTF-CMDB推進(jìn)劑的燃燒機(jī)理
    999久久久精品免费观看国产| 亚洲av免费高清在线观看| 精品久久久久久久久亚洲 | 一本综合久久免费| 俄罗斯特黄特色一大片| 国产精品,欧美在线| 精华霜和精华液先用哪个| 男女做爰动态图高潮gif福利片| 国产一区二区在线av高清观看| 午夜福利免费观看在线| 国内精品久久久久精免费| 香蕉av资源在线| 国产精品三级大全| 亚洲性夜色夜夜综合| 69人妻影院| 国产伦人伦偷精品视频| 一个人免费在线观看电影| 免费高清视频大片| 午夜福利免费观看在线| 91久久精品国产一区二区成人| 欧美成人性av电影在线观看| 88av欧美| 亚洲国产欧洲综合997久久,| 麻豆国产97在线/欧美| 国产一区二区激情短视频| 极品教师在线免费播放| 婷婷六月久久综合丁香| 亚洲精品乱码久久久v下载方式| 又爽又黄无遮挡网站| 亚洲精品456在线播放app | 欧美黑人巨大hd| 噜噜噜噜噜久久久久久91| 乱人视频在线观看| 午夜老司机福利剧场| 欧美黄色淫秽网站| 久久久久久久亚洲中文字幕 | 久久久久久久久大av| 国内揄拍国产精品人妻在线| 亚洲成人中文字幕在线播放| 国产三级黄色录像| 亚洲黑人精品在线| 亚洲一区高清亚洲精品| 日本一本二区三区精品| 91狼人影院| 亚洲成人免费电影在线观看| 精品一区二区三区视频在线观看免费| 亚洲av二区三区四区| 日韩精品青青久久久久久| 草草在线视频免费看| 我的女老师完整版在线观看| 国产三级在线视频| 精华霜和精华液先用哪个| 一个人看视频在线观看www免费| 精品不卡国产一区二区三区| 亚洲精品乱码久久久v下载方式| 亚洲成av人片免费观看| 国产精品三级大全| 亚洲va日本ⅴa欧美va伊人久久| 国产免费男女视频| 动漫黄色视频在线观看| 老熟妇仑乱视频hdxx| 国产三级中文精品| www日本黄色视频网| 18禁黄网站禁片免费观看直播| eeuss影院久久| 久久精品国产亚洲av香蕉五月| 国产欧美日韩精品亚洲av| 亚洲性夜色夜夜综合| 亚洲五月婷婷丁香| 精品欧美国产一区二区三| bbb黄色大片| 老司机午夜十八禁免费视频| 热99re8久久精品国产| 中文字幕精品亚洲无线码一区| 麻豆av噜噜一区二区三区| 一级av片app| 欧美极品一区二区三区四区| 精品久久久久久久久久久久久| 免费人成在线观看视频色| 成人永久免费在线观看视频| av福利片在线观看| 日韩欧美 国产精品| 少妇人妻一区二区三区视频| 99热只有精品国产| 九色成人免费人妻av| 一级毛片久久久久久久久女| 中文字幕精品亚洲无线码一区| 国产精品不卡视频一区二区 | 1024手机看黄色片| 亚洲午夜理论影院| 亚洲美女视频黄频| 18美女黄网站色大片免费观看| 亚洲美女搞黄在线观看 | 欧美精品啪啪一区二区三区| 精品乱码久久久久久99久播| 久9热在线精品视频| 成人欧美大片| 91av网一区二区| 久久6这里有精品| 老司机福利观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久久久精品电影| 十八禁人妻一区二区| 国产色爽女视频免费观看| 1000部很黄的大片| 国产精品自产拍在线观看55亚洲| 老司机福利观看| 免费av不卡在线播放| 香蕉av资源在线| 久久性视频一级片| 真人做人爱边吃奶动态| avwww免费| 18美女黄网站色大片免费观看| 国产精品一区二区免费欧美| 国产精品综合久久久久久久免费| 日本免费a在线| 色综合欧美亚洲国产小说| 亚洲经典国产精华液单 | 中文资源天堂在线| 久久婷婷人人爽人人干人人爱| 男人的好看免费观看在线视频| 高潮久久久久久久久久久不卡| 国内少妇人妻偷人精品xxx网站| 国产精品精品国产色婷婷| 极品教师在线视频| 成年女人看的毛片在线观看| 黄色视频,在线免费观看| 一级av片app| 黄色日韩在线| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 麻豆久久精品国产亚洲av| 精品久久久久久久久av| 久久99热6这里只有精品| 欧美+日韩+精品| 男人舔女人下体高潮全视频| 国产精华一区二区三区| 99久久99久久久精品蜜桃| 久久国产乱子免费精品| 国产欧美日韩一区二区精品| 一个人看视频在线观看www免费| 男女做爰动态图高潮gif福利片| 高清毛片免费观看视频网站| 亚洲成av人片在线播放无| 97碰自拍视频| 最后的刺客免费高清国语| 亚洲av成人精品一区久久| 国产一区二区三区视频了| 欧美日韩中文字幕国产精品一区二区三区| 99久国产av精品| 成年版毛片免费区| 少妇的逼好多水| 首页视频小说图片口味搜索| 国内精品美女久久久久久| 欧美一区二区国产精品久久精品| 婷婷丁香在线五月| 99久久久亚洲精品蜜臀av| 最近视频中文字幕2019在线8| 亚洲欧美精品综合久久99| 在线观看免费视频日本深夜| 黄色视频,在线免费观看| 免费黄网站久久成人精品 | 午夜激情欧美在线| 欧美绝顶高潮抽搐喷水| 亚洲熟妇熟女久久| 内地一区二区视频在线| 97碰自拍视频| 中亚洲国语对白在线视频| 亚洲在线观看片| 此物有八面人人有两片| 欧美成人一区二区免费高清观看| 亚洲一区二区三区不卡视频| 免费高清视频大片| 男人狂女人下面高潮的视频| 又紧又爽又黄一区二区| 午夜亚洲福利在线播放| 成人美女网站在线观看视频| 亚洲精品在线观看二区| 色播亚洲综合网| 午夜精品一区二区三区免费看| 自拍偷自拍亚洲精品老妇| 69av精品久久久久久| 一个人免费在线观看电影| 精品久久久久久,| 国产精品,欧美在线| 色播亚洲综合网| 亚洲美女搞黄在线观看 | 在线国产一区二区在线| 国产精品,欧美在线| 免费在线观看成人毛片| 黄色日韩在线| 国产黄色小视频在线观看| 久久国产精品人妻蜜桃| 国产精品影院久久| 欧美乱妇无乱码| 国产精品一及| 久久精品影院6| 精品午夜福利在线看| 长腿黑丝高跟| 免费电影在线观看免费观看| 俄罗斯特黄特色一大片| 无人区码免费观看不卡| 欧美一级a爱片免费观看看| 亚洲色图av天堂| 美女免费视频网站| 亚洲av电影在线进入| 国产精品美女特级片免费视频播放器| 一卡2卡三卡四卡精品乱码亚洲| 国产免费男女视频| 国产午夜精品久久久久久一区二区三区 | 69人妻影院| 成人美女网站在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区三区视频在线| h日本视频在线播放| 国产精品三级大全| 欧美高清性xxxxhd video| 国产高清视频在线播放一区| 久久久久九九精品影院| 757午夜福利合集在线观看| 精品午夜福利在线看| 极品教师在线视频| av中文乱码字幕在线| 男插女下体视频免费在线播放| 91在线观看av| 女生性感内裤真人,穿戴方法视频| 内地一区二区视频在线| 日韩欧美国产一区二区入口| av视频在线观看入口| 蜜桃亚洲精品一区二区三区| 99在线人妻在线中文字幕| 亚洲精品久久国产高清桃花| xxxwww97欧美| 亚洲午夜理论影院| 国产真实伦视频高清在线观看 | 亚洲熟妇熟女久久| 俄罗斯特黄特色一大片| 免费在线观看亚洲国产| 精品人妻一区二区三区麻豆 | 琪琪午夜伦伦电影理论片6080| 国产高清有码在线观看视频| 首页视频小说图片口味搜索| 免费人成在线观看视频色| 国产视频一区二区在线看| 91av网一区二区| 88av欧美| 男插女下体视频免费在线播放| 99久久精品一区二区三区| 日本与韩国留学比较| 搡老妇女老女人老熟妇| 夜夜夜夜夜久久久久| 午夜日韩欧美国产| 日韩欧美国产一区二区入口| 色综合亚洲欧美另类图片| 一夜夜www| 美女 人体艺术 gogo| 欧美潮喷喷水| 白带黄色成豆腐渣| 嫩草影视91久久| 亚洲综合色惰| 最近中文字幕高清免费大全6 | 五月玫瑰六月丁香| 午夜老司机福利剧场| 很黄的视频免费| 男女那种视频在线观看| 免费无遮挡裸体视频| 日韩欧美一区二区三区在线观看| 美女cb高潮喷水在线观看| 成人欧美大片| 亚洲自拍偷在线| 久久亚洲真实| 精品久久久久久久久久免费视频| 亚洲第一区二区三区不卡| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 成人永久免费在线观看视频| 久久亚洲精品不卡| 国产亚洲av嫩草精品影院| 午夜视频国产福利| 国产精品久久久久久亚洲av鲁大| 欧美一区二区亚洲| 别揉我奶头 嗯啊视频| 午夜福利在线观看免费完整高清在 | 国产高清视频在线观看网站| 中文字幕精品亚洲无线码一区| 赤兔流量卡办理| 中文字幕人成人乱码亚洲影| 日韩欧美精品免费久久 | 亚州av有码| 久久九九热精品免费| 18禁黄网站禁片午夜丰满| 成人精品一区二区免费| 国产精品98久久久久久宅男小说| 色噜噜av男人的天堂激情| 午夜亚洲福利在线播放| 狠狠狠狠99中文字幕| 小蜜桃在线观看免费完整版高清| 变态另类成人亚洲欧美熟女| 精品久久久久久,| 久久精品国产清高在天天线| 欧美性猛交╳xxx乱大交人| 一本一本综合久久| 欧美乱色亚洲激情| 少妇丰满av| 夜夜爽天天搞| 国产精品亚洲av一区麻豆| 日韩精品中文字幕看吧| av欧美777| 欧美成狂野欧美在线观看| 美女被艹到高潮喷水动态| 午夜福利18| 搡老妇女老女人老熟妇| 极品教师在线视频| 亚洲一区二区三区不卡视频| www日本黄色视频网| 色精品久久人妻99蜜桃| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久人人爽人人爽人人片va | 精品午夜福利在线看| 搡女人真爽免费视频火全软件 | 久久久久久久精品吃奶| 欧美成人免费av一区二区三区| 免费无遮挡裸体视频| 亚洲av.av天堂| 日韩有码中文字幕| 人人妻人人看人人澡| 美女大奶头视频| 国产伦人伦偷精品视频| 亚洲第一电影网av| 人妻夜夜爽99麻豆av| 日本精品一区二区三区蜜桃| 国产日本99.免费观看| 激情在线观看视频在线高清| 久久久成人免费电影| 成人av在线播放网站| 91在线观看av| 国产国拍精品亚洲av在线观看| 男女那种视频在线观看| 十八禁网站免费在线| 99热这里只有是精品50| 十八禁网站免费在线| 国产成人a区在线观看| 久久久久久久久大av| 别揉我奶头 嗯啊视频| 在线观看一区二区三区| 国产精品久久电影中文字幕| www.色视频.com| 欧洲精品卡2卡3卡4卡5卡区| 久久亚洲精品不卡| 日韩欧美国产在线观看| 88av欧美| 窝窝影院91人妻| 有码 亚洲区| 国产欧美日韩精品一区二区| 九九热线精品视视频播放| 可以在线观看毛片的网站| 亚洲18禁久久av| 真实男女啪啪啪动态图| 久久人人爽人人爽人人片va | 免费av毛片视频| 欧洲精品卡2卡3卡4卡5卡区| 香蕉av资源在线| 精品久久久久久久久久久久久| 日韩欧美一区二区三区在线观看| 观看免费一级毛片| 久久人人爽人人爽人人片va | 宅男免费午夜| 人妻丰满熟妇av一区二区三区| 亚洲av美国av| 中文字幕久久专区| 九九热线精品视视频播放| 看黄色毛片网站| 国产一区二区三区在线臀色熟女| 久久久久久久久久成人| 69av精品久久久久久| 欧美不卡视频在线免费观看| 欧美黑人巨大hd| av天堂中文字幕网| 一本久久中文字幕| 一区二区三区高清视频在线| 少妇人妻精品综合一区二区 | 精品人妻熟女av久视频| 亚洲精品亚洲一区二区| 97超级碰碰碰精品色视频在线观看| 日韩精品青青久久久久久| aaaaa片日本免费| 午夜免费成人在线视频| 91麻豆av在线| 国产精品久久久久久精品电影| 精品久久久久久久久久久久久| 国产91精品成人一区二区三区| 精品久久久久久久久久久久久| 国产私拍福利视频在线观看| 免费在线观看日本一区| 久久久久久久午夜电影| 国产伦精品一区二区三区四那| 亚洲av日韩精品久久久久久密| 午夜视频国产福利| 在线观看美女被高潮喷水网站 | 丰满乱子伦码专区| 国产伦精品一区二区三区四那| 成人特级av手机在线观看| 成人精品一区二区免费| 嫩草影院精品99| 亚洲无线观看免费| 亚洲七黄色美女视频| 欧美日韩瑟瑟在线播放| 精品久久久久久久末码| 国内精品美女久久久久久| 能在线免费观看的黄片| 日本与韩国留学比较| 亚洲第一欧美日韩一区二区三区| 男女下面进入的视频免费午夜| 亚洲久久久久久中文字幕| www.色视频.com| 久久久久久久亚洲中文字幕 | 757午夜福利合集在线观看| 一个人观看的视频www高清免费观看| 国产黄片美女视频| 欧美成人一区二区免费高清观看| av在线蜜桃| 三级毛片av免费| 亚洲美女黄片视频| 亚洲精品乱码久久久v下载方式| 我的女老师完整版在线观看| 高潮久久久久久久久久久不卡| 成年女人永久免费观看视频| 特级一级黄色大片| 18美女黄网站色大片免费观看| 亚洲第一区二区三区不卡| 能在线免费观看的黄片| 亚洲欧美日韩无卡精品| 在线播放国产精品三级| 亚洲熟妇中文字幕五十中出| 国产亚洲精品综合一区在线观看| 亚洲av熟女| 日本成人三级电影网站| 简卡轻食公司| 午夜影院日韩av| 99热这里只有精品一区| 精品乱码久久久久久99久播| 国产在线男女| 精品免费久久久久久久清纯| 国产亚洲精品久久久久久毛片| АⅤ资源中文在线天堂| 免费在线观看日本一区| 国产精品女同一区二区软件 | 少妇被粗大猛烈的视频| 老女人水多毛片| 色哟哟·www| 欧美日本视频| 色播亚洲综合网| 亚洲国产高清在线一区二区三| 麻豆国产av国片精品| 亚洲精品亚洲一区二区| 色av中文字幕| 日本一二三区视频观看| 亚洲 国产 在线| 成年女人毛片免费观看观看9| 黄色女人牲交| 日日摸夜夜添夜夜添小说| 听说在线观看完整版免费高清| 亚洲国产精品合色在线| 男插女下体视频免费在线播放| 日韩免费av在线播放| 久久精品国产99精品国产亚洲性色| 国产主播在线观看一区二区| 精品国内亚洲2022精品成人| or卡值多少钱| 婷婷精品国产亚洲av| 国产精华一区二区三区| 亚洲av成人不卡在线观看播放网| 精品日产1卡2卡| 美女黄网站色视频| 中文字幕高清在线视频| 国产精品久久久久久人妻精品电影| 夜夜看夜夜爽夜夜摸| 美女 人体艺术 gogo| 欧美bdsm另类| 人妻丰满熟妇av一区二区三区| 亚洲性夜色夜夜综合| 看十八女毛片水多多多| 简卡轻食公司| 午夜福利欧美成人| 日韩大尺度精品在线看网址| 一个人免费在线观看电影| 欧美区成人在线视频| 国产麻豆成人av免费视频| eeuss影院久久| 成人美女网站在线观看视频| 琪琪午夜伦伦电影理论片6080| 国产精品乱码一区二三区的特点| 久久九九热精品免费| 国产男靠女视频免费网站| 99热这里只有精品一区| 有码 亚洲区| 伊人久久精品亚洲午夜| 成年人黄色毛片网站| 99国产极品粉嫩在线观看| 精品99又大又爽又粗少妇毛片 | 一级作爱视频免费观看| 亚洲国产精品sss在线观看| 国产综合懂色| 18禁在线播放成人免费| 国产精品久久久久久久电影| 一级黄片播放器| 久久这里只有精品中国| 成人一区二区视频在线观看| 嫩草影院新地址| 999久久久精品免费观看国产| 亚洲成a人片在线一区二区| 他把我摸到了高潮在线观看| 真人做人爱边吃奶动态| 毛片一级片免费看久久久久 | 在线观看一区二区三区| 国产欧美日韩精品一区二区| 欧美在线一区亚洲| 每晚都被弄得嗷嗷叫到高潮| 人妻久久中文字幕网| 国产欧美日韩精品亚洲av| 日本熟妇午夜| 精品欧美国产一区二区三| 少妇人妻一区二区三区视频| 亚洲在线自拍视频| 国产精品女同一区二区软件 | 免费高清视频大片| 久久久久国产精品人妻aⅴ院| 国产欧美日韩一区二区精品| 欧美在线黄色| 日韩大尺度精品在线看网址| 久久6这里有精品| 每晚都被弄得嗷嗷叫到高潮| 亚洲avbb在线观看| 女生性感内裤真人,穿戴方法视频| 国产毛片a区久久久久| 成人av在线播放网站| 男人舔女人下体高潮全视频| 免费一级毛片在线播放高清视频| 欧美黑人巨大hd| 久久精品人妻少妇| 级片在线观看| 我要搜黄色片| 国产精品一区二区性色av| 婷婷丁香在线五月| 女生性感内裤真人,穿戴方法视频| 看十八女毛片水多多多| 中文字幕精品亚洲无线码一区| 久久久成人免费电影| 91在线观看av| 久久性视频一级片| 亚洲成人中文字幕在线播放| 99精品在免费线老司机午夜| 毛片一级片免费看久久久久 | 国产免费av片在线观看野外av| 看黄色毛片网站| www.www免费av| av在线观看视频网站免费| 真实男女啪啪啪动态图| 日本a在线网址| 三级国产精品欧美在线观看| 精品99又大又爽又粗少妇毛片 | 夜夜夜夜夜久久久久| 亚州av有码| 少妇熟女aⅴ在线视频| 别揉我奶头~嗯~啊~动态视频| 亚洲片人在线观看| netflix在线观看网站| 日本一二三区视频观看| 五月伊人婷婷丁香| 亚洲av中文字字幕乱码综合| 国模一区二区三区四区视频| 精品人妻1区二区| 99热这里只有是精品50| 亚洲aⅴ乱码一区二区在线播放| 又粗又爽又猛毛片免费看| 国产在视频线在精品| 日本免费a在线| 成人毛片a级毛片在线播放| 欧美国产日韩亚洲一区| 偷拍熟女少妇极品色| 国产一级毛片七仙女欲春2| 欧美极品一区二区三区四区| 亚洲av日韩精品久久久久久密| 国产视频一区二区在线看| 男人狂女人下面高潮的视频| 色哟哟·www| 欧美区成人在线视频| 久久草成人影院| 久久精品综合一区二区三区| 国产精品亚洲一级av第二区| 蜜桃亚洲精品一区二区三区| 久久久久久国产a免费观看| 欧美日韩综合久久久久久 | 久久久久久久亚洲中文字幕 | 91久久精品电影网| 99久久成人亚洲精品观看| 国产伦人伦偷精品视频| 久久久久久九九精品二区国产| 日本三级黄在线观看| 免费大片18禁| 久久久久久九九精品二区国产| 级片在线观看| 亚洲七黄色美女视频| 男人舔奶头视频| 久久久久久久亚洲中文字幕 | 国产精品综合久久久久久久免费| 99久久成人亚洲精品观看| 51午夜福利影视在线观看| 97碰自拍视频| 淫妇啪啪啪对白视频| 天天躁日日操中文字幕| 久久人人精品亚洲av| 欧美潮喷喷水| 桃红色精品国产亚洲av| 久久精品久久久久久噜噜老黄 |