• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    脈沖激光沉積制備SrSn1-xCoxO3外延薄膜的微結(jié)構(gòu)表征及能帶調(diào)控

    2016-09-05 13:03:58虎學(xué)梅高相東李效民顧正瑩吳永慶上海大學(xué)材料科學(xué)與工程學(xué)院上海00444中國科學(xué)院上海硅酸鹽研究所高性能陶瓷與超微結(jié)構(gòu)國家重點實驗室上海00050
    物理化學(xué)學(xué)報 2016年4期
    關(guān)鍵詞:超微結(jié)構(gòu)微結(jié)構(gòu)外延

    虎學(xué)梅 高相東 李效民 顧正瑩 施 鷹 吳永慶(上海大學(xué)材料科學(xué)與工程學(xué)院,上海00444;中國科學(xué)院上海硅酸鹽研究所,高性能陶瓷與超微結(jié)構(gòu)國家重點實驗室,上海00050)

    脈沖激光沉積制備SrSn1-xCoxO3外延薄膜的微結(jié)構(gòu)表征及能帶調(diào)控

    虎學(xué)梅1,2高相東2,*李效民2顧正瑩2施鷹1吳永慶2
    (1上海大學(xué)材料科學(xué)與工程學(xué)院,上海200444;2中國科學(xué)院上海硅酸鹽研究所,高性能陶瓷與超微結(jié)構(gòu)國家重點實驗室,上海200050)

    鈣鈦礦結(jié)構(gòu)SrSnO3因其獨特的介電和半導(dǎo)體性質(zhì)而備受關(guān)注,通過摻雜可顯著調(diào)控其電學(xué)、磁學(xué)性能,拓寬其應(yīng)用范圍。本研究在單晶SrTiO3(001)襯底上通過脈沖激光方法外延生長了SrSn1-xCoxO3(x=0, 0.16,0.33,0.5)(SSCO)薄膜,探究了Co含量對薄膜結(jié)晶性、微觀結(jié)構(gòu)、光學(xué)性能以及介電性能的影響。結(jié)果表明,SrSn1-xCoxO3薄膜可在SrTiO3(001)襯底上外延生長,Co摻雜不會導(dǎo)致薄膜結(jié)晶質(zhì)量的劣化。薄膜表面形貌平整、致密,膜厚200 nm,表面粗糙度為0.44 nm。隨薄膜中Co摻雜量增加,薄膜透過率從90%降至25%,光學(xué)帶隙從4.24 eV降至2.44 eV。介電性能測試表明,摻雜薄膜在106Hz時介電常數(shù)為70.1,比無摻雜SrSnO3薄膜提高57%。室溫時SSCO薄膜表面電阻率為172 MΩ,在1000°C范圍內(nèi)薄膜結(jié)構(gòu)穩(wěn)定。

    堿土錫酸鹽;物理氣相沉積;薄膜;外延生長;光學(xué)帶隙

    [Communication]

    www.whxb.pku.edu.cn

    1 Introduction

    Alkaline earth stannates MSnO3(M=Sr,Ba,Ca)are a class of materials possessing the perovskite structure and outstanding dielectric and sensing properties,whichcanbe usedinmanyfields including capacitors,moisture sensors,and solar cells1-4.In contrast with the pure MSnO3,the doping of MSnO3has attracted more interests of researchers,as the perovskite structure of MSnO3provides an ideal hosting matrix for the doping of metal elements to form functional materials5-10.Various metal elements including La,Sb,and Er were doped at M or Sn site of MSnO3to tune its optical,electrical,and magnetic properties11-13.Among the three types of MSnO3,SrSnO3has received more attention due to its higher band gap(4.27 eV)than BaSnO3(3.00 eV)and CaSnO3(3.87 eV)14-17.Many studies focused on the doping of SrSnO3to prepare transparent conductive oxide films18,19.For example,Liu et al.20grew epitaxial Sb-doped SrSnO3films on SrTiO3(STO) (001)substrates via pulsed laser deposition(PLD),and stressed its potential in high optical transmittance and good conductivity. Nd-doped SrSnO3films were also epitaxially grown on SrTiO3(001)substrate with Nd substituting for A-site Sr21,which also exhibited good transparency and conductivities.However,while there are active studies in tuning the optical and electrical properties of SrSnO3film,few researchers focused to modulate its band gap.Based on the calculations on the electronic structure,Shein et al.22reported that SrSnO3doped with Fe and Co may have a smallerbandgap,withthebandgapaslowas0.7eVforSr2SnFeO6. The epitaxial growth of SrSn1-xFexO3films were realized on MgO substrate and the decreasing trend of the optical band gap with increasing Fe content were observed23.However,no further work has been reported on Co doped SrSnO3thin films with controllable band gap.

    In this paper,we prepared SrSn1-xCoxO3(x=0,0.16,0.33,0.5) (SSCO)films on single crystal SrTiO3(001)substrate by the pulsed laser deposition method,and investigated the crystallinity,microstructure,optical and dielectric properties of the films in detail. Our aim is to explore a feasible route to grow high crystalline SSCO films,to acquire the basic information on its microstructure and physical properties,and to promote their further applications in photoelectrical devices.

    2 Experimental

    SSCO thin films were grown on STO(001)single crystal substrate using the pulsed laser deposition(PLD)technique.SSCO ceramic disks(x=0,0.16,0.33,0.5)were used as the targets, which were sintered at 1250°C for 24 h in a solid-state reaction route by using SrCO3(99.9%,Aladdin),SnO2(99.8%,Aladdin) and Co2O3(99.8%,Aladdin)powders as the starting materials.The substrates ultrasonicly rinsed in water,alcohol and acetone successively before deposition.The laser source was a 248 nm KrF excimer laser(Lamda physik Compex 201,Germany)with the repetition rate of 5 Hz and energy density of 200 mJ?pulse-1.The deposition lasted for 1.5 h.The substrate temperature was fixed at 650°C and the oxygen pressure was set at 0.1 Pa.For the measurement of optical properties,SSCO films with the same deposition parameters were grown on the quartz substrate.

    X-ray diffraction(XRD)technique(Bruker D8,Cu Kα1radiation,Japan)was used to characterize the crystallinity.The film morphologies were investigated by scanning electron microscopy (SEM,Hitachi S-4800,Japan)and atomic force microscopy (AFM,SΙΙ SPI-3800I,Japan).Optical transmittance were measured with a spectrophotometer(Hitachi,U-4100,Japan)using a bare quartz glass slide as the reference.The dielectric properties were measured using an Aglient 4294A Tester LCR meter (America)at room temperature.

    Fig.1 (a)XRD patterns of SrSn1-xCoxO3films deposited on STO(001)substrate;(b)ω-scan rocking curve on(002)peaks of SrSn0.5Co0.5O3and STO(001)substrate;(c)φ-scan patterns of SrSn0.5Co0.5O3and STO(001)substrate around(202)reflections

    3 Results and discussion

    Fig.1(a)illustrates XRD patterns of SSCO films grown on STO (001)substrate with different Co doping level(x=0,0.16,0.33,0.5).Only the reflection peaks from the(00l)plane of SSCO films and STO(001)substrates were detected,suggesting the high crystalline quality of the films and the highly preferential orientation along c-axis.With the x value changing from 0 to 0.5,the value of the diffraction peak along(00l)plane increased gradually, indicating that Co atoms substituted for Sn atoms which affected the lattice parameters of SrSnO3.Fig.1(b)shows the ω-scan rocking curve of the film with x value of 0.5,and the full width at half maximum(FWHM)of(002)peak was 0.04°,further testifying the high crystallinity of the film.The φ-scan patterns of SSCO film(x=0.5)and STO(001)substrate to study in-plane ordering,and a set of four distinct peaks at an interval of 90°was observed in Fig.1(c),indicating that the SSCO film was grown epitaxially on the STO(001)substrates in a cube on cube relationship.According to the SSCO(00l)reflections,the SSCO thin film lattice constants with different x values were calculated and lattice mismatch with STO(001)substrate were shown in Table 1.

    All the SSCO films exhibited similar morphology.Fig.2(a) illustrates typical SEM image of the SSCO film(x=0.5)on the cross section.A very dense microstructure was observed clearly, and the film thickness was 200 nm.AFM image over the area of 5 μm×5 μm was shown in Fig.2(b),which presented a rather smooth morphology,with root-mean-square roughness(rms)of 0.44 nm and an average particle size of 3.4 nm.

    Table 1 SrSn1-xCoxO3film lattice constant and lattice mismatch

    Fig.2 (a)SEM image on the cross section and(b)AFM image on the surface of SrSn0.5Co0.5O3deposited on STO(001)substrate

    Fig.3 (a)Transmittance spectraof SrSn1-xCoxO3films depositedonquartz(theinsetshowing thephotographs of SrSn1-xCoxO3filmsamples); (b)(hvα)2-h(huán)v plotsof thefilmsderived from(a)

    Because STO(001)substrates have the band gap of 3.2 eV lower than that of SrSnO3film,which makes it impossible to evaluate the band gap of SSCO films higher than the substrate.So we grew SSCO films on quartz substrates with the same conditions,to obtain the transmittance properties of the films roundly and precisely.It was found that the optical absorption trend of the SSCO films on quartz substrate was similar to that on STO substrate,though the epitaxial growth of SSCO films was not replicated on quartz substrate.Fig.3(a)shows the transmittance spectra of SSCO films grown on quartz in the range of 200-800 nm. Compared with the bare substrate,all the SSCO films exhibit the very clear interference fringe in the spectra,indicating that the films had a uniform thickness and flat surface24.With the x value increasing from 0 to 0.5,the transmittance of the film decreased gradually,and the film with x=0.5 exhibited the lowest transmittance(25%)at 320 nm.Also,the absorption edge of the filmshifted towards the direction of long wavelength,and became less steep than the pure SrSnO3film,indicating the significant influence of the Co doping on the band structure of SrSnO3film.

    Fig.3(b)presents the(hvα)2-h(huán)v plots of the films,and the optical band gap of SSCO films was estimated by extrapolating the linear portion of the curve to zero absorption.For SrSnO3film, the band gap was estimated to be 4.24 eV,close to the previously reported value(4.27 eV)14,15.For the films with x values of 0.16, 0.33,and 0.5,the band gaps were 4.20,3.73,and 2.44 eV,respectively,showing a very clear descending trend.These results demonstrated that the doping of Co element in SrSnO3film is an effective method to tune its optical band gap down to the visible band.

    Fig.4(a)shows the dielectric constant-frequency plots of SSCO films in the frequency range of 40-107Hz at room temperature. In the low frequency range below 10000 Hz,the Co-doped films exhibit obviously higher dielectric constant than the undoped one, which may be related to the higher concentration of oxygen va-cancies and other defects in the Co doped films formed in the growth environment via PLD25.In the high frequency range,the effects of the vacancies and defects are reduced,leading to merely a slightly higher dielectric constant.It should be noticed that,for the thin film with~200 nm,the dielectric constant(70.1 at 106Hz for the SSCO film with 16%Co doping)obtained in this work was higher than that of other perovskite films such as BaSrO3(~55.0) and BiFeO3(~11.6)25,26,though a relatively higher dielectric loss (SSCO film:0.15;BaSrO3film:0.09;BiFeO3film:0.06)was observed,which may come from the existence of higher concentration of vacancies and defects in the Co doped films.

    Fig.4 (a)Dielectric constant-frequency plots of SrSn1-xCoxO3films(the inset showing the dielectric loss-frequency plots); (b)surface resistivity of SrSn0.5Co0.5O3film

    Fig.5 (a)XRD patterns of SrSn0.5Co0.5O3films with and without post annealing;AFM images of SrSn0.5Co0.5O3film(b)as prepared and(c)exposed in air with seven days

    Fig.4(b)shows voltage-current(V-I)dependence of SSCO films with x value at 0.5.The calculated surface resistivity for asprepared SSCO films by ignoring the nonlinear parts of the plot is 172 MΩ at room temperature.The non-ohmic properties are suggested to be attributed to the ferroelectric response in SSCO films,which will be discussed in detail in another paper.

    In order to gain a comprehensive information on this new type SSCO film,we investigated its stability both in air and at high temperature.The XRD patterns of SSCO film with x value of 0.5 before and after annealing at 1000°C for 24 h were shown in Fig.5 (a).The reflection peaks from the(00l)plane of SrSn0.5Co0.5O3film and STO(001)substrate were detected and the(00l)diffraction peaks had no obvious shift but the intensity became stronger, indicating that epitaxial SSCO film was stable at temperature up to 1000°C.To testify the stability of the film in air,we carried out AFM measurement on SrSn0.5Co0.5O3films as prepared and that after exposing in air for 7 days.As seen in Fig.5(b,c),the surface morphology of the film had changed dramaticly,indicating the obvious change of the film microstructure.Accordingly,in the XRD patterns of SSCO film(x=0.16,0.33),a new broad peak was observed at~43°,which can be indexed to Sr(OH)2(JCPDS No.27-0847)(shown in Fig.1(a)).The formation of Sr(OH)2may be related to the chemical reaction between Sr elements present on the surface and the trace water in air.The detail mechanism requires further investigations.This instable feature of SSCO film prompts us to preserve the film in moisture-free environment.

    4 Conclusions

    In summary,SrSn1-xCoxO3films were epitaxially grown on SrTiO3(001)substrates by pulse laser deposition.The films exhibited high crystallinity with perovskite structure,and dense microstructure with the rms roughness of 0.44 nm and particle size of 3.4 nm.The doping of Co element affected the optical transmittance,band gap and dielectric properties greatly.The lowest band gap of 2.44 eV and high dielectric constant of 70.1 were achieved for the film with x values of 0.5 and 0.16,respectively. This work provides a feasible method to tune the band gap and the dielectric properties of the SrSnO3thin film,paving the way toward its applications in various photoelectrical devices.The SSCO film displayed surface resistivity with 172 MΩ at room temperature and high stability at temperature up to 1000°C.

    References

    (1)Zhang,W.F.;Tang,J.W.;Ye,J.H.J.Mater.Res.2007,22, 1859.doi:10.1557/JMR.2007.0259

    (2)Mahapatra,M.K.;Singh,P.;Kumar,D.;Parkash,O.Advances in Applied Ceramics 2006,105,280.doi:10.1179/ 174367606X146658

    (3)Li,Y.;Zhang,X.;Guo,B.;Wei,M.D.Electrochimica Acta 2012,70,313.doi:10.1016/j.electacta.2012.03.078

    (4)Ding,X.K.;Li,X.M.;Gao,X.D.;Zhang,S.D.;Huang,Y. D.;Li,H.R.Acta Phys.-Chim.Sin.2015,31,576.

    [丁緒坤,李效民,高相東,張樹德,黃宇迪,李浩然.物理化學(xué)學(xué)報, 2015,31,576.]doi:10.3866/PKU.WHXB201501201

    (5)Ueda,K.;Shimizu,Y.Thin Solid Films 2010,518,3063.doi: 10.1016/j.tsf.2009.09.169

    (6)Zheng,F.G.;Xin,Y.;Huang,W.;Zhang,J.X.;Wang,X.F.; Shen,M.R.;Dong,W.;Fang,F.;Bai,Y.B.;Shen,X.Q.;Hao, J.H.Journal of Materials Chemistry A 2014,2,1363.doi: 10.1039/c3ta13724d

    (7)Shan,C.;Huang,T.;Zhang,J.Z.;Han,M.J.;Li,Y.W.;Hu,Z. G.;Chu,Z.J.The Journal of Physical Chemistry C 2014,118, 6994.doi:10.1021/jp500100a

    (8)Wang,S.F.;Hsu,Y.F.;Yeh,C.T.;Huang,C.C.;Lu,H.C. Solid State Ionics 2012,227,10.doi:10.1016/j.ssi.2012.08.020

    (9)Kotan,Z.;Ayvacikli,M.;Karabulut,Y.;Garcia,G.J.;Tormo, L.;Canimoglu,A.;Karali,T.;Can,N.Journal of Alloys and Compounds 2013,581,101.doi:10.1016/j. jallcom.2013.07.048

    (10)Liu,H.;Zhu,G.J.;Chen,Q.;Yu,Y.;Xiao,D.Q.Thin Solid Films 2012,520,3429.doi:10.1016/j.tsf.2011.12.019

    (11)Huang,T.K.;Nakamura,T.;Itoh,M.;Yoshyuki,I.;Osamu,I. J.Mater.Sci.1995,30,1556.doi:10.1007/BF00375264

    (12)Liu,Q.Z.;Dai,J.M.;Liu,Z.L.;Zhang,X.D.;Zhu,G.P.; Ding,G.H.J.Phys.D 2010,43,4554011.doi:10.1088/0022-3727/43/45/455401

    (13)Ouni,S.;Nouri,S.;Rohlicek,J.;Hassen,R.B.Journal of Solid State Chemistry 2012,192,132.doi:10.1016/j. jssc.2012.03.049

    (14)Endo,T.;Matsuda,T.;Takizana,H.Journal of Materials Science Letters 1992,11,1330.doi:10.1007/BF00742193

    (15)Vegas,A.;Vallet,R.;Gonz,J.M.;Alarion,M.A.Acta Cryst.B 1986,42,167.doi:10.1107/S0108768186098403

    (16)Shahram,S.;Faramarz,K.Physical B 2014,432,16.doi: 10.1016/j.physb.2013.09.004

    (17)Zhang,N.;Zhang,Z.C.;Zhou,J.Z.J.Sol-Gel Sci.Technol. 2011,58,355.doi:10.1007/s10971-011-2400-4

    (18)Prathiba,G.;Venkatesh,S.;Bharathi,K.B.;Harish,K.N. Journal of Applied Physics 2011,109,07C320.doi:10.1063/ 1.3556693

    (19)Alves,M.C.F.;Boursicot,S.;Ollivier,S.;Bouquet,V.; Députier,S.;Perrin,A.;Weber,I.T.;Souza,A.G.;Santos,M. G.;Guilloux,V.M.Thin Solid Films 2010,519,614.doi:10.1016/j.tsf.2010.07.092

    (20)Liu,Q.Z.;Wang,H.F.;Chen.F.;Wu,B.B.Journal of Applied Physics 2008,103,0937091.doi:10.1063/1.2917413

    (21)Liu,Q.Z.;Dai,J.M.;Zhang,X.;Zhu,G.P.;Liu,Z.L.;Ding, G.H.Thin Solid Films 2011,519,6059.doi:10.1016/j. tsf.2011.03.038

    (22)Shein,I.R.;Kozhevnikov,V.L.;Ivanovskii,A.L. Semiconductors 2006,40,1261.doi:10.1134/ S1063782606110030

    (23)Liu,Q.Z.;Li,H.;Li,B.;Wang,W.;Liu,Q.C.;Zhang,Y.X.; Dai,J.M.A Letters Journal Exploring the Frontiers of Physics 2014,108,37003.doi:10.1209/0295-5075/108/37003

    (24)Pamu,D.;Raju,P.D.;Bhatnagar,A.K.Solid State Communication 2009,149,1932.doi:10.1016/j. ssc.2009.07.042

    (25)Piyush,K.P.;Yadav,K.L.;Kaurb,G.RSC Advances 2014,4, 28056.doi:10.1039/c4ra03502j

    (26)Rekha,G.;Jyoti,S.;Sujeet,C.Journal of Alloys and Compounds 2015,635,115.doi:10.1016/j. jallcom.2015.02.193

    Microstructure and Band Gap Modulation of SrSn1-xCoxO3Epitaxial Thin Films via Pulsed Laser Deposition

    HU Xue-Mei1,2GAO Xiang-Dong2,*LI Xiao-Min2GU Zheng-Ying2SHI Ying1WU Yong-Qing2
    (1School of Materials Science and Engineering,Shanghai University,Shanghai 200444,P.R.China;
    2The State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics, Chinese Academy of Sciences,Shanghai 200050,P.R.China)

    Perovskite-structured SrSnO3has attracted considerable attention in recent years because of its unusual dielectric and semiconducting properties.Certain dopants can be used to modify and improve the properties of these materials.Epitaxial SrSn1-xCoxO3(x=0,0.16,0.33,0.5)(SSCO)thin films were deposited on single crystal SrTiO3(001)substrates via the pulsed laser deposition method.The crystallinity,microstructure, optical,and electrical properties of the films were investigated.The results indicated that SrSn1-xCoxO3films were epitaxially grown on SrTiO3(001)substrate with both a perovskite structure and high crystallinity irrespective of the Co doping level.The films exhibited a smooth and dense morphology with a root-mean-square roughness of 0.44 nm and a film thickness of~200 nm.As the‘x’value increased from 0 to 0.5,the optical transmittance decreased from 90%to 25%,and the band gap dropped from 4.24 to 2.44 eV.Moreover,the doped film exhibited a high dielectric constant of 70.1 at 106Hz,57%higher than the control SrSnO3film.The SSCO film displayed surface resistivity of 172 MΩ at room temperature and high stability at temperature up to 1000°C.

    Alkaline earth stannate;Physical vapour deposition;Thin film;Epitaxial growth; Optical band gap

    December 1,2015;Revised:February 26,2016;Published on Web:March 1,2016.*Corresponding author.Email:xdgao@mail.sic.ac.cn;Tel:+86-21-52412441. The project was supported by the National Natural Science Foundation of China(51572281,61204073)and Basic Research Foundation of Shanghai, China(13NM1402101).

    O649

    10.3866/PKU.WHXB201603013

    國家自然科學(xué)基金項目(51572281,61204073)及上海市基礎(chǔ)研究領(lǐng)域項目(13NM1402101)資助

    猜你喜歡
    超微結(jié)構(gòu)微結(jié)構(gòu)外延
    金屬微結(jié)構(gòu)電鑄裝置設(shè)計
    白藜蘆醇對金黃色葡萄球菌標(biāo)準(zhǔn)株抑菌作用及超微結(jié)構(gòu)的影響
    用于視角偏轉(zhuǎn)的光學(xué)膜表面微結(jié)構(gòu)設(shè)計
    關(guān)于工資內(nèi)涵和外延界定的再認(rèn)識
    入坑
    意林(2016年13期)2016-08-18 22:38:36
    愛情的內(nèi)涵和外延(短篇小說)
    粘結(jié)型La0.8Sr0.2MnO3/石墨復(fù)合材料的微結(jié)構(gòu)與電輸運性質(zhì)
    電擊死大鼠心臟超微結(jié)構(gòu)及HSP70、HIF-1α表達(dá)變化
    不同波長Q開關(guān)激光治療太田痣療效分析及超微結(jié)構(gòu)觀察
    掃描電鏡法觀察雞蛋殼超微結(jié)構(gòu)形貌
    亚洲国产日韩一区二区| 精品国产超薄肉色丝袜足j| 一级毛片精品| 性少妇av在线| 在线观看免费日韩欧美大片| 国产又色又爽无遮挡免| 老司机靠b影院| 午夜激情av网站| 91九色精品人成在线观看| 欧美精品av麻豆av| 在线观看舔阴道视频| 一区二区三区激情视频| 国产亚洲精品第一综合不卡| 久久久水蜜桃国产精品网| 亚洲精品中文字幕一二三四区 | 新久久久久国产一级毛片| 欧美97在线视频| 深夜精品福利| 国产福利在线免费观看视频| 日本一区二区免费在线视频| 夫妻午夜视频| 丰满少妇做爰视频| 亚洲精品成人av观看孕妇| 免费在线观看影片大全网站| 啦啦啦免费观看视频1| 久久av网站| 99国产综合亚洲精品| 丝袜人妻中文字幕| 麻豆国产av国片精品| 精品欧美一区二区三区在线| 国产av国产精品国产| 老司机深夜福利视频在线观看 | 91av网站免费观看| 日本一区二区免费在线视频| 国产激情久久老熟女| 精品少妇久久久久久888优播| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩亚洲高清精品| 日韩欧美一区视频在线观看| 黑丝袜美女国产一区| 久久免费观看电影| 少妇的丰满在线观看| 丰满迷人的少妇在线观看| 精品少妇内射三级| 蜜桃在线观看..| av电影中文网址| 又紧又爽又黄一区二区| 波多野结衣av一区二区av| 男人添女人高潮全过程视频| 99国产精品一区二区蜜桃av | 国产在线观看jvid| 国产在线视频一区二区| 在线看a的网站| 国产黄频视频在线观看| 亚洲国产中文字幕在线视频| 色播在线永久视频| 亚洲精品中文字幕在线视频| 国产精品久久久av美女十八| 国产免费现黄频在线看| 亚洲人成电影观看| av网站在线播放免费| 国产av国产精品国产| 国产精品99久久99久久久不卡| 91字幕亚洲| 亚洲精品一二三| 国产精品av久久久久免费| 人成视频在线观看免费观看| 女人精品久久久久毛片| 我的亚洲天堂| 97精品久久久久久久久久精品| 自线自在国产av| 80岁老熟妇乱子伦牲交| 中文字幕另类日韩欧美亚洲嫩草| 99精品久久久久人妻精品| 欧美日韩亚洲国产一区二区在线观看 | 老汉色∧v一级毛片| 亚洲国产毛片av蜜桃av| 国产男女超爽视频在线观看| 国产黄色免费在线视频| 国产片内射在线| 咕卡用的链子| 久久久精品区二区三区| 国产成人系列免费观看| 久久女婷五月综合色啪小说| 69精品国产乱码久久久| 亚洲欧洲精品一区二区精品久久久| 9191精品国产免费久久| 飞空精品影院首页| 亚洲第一青青草原| 中文字幕另类日韩欧美亚洲嫩草| 99久久精品国产亚洲精品| 亚洲欧洲精品一区二区精品久久久| 老司机深夜福利视频在线观看 | 亚洲人成电影观看| 国产男女内射视频| 欧美激情久久久久久爽电影 | 手机成人av网站| 嫩草影视91久久| 欧美黑人欧美精品刺激| 又大又爽又粗| 亚洲国产欧美在线一区| 搡老熟女国产l中国老女人| 欧美亚洲日本最大视频资源| h视频一区二区三区| 久久av网站| 亚洲人成77777在线视频| 一区二区三区精品91| 18禁裸乳无遮挡动漫免费视频| 一级毛片精品| 日韩制服丝袜自拍偷拍| 亚洲国产精品999| 久久人妻熟女aⅴ| 69精品国产乱码久久久| 亚洲色图综合在线观看| 亚洲欧美激情在线| 久久天堂一区二区三区四区| 国产成人影院久久av| 老司机午夜福利在线观看视频 | 丰满迷人的少妇在线观看| 女性被躁到高潮视频| 99国产极品粉嫩在线观看| 99精品欧美一区二区三区四区| 国产免费现黄频在线看| 亚洲欧美成人综合另类久久久| 国产一区二区 视频在线| 亚洲午夜精品一区,二区,三区| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久av网站| a在线观看视频网站| av网站在线播放免费| 女人爽到高潮嗷嗷叫在线视频| 女人被躁到高潮嗷嗷叫费观| 捣出白浆h1v1| 99香蕉大伊视频| 9色porny在线观看| 国产亚洲一区二区精品| 美女脱内裤让男人舔精品视频| 婷婷丁香在线五月| 亚洲精品在线美女| 久久精品人人爽人人爽视色| www.熟女人妻精品国产| 亚洲精品国产区一区二| 满18在线观看网站| 久久久国产一区二区| 无限看片的www在线观看| 免费在线观看影片大全网站| 中文字幕人妻丝袜制服| 一本—道久久a久久精品蜜桃钙片| 午夜福利视频精品| 97在线人人人人妻| 最近中文字幕2019免费版| 久久久国产一区二区| 又黄又粗又硬又大视频| 日韩精品免费视频一区二区三区| 最近最新免费中文字幕在线| 黑人欧美特级aaaaaa片| 侵犯人妻中文字幕一二三四区| 涩涩av久久男人的天堂| 欧美精品一区二区免费开放| 不卡av一区二区三区| 午夜免费观看性视频| 免费女性裸体啪啪无遮挡网站| 亚洲欧美成人综合另类久久久| 国产成人a∨麻豆精品| 国产欧美日韩一区二区三区在线| 色精品久久人妻99蜜桃| 高清av免费在线| 99国产精品一区二区三区| 国产亚洲av片在线观看秒播厂| 亚洲久久久国产精品| 国产精品秋霞免费鲁丝片| 窝窝影院91人妻| 欧美亚洲日本最大视频资源| 国产亚洲欧美在线一区二区| 亚洲免费av在线视频| 免费在线观看视频国产中文字幕亚洲 | 人人妻人人爽人人添夜夜欢视频| 男女边摸边吃奶| 日本av手机在线免费观看| 欧美日韩精品网址| 少妇被粗大的猛进出69影院| 成人手机av| √禁漫天堂资源中文www| 亚洲精品av麻豆狂野| 高清欧美精品videossex| 在线亚洲精品国产二区图片欧美| 欧美+亚洲+日韩+国产| 午夜免费成人在线视频| 国产在线一区二区三区精| 精品一品国产午夜福利视频| 99国产精品免费福利视频| 99精国产麻豆久久婷婷| 永久免费av网站大全| cao死你这个sao货| 后天国语完整版免费观看| 亚洲激情五月婷婷啪啪| 99热国产这里只有精品6| 国产97色在线日韩免费| 久久热在线av| 国产在视频线精品| 精品少妇一区二区三区视频日本电影| 999久久久国产精品视频| 久久精品aⅴ一区二区三区四区| 1024香蕉在线观看| 老司机影院毛片| 国产黄频视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品一区二区三区在线| 色精品久久人妻99蜜桃| 久久久久久亚洲精品国产蜜桃av| 久久人人爽av亚洲精品天堂| 久久久久久久久免费视频了| 国产老妇伦熟女老妇高清| 自线自在国产av| 国产精品国产av在线观看| 成在线人永久免费视频| 欧美xxⅹ黑人| 亚洲天堂av无毛| 欧美日韩亚洲国产一区二区在线观看 | 狂野欧美激情性xxxx| xxxhd国产人妻xxx| 成年人午夜在线观看视频| 国产欧美日韩一区二区三区在线| 亚洲少妇的诱惑av| 国产欧美日韩一区二区三 | 国产精品二区激情视频| 亚洲一码二码三码区别大吗| 亚洲国产av新网站| 国产精品一区二区免费欧美 | 91精品三级在线观看| 三级毛片av免费| 国产在视频线精品| 久久天堂一区二区三区四区| 亚洲激情五月婷婷啪啪| 午夜91福利影院| 精品亚洲乱码少妇综合久久| 美女高潮到喷水免费观看| 国产精品亚洲av一区麻豆| 一区二区三区乱码不卡18| 三上悠亚av全集在线观看| 99精品欧美一区二区三区四区| 超色免费av| 啦啦啦中文免费视频观看日本| 亚洲av成人不卡在线观看播放网 | 美女福利国产在线| 男女午夜视频在线观看| 男女免费视频国产| 9191精品国产免费久久| 国产精品九九99| 夫妻午夜视频| 午夜视频精品福利| 黄频高清免费视频| 多毛熟女@视频| 精品人妻1区二区| 亚洲av日韩在线播放| 正在播放国产对白刺激| 超碰97精品在线观看| 最近最新中文字幕大全免费视频| 国产成人av激情在线播放| 在线亚洲精品国产二区图片欧美| 国产伦人伦偷精品视频| 精品少妇内射三级| 欧美变态另类bdsm刘玥| 免费在线观看黄色视频的| 国产成人精品久久二区二区免费| 欧美亚洲日本最大视频资源| 黄片小视频在线播放| 丝袜美腿诱惑在线| 国产色视频综合| 亚洲综合色网址| 久久精品国产综合久久久| 超碰97精品在线观看| 少妇被粗大的猛进出69影院| 亚洲精品中文字幕一二三四区 | 视频区欧美日本亚洲| 亚洲精品日韩在线中文字幕| 亚洲国产欧美在线一区| 亚洲熟女毛片儿| 女人久久www免费人成看片| 久久久国产成人免费| 少妇 在线观看| 啦啦啦 在线观看视频| 成人国产av品久久久| 黑丝袜美女国产一区| 久久久国产成人免费| 国产亚洲欧美精品永久| 精品少妇内射三级| 手机成人av网站| 日韩中文字幕欧美一区二区| 久久精品国产亚洲av香蕉五月 | 亚洲精品国产一区二区精华液| netflix在线观看网站| 国产精品久久久久久精品古装| 久久久精品免费免费高清| 满18在线观看网站| 日韩大片免费观看网站| 99九九在线精品视频| 国产高清视频在线播放一区 | 欧美黑人精品巨大| 国产欧美日韩一区二区精品| 精品国内亚洲2022精品成人 | 黄网站色视频无遮挡免费观看| 亚洲精品在线美女| 三上悠亚av全集在线观看| 宅男免费午夜| 欧美精品一区二区大全| 精品欧美一区二区三区在线| 无限看片的www在线观看| 十八禁高潮呻吟视频| 在线天堂中文资源库| 香蕉国产在线看| 日本av手机在线免费观看| 1024视频免费在线观看| 波多野结衣一区麻豆| 桃花免费在线播放| 国产成人免费无遮挡视频| 国产免费一区二区三区四区乱码| 亚洲午夜精品一区,二区,三区| 国产精品麻豆人妻色哟哟久久| 亚洲国产看品久久| 深夜精品福利| 中文欧美无线码| 制服人妻中文乱码| 一区二区三区激情视频| 久久中文看片网| 男女边摸边吃奶| av一本久久久久| 亚洲午夜精品一区,二区,三区| 搡老岳熟女国产| 国产亚洲精品久久久久5区| 夜夜夜夜夜久久久久| 大片免费播放器 马上看| 久久人人97超碰香蕉20202| av有码第一页| 久久久精品国产亚洲av高清涩受| 少妇猛男粗大的猛烈进出视频| 久久久久久久国产电影| 51午夜福利影视在线观看| 99久久综合免费| 80岁老熟妇乱子伦牲交| 亚洲av男天堂| 另类精品久久| 成年美女黄网站色视频大全免费| 国产精品一区二区免费欧美 | 性色av乱码一区二区三区2| 亚洲成人手机| 一本一本久久a久久精品综合妖精| 一本色道久久久久久精品综合| 啦啦啦啦在线视频资源| 两性夫妻黄色片| 我要看黄色一级片免费的| 精品乱码久久久久久99久播| 久久国产精品人妻蜜桃| 天天影视国产精品| 免费看十八禁软件| 精品国产超薄肉色丝袜足j| 免费观看av网站的网址| 久久精品国产综合久久久| 宅男免费午夜| 少妇的丰满在线观看| 9热在线视频观看99| 久久精品国产亚洲av高清一级| 精品国内亚洲2022精品成人 | 午夜久久久在线观看| 少妇粗大呻吟视频| 交换朋友夫妻互换小说| 女人爽到高潮嗷嗷叫在线视频| 精品一区二区三卡| 别揉我奶头~嗯~啊~动态视频 | 美女脱内裤让男人舔精品视频| www.熟女人妻精品国产| 亚洲国产毛片av蜜桃av| 一级片免费观看大全| 欧美国产精品va在线观看不卡| www.av在线官网国产| 一级毛片电影观看| 又紧又爽又黄一区二区| 欧美精品一区二区大全| 中文字幕高清在线视频| 国产精品久久久人人做人人爽| 国产一区二区在线观看av| 黄网站色视频无遮挡免费观看| 亚洲欧美精品自产自拍| 欧美人与性动交α欧美软件| 女性生殖器流出的白浆| 国产成人av激情在线播放| 在线亚洲精品国产二区图片欧美| 免费在线观看黄色视频的| 亚洲欧美日韩另类电影网站| 国产成人精品久久二区二区91| 亚洲午夜精品一区,二区,三区| 国产成人精品在线电影| 久久青草综合色| 一个人免费看片子| 精品国产乱码久久久久久男人| 久久久久久亚洲精品国产蜜桃av| av在线播放精品| 韩国精品一区二区三区| 亚洲av电影在线进入| 国产成人免费观看mmmm| 两性午夜刺激爽爽歪歪视频在线观看 | 一个人免费看片子| 国产在线视频一区二区| 国产精品免费大片| 亚洲欧美激情在线| 一级片免费观看大全| 亚洲精品成人av观看孕妇| 满18在线观看网站| 亚洲专区字幕在线| 性色av乱码一区二区三区2| 国产成人免费无遮挡视频| 男人添女人高潮全过程视频| 欧美另类一区| 国产一区有黄有色的免费视频| 99香蕉大伊视频| 丝瓜视频免费看黄片| 香蕉国产在线看| 国产精品熟女久久久久浪| 人人妻人人爽人人添夜夜欢视频| 欧美日韩福利视频一区二区| 亚洲欧美清纯卡通| 国产主播在线观看一区二区| 亚洲七黄色美女视频| 国产精品免费大片| 韩国高清视频一区二区三区| 成人亚洲精品一区在线观看| 狂野欧美激情性xxxx| 曰老女人黄片| 欧美黑人欧美精品刺激| 欧美中文综合在线视频| 黄网站色视频无遮挡免费观看| 国产在线免费精品| 国产精品亚洲av一区麻豆| av不卡在线播放| 十八禁网站网址无遮挡| 久久久久久久久免费视频了| 日韩精品免费视频一区二区三区| 国产精品一区二区在线不卡| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 久久精品熟女亚洲av麻豆精品| 国产精品亚洲av一区麻豆| 国产深夜福利视频在线观看| 国产av又大| 啦啦啦啦在线视频资源| 桃红色精品国产亚洲av| 欧美日韩亚洲高清精品| 中文字幕人妻熟女乱码| 久久久久久免费高清国产稀缺| 久久九九热精品免费| 黄网站色视频无遮挡免费观看| 一级片免费观看大全| 咕卡用的链子| av网站免费在线观看视频| 久久精品亚洲熟妇少妇任你| 51午夜福利影视在线观看| 一级黄色大片毛片| 美女大奶头黄色视频| 色婷婷久久久亚洲欧美| 一级,二级,三级黄色视频| 美女国产高潮福利片在线看| 男女之事视频高清在线观看| 窝窝影院91人妻| 国产欧美亚洲国产| 欧美中文综合在线视频| 久久精品aⅴ一区二区三区四区| 一进一出抽搐动态| 午夜影院在线不卡| 十分钟在线观看高清视频www| 涩涩av久久男人的天堂| 久久香蕉激情| 老汉色∧v一级毛片| 欧美成狂野欧美在线观看| 妹子高潮喷水视频| 一区在线观看完整版| videos熟女内射| 免费久久久久久久精品成人欧美视频| 午夜免费观看性视频| 久久久久久久精品精品| 人人妻人人爽人人添夜夜欢视频| 精品国产国语对白av| 成人亚洲精品一区在线观看| 9热在线视频观看99| 精品国产乱码久久久久久男人| 亚洲欧美精品综合一区二区三区| 久久99一区二区三区| 国产视频一区二区在线看| 一进一出抽搐动态| 日韩精品免费视频一区二区三区| 亚洲精品久久午夜乱码| 黄频高清免费视频| 亚洲精品在线美女| 日韩大片免费观看网站| a级片在线免费高清观看视频| 久久 成人 亚洲| 中文字幕人妻丝袜制服| 国产精品一二三区在线看| 国产一区二区在线观看av| 午夜福利乱码中文字幕| 久久青草综合色| 男女之事视频高清在线观看| 啦啦啦啦在线视频资源| 亚洲精品乱久久久久久| 午夜福利,免费看| 精品久久久精品久久久| 久久久久国内视频| 午夜免费成人在线视频| 亚洲欧洲精品一区二区精品久久久| 女人久久www免费人成看片| 亚洲一区中文字幕在线| 最黄视频免费看| 午夜影院在线不卡| 久久久久久久精品精品| 狠狠狠狠99中文字幕| 日韩中文字幕欧美一区二区| 欧美人与性动交α欧美精品济南到| 黄网站色视频无遮挡免费观看| 性少妇av在线| 亚洲国产毛片av蜜桃av| 狂野欧美激情性xxxx| 美女高潮喷水抽搐中文字幕| 黑人欧美特级aaaaaa片| 人人妻人人爽人人添夜夜欢视频| 又黄又粗又硬又大视频| 在线看a的网站| 亚洲国产欧美日韩在线播放| 久久香蕉激情| 女人被躁到高潮嗷嗷叫费观| 大片电影免费在线观看免费| 80岁老熟妇乱子伦牲交| 热re99久久国产66热| 国产男女超爽视频在线观看| 免费av中文字幕在线| 国产免费现黄频在线看| 久久精品国产综合久久久| 叶爱在线成人免费视频播放| 老熟妇乱子伦视频在线观看 | 亚洲欧洲精品一区二区精品久久久| h视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲av美国av| 色视频在线一区二区三区| 美女高潮喷水抽搐中文字幕| 一级毛片精品| 亚洲人成77777在线视频| 手机成人av网站| 桃红色精品国产亚洲av| 国产精品国产三级国产专区5o| 99久久精品国产亚洲精品| 丁香六月天网| 亚洲av男天堂| 国产精品二区激情视频| 久久 成人 亚洲| 久久人妻福利社区极品人妻图片| 久久午夜综合久久蜜桃| 亚洲精品国产精品久久久不卡| 人人澡人人妻人| 亚洲国产精品一区二区三区在线| 国产精品一区二区精品视频观看| 国产极品粉嫩免费观看在线| 男女午夜视频在线观看| 爱豆传媒免费全集在线观看| 国产在线视频一区二区| 大片免费播放器 马上看| 国产成人影院久久av| 欧美亚洲日本最大视频资源| 欧美精品一区二区免费开放| 久久人人97超碰香蕉20202| 桃花免费在线播放| 在线精品无人区一区二区三| 99国产精品99久久久久| 欧美日韩中文字幕国产精品一区二区三区 | avwww免费| 高清在线国产一区| 亚洲av电影在线观看一区二区三区| av视频免费观看在线观看| 在线观看舔阴道视频| 视频区欧美日本亚洲| 亚洲欧美激情在线| 99精品久久久久人妻精品| 考比视频在线观看| 高潮久久久久久久久久久不卡| 亚洲精品国产精品久久久不卡| 少妇 在线观看| 久久精品亚洲av国产电影网| 欧美97在线视频| av天堂久久9| 99国产精品免费福利视频| 欧美 亚洲 国产 日韩一| 男女下面插进去视频免费观看| 日韩制服丝袜自拍偷拍| 爱豆传媒免费全集在线观看| 久热这里只有精品99| 国产免费视频播放在线视频| 免费观看人在逋| 三上悠亚av全集在线观看| 成人国产av品久久久| 久久久久国产精品人妻一区二区| 老司机午夜十八禁免费视频| 国产精品影院久久| av片东京热男人的天堂| 久久久久精品人妻al黑| 欧美日韩国产mv在线观看视频| 制服诱惑二区| 伊人久久大香线蕉亚洲五| 日韩一卡2卡3卡4卡2021年| 99国产精品免费福利视频| netflix在线观看网站| 波多野结衣一区麻豆| 丰满饥渴人妻一区二区三| 国产福利在线免费观看视频| 美女视频免费永久观看网站| 亚洲国产av影院在线观看| 亚洲男人天堂网一区| 午夜日韩欧美国产|