• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinematic Optimization of Bionic Shoulder Driven by PneumaticMuscle Actuators Based on Particle Swarm Optimization

    2016-09-05 08:56:44LiuKaiGeZhishangXuJiaqiGuBaotongWangYangweiZhaoDongbiao

    Liu Kai, Ge Zhishang, Xu Jiaqi, Gu Baotong, Wang Yangwei, Zhao Dongbiao

    College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics andAstronautics, Nanjing 210016, P.R. China

    (Received 4 November 2015; revised 24 December 2015; accepted 28 December 2015)

    Kinematic Optimization of Bionic Shoulder Driven by PneumaticMuscle Actuators Based on Particle Swarm Optimization

    Liu Kai*, Ge Zhishang, Xu Jiaqi, Gu Baotong, Wang Yangwei, Zhao Dongbiao

    College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics andAstronautics, Nanjing 210016, P.R. China

    (Received 4 November 2015; revised 24 December 2015; accepted 28 December 2015)

    A bionic shoulder joint with three degree-of-freedom (DOF) driven by pneumatic muscle actuator is proposed and its corresponding kinematic model is established. The bionic shoulder is optimized by particle swam optimization (PSO) with the fitness standards that the requirements of rotation indexes are met and the fluctuation of motion is kept in the lowest resolution in a pneumatic muscle actuator range. Simulation considering rotation indexes only (first simulation) is compared with the one considering both rotation indexes and motion resolution (second simulation) subsequently. Mounting position of the pneumatic muscle actuators in bionic shoulder is optimized after initializing the same condition in simulations. Results show that the fluctuations of parameters are consistent, and the parameters of the first simulation have good convergence than those of the second one. With the increase of stretch rate of the pneumatic muscle actuator, the needed length of fixed link in the center of static platform decreases in optimization.

    bionic shoulder joint; particle swam optimization (PSO); kinematic optimization

    0 Introduction

    The shoulder joint is the most flexible joint rotating in three-degree-of-freedom (3-DOF) (Fig.1), which can realize the motions of abduction, adduction, lateral rotation, medial rotation, flexion and extension. While motions of different people are not the same as the differentiated bones, the motion indexes such as the degree of abduction, adduction, lateral rotation (when abduction degree is 90°), medial rotation (when abduction degree is 90°), flexion and extension are appropriately defined as 180°, 180°, 90°, 90°, 180° and 180°, respectively.

    Fig.1 Rotation motion of shoulder joint

    The study of bionic shoulder joint has come to its climax in recent years. A 3-RRR (′R′ is expressed as a revolute pair) mechanism suitable for shoulder was proposed by Yi[1]. Hou[2]improved the suitability of 3-RRR for shoulder in the base of traditional 3-RRR mechanism. A 3-DOF shoulder driven by muscles was designed by Garner[3]under the consideration of the visible human project image dataset, and then dynamic optimization of the shoulder was analyzed by Terrier[4]. A kind of 3-DOF shoulder possessing scapula, clavicle and humerus was put forward by Sodeyama[5]. In spite of the fact that all mechanisms mentioned above are capable of three degrees of rotation, they either have simple structure without the flexibility or complicated structure that cannot be controlled easily.

    The pneumatic muscle actuator (PMA)[6]is a new kind of actuators powered by pressure, and its durability and strength has been improved since the emergence of PMA in 1960 s. PMAs are highly applicable for the actuators in bionic research, because they have impressive power-to-weight and power-to-volume ratios and provides natural flexibility[6-8]similar to biological muscles. PMAs capable of producing high force have application in many areas, but are of particular interest in human interactive environment.

    Recently, the optimization of parallel mechanism has been hot research topics. Several optimization algorithms, such as genetic algorithm (GA), particle swarm optimization (PSO), simulated algorithm (SA) and adaptive simulated algorithm (ASA), are employed to design parallel mechanism. According to motion, force, and power distribution performance indicators, Zhang[9]optimized the structural parameters of 3-RPS (′R′ is expressed as a revolute pair, ′P′ as a prismatic pair, and ′S′ as a spherical pair) parallel mechanism and got the corresponding workspace. A 3-PCSS/S (′PC′ is expressed as a prismatic pair with a ring rail, and ′S′ a spherical pair) spherical parallel mechanism for the shoulder joint is proposed by Hou[10]. They optimized its parameters of the mechanism and improved its flexibility with GA. Zhang[11]obtained the optimal particle which was optimized by means of the improved chaotic PSO and improved motion performance of Ahut-Delta. Sun[12]analyzed the impact of main parameters in PSO upon the search of particles and used PSO in parameter optimal design of six degrees-of-freedom (DOF) parallel mechanism.

    Particle swarm optimizer was presented by Kennedy and Eherhart in 1995 on the basis of evolvement analysis of intelligent control[13-14]. Shoulder joint powered by parallel mechanism has several motion indexes which cannot be satisfied simultaneously, but PSO is a way of multi-objective optimization which is well suitable for shoulder joint optimization.

    A bionic shoulder joint driven by six pneumatic muscle actuators is proposed in this paper. By using the optimization of PSO, the shoulder joint can optimize its structure with the optimization goal that motion indexes are satisfied and motion resolution of joint is reduced minimally in the contraction range of PMA.

    1 Kinematic Model for Bionic Shoulder

    Two coordinate frames are defined for analysis. The base coordinate frame {A}: XYZ is attached to the geometric center of static platform O with its Z-axis perpendicular to the plane defined by the actuator base points A1A2A3A4A5A6and X-axis parallel to A1O. The moving coordinate frame {B}: xyz is attached to an endpoint (O1) of the link installed in the geometric center of moving platform with its z-axis perpendicular to the plane of B1B2B3and x-axis parallel to B1B. The degree of bionic shoulder is, apparently, determined by spherical joint defined as O1in Fig.2, so its degree is three as spherical joint can rotate in three perpendicular axes.

    Fig.2 Geometric model for bionic shoulder

    The direction of forward/backward shoulder is shown in Fig.2. The angle of the moving platform rotating around Y-axes from OY-to OY+is the abduction angle. Let the angle of the moving platform rotating around Z-axes in a clockwise direction and an anticlockwise direction be, respectively, the medial rotation (abduction degree is 90°) and lateral rotation (abduction degree is 90°) when the moving platform do not rotate around

    X-axes and Y-axes. Assume that the degree of moving platform rotates around Z-axes in the clockwise direction and the anticlockwise direction, respectively, is the degree of extension and the degree of flexion when moving platform rotates around Y-axes to OY-. OY+and OY-mean the maximum degrees in which the moving platform rotates clockwise and anticlockwise around Y-axes, respectively.

    The coordinate of point Biin the moving frame can be written as

    (1)

    The coordinate of point Aiin the base frame can be written as

    (2)

    whereθiis the same value shown in Eq.(1).

    The position of point O1in the moving platform is defined

    (3)

    (4)

    where γ, β and α are the orientation angles of the moving platform denoting rotations of the moving coordinate frame about the X-axes, Y-axes and Z-axes in the base coordinate frame, respectively.

    (5)

    Hence, the length of pneumatic muscle actuator can be calculated as

    (6)

    where Aiand Biare the coordinate expressed in Eqs.(1), (2).

    The φ in Eq.(1) and η in Eq.(2) are the structural parameters determining the characterization of singularity. If φ=η, the bionic shoulder stays in a singular state in initial position. More details about it is that the moving platform cannot rotate around the static platform in Z-axes when γ=0, β=0 and α=0. If φ≠η, the moving platform is able to rotate around the Z-axes when γ=0, β=0 and α=0.

    2 Kinematic Optimization Aim of Bionic Shoulder

    The bionic shoulder is a spatial parallel mechanism which can be optimized in manipulability, space utilization[15]and motion resolution[16]. Considering the actual features of the bionic shoulder, rotation indexes and motion resolution are optimized in the contraction range of PMA.

    2.1Constraint function of rotation indexes about bionic shoulder

    After the numerical values of the dimensions are entered through parameters input interfaces, the geometric model will then complete. In this way, a repeatable and standard modeling method is created to avoid the tedious modeling process in ANSYS. The structure dimensions are displayed in Fig.2.

    Rotation indexes are the abduction angle, adduction angle, the degree of lateral rotation (when abduction degree is 90°), the degree of medial rotation (when abduction degree is 90°), the flexion degree, and the degree of extension. The constraint function of rotation indexes can be described as

    w4C4+w5C5

    (7)

    (8)

    where φaid, φaed, φad, φatd, φprdare the desirable lateral rotation degree, the desirable medial rotation degree, the desirable abduction degree, the desirable flexion degree, and the desirable extension degree, respectively. φai, φae, φa, φatand φprare the calculated lateral rotation degree, the calculated medial rotation degree, the calculated abduction degree, the calculated flexion degree, and the calculated extension degree, respectively.

    2.2Constraint function of motion resolution about bionic shoulder

    The micro displacement of any point Q(x, y, z) in B1B2B3can be transformed into three micro displacements of coordinate axis in the base coordinate frame, and their relation can be expressed as

    (9)

    Any displacement in Eq.(9) can be transformed into three micro rotational angles of coordinate axis, expressed as

    (10)

    Substituting Eq.(10) into Eqs.(9) yields Eq.(11).

    (11)

    (12)

    (13)

    The point Biin the base coordinate frame can be expressed as

    (14)

    The motion resolution relative to r ofABi(i=1—3) in B1B2B3can be calculated by

    (15)

    (16)

    (17)

    where μ=L/r,k1=cos2θcos2β+sin2θsin2βsin2γ+sin2θcos2γ,k2=μ2sin2βcos2γ+μ2sin2γ+2sinθcosθsinβcosβsinγ+2μcosθsinβcosβcosγ, k3=2μsinθsin2βsinγcosγ-2μsinθsinγcosγ.

    (18)

    where

    (19)

    (20)

    (21)

    Eq.(18) can be used to evaluate the fluctuation of motion resolution. The parameter n in Eqs.(19)—(21) is the number of micro rotations around X-axes, Y-axes, and Z-axes, respectively.

    The pointABi(i=4—6) in B4B5B6can also achieve the fluctuation of motion resolution relative to rcby the method mentioned above.

    (22)

    3 Optimization Model of PSO

    The core idea of PSO is that all particles can update their locations and velocities according to the position vector, the velocity vector, the best positions of particles and the best positions of population in any iteration, so the population can acquire the optimal solution in N iterations[17-18]. The algorithm can be described as follows.

    (23)

    (24)

    (25)

    where i=1—m, d=1—D. c1and c2are the two acceleration constants weighting of the random acceleration terms, r1and r2the random numbers from 0 to 1, and ω the inertia coefficient.

    In order to keep the convergence of velocity, the velocity vector should meet the constraint shown in Eq.(26).

    (26)

    4 Two Cases of Kinematic Optimization of Bionic Shoulder

    Case 1Only consider the rotation indexes into fitness function.

    (27)

    (28)

    Eq.(28) works when the ffit1values of two particles are equal.

    Case 2Consider the rotation indexes and motion resolution into fitness function

    (29)

    Particles are updated on condition that one of them (ffit3and ffit4in Eq.(29)) is met and the other is equal or both of them are met.

    Assuming that a particle has a nine-dimensional vector x=(R,Rc,r,rc,l,L,Lrc,η,φ), and the swarm has P=50 particles, with the iteration of N=40, learning factors of c1=c2=1.494, contraction ratio of ξ=0.1, inertia coefficient of ω=0.5+rand()/2, where rand() is the function of a random number generator uniformly distributed in [0,1], and weight values w1=w2=10,w3=5,w4=w5=1.

    Assuming the constraint boundary

    Desirable rotation values are

    Velocity constraint values are

    According to the initial condition and constraint, four random simulation results of Case 1 and Case 2 are shown in Tables 1, 2. It is depicted that the number of iteration in Case 1 is less than that in Case 2. Most of optimal results in Case 1 are occurred in the first iteration. In contrast, in view of the motion resolution in Case 2, more iterations are needed to get optimal results. From the above simulation, it is shown that desirable rotation value can be obtained, but further simulations depict that once φad>π/2 (or φaed>π/4, or φatd>π/4, φprd>π/4), one or more parameter (R, Rc, r, rc, l, L, Lrc, φ, η) cannot be acquired from this optimization.

    Table 1 Four random simulations for Case 1

    Table 2 Four random simulations for case 2

    R, Rc, r, r, l, L, Lrc, η and φ are coupled with each other. The subtle change of one parameter can alter the turning angle. For example, in the first simulation of Table 1, φaid, φaed, φad, φaidand φprdcan meet the desirable rotation value. However, once one parameter changes (l=94 mm), φaedcannot achieveπ/4 but onlyπ/6. In the first simulation of Table 2, if r=15 mm, φadcannot reachπ/2 but onlyπ/3.

    The kinematic optimization of bionic shoulder focuses on the reachability in space, and more optimal results can be calculated when the same fitness value occurs. Fluctuation of nine variables is obtained by calculating variance of 50 simulations in four groups and the results in Cases 1, 2 are shown in Figs.3, 4, respectively. It is demonstrated that the fluctuation of R, Rc, r and rcappears to be uniform: fluctuation of the four variables increases or decreases synchronously, that is to say, they are coupled with each other. This phenomenon is reasonable in that as the result of the limitation of contraction ratio of PMA, the change of one variable may cause others adjusting in the optimized range. Fluctuations of η and φ in Case 1 is less than those of η and φ in Case 2, which indicates that the consideration of motion resolution in Case 2 has great effect on the convergence of η and φ. The reason why the fluctuation of l and L is same lies in that (l+L) is a constant.

    Fig.3 Fluctuation simulation of four groups in Case 1

    Fig.4 Fluctuation simulation of four groups in Case 2

    In the eight simulations shown in Tables 1, 2, it can be seen that l approaches to a limit value L. A new simulation about the contraction ratio ξ to l in the optimized condition is done in the same condition mentioned above. Results shown in Fig.5 reveal that the needed parameter l in the optimized condition decreases with the increase of ξ and the needed l in Case 1 is smaller than the needed l in Case 2 at the same ξ.

    Fig.5 Relationship between ξ and l

    Particle swarm optimization (PSO) and genetic algorithm (GA) are both optimization algorithms. Both of them can simulate the adaptability of individual population on the basis of natural characteristics. Compared with conventional optimum evaluation methods, for instance, the Powell method, they can improve the searching efficiency in the whole field by gradually shrinking the area of design variables.

    For Case 1, in order to prove rationality of PSO in this paper, we compare the results of optimization of two algorithms (PSO & GA), as shown in Tables 1,3.

    Table 3 Four random simulations for case 1 with GA

    It is found that both of these two methods can quickly achieve the optimization so that meet the requirements of performance. Compare with GA, PSO is easier to implement with less parameters to adjust. Obviously, it is feasible and reasonable to apply PSO to the structural optimization.

    5 Conclusions

    A 3-DOF bionic shoulder driven by six pneumatic muscle actuators was proposed in this paper and the relationship between the three-dimensional rotations of shoulder and the length of six pneumatic muscle actuators was constructed.

    Rotation indexes about abduction, adduction, etc. of the bionic shoulder were defined by bionic model. The bionic shoulder was optimized by means of PSO in the fitness standards that requirements of rotation indexes are met and fluctuation of motion resolution is kept in a lower level in the contraction range of PMAs.

    A comparing simulation between considering rotation indexes only (Case 1) and considering both rotation indexes and motion resolution (Case 2) was conducted. Conclusions from further simulation results show that R, Rc, r, and rcappear to be uniform and the fluctuation of η and φ is tiny. Finally, from the simulation of ξ - l, it was found that l needed in the optimal condition decreases with the increase of ξ. In addition, the comparison results about Case 1 between PSO and GA show that PSO is feasible and satisfactory in the design of the parallel mechanism.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (No.51405229), the Natural Science Foundation of Jiangsu Province of China (No.BK20151470), and the NUAA Fundamental Research Fund (No.NS2013049).

    [1]YI B J, FREEMAN R A, TESAR D. Force and stiffness transmission in a redundantly actuated mechanism: The case for a spherical shoulder mechanism[J]. ASME, Design Engineering Division, 1992,45:163-172.

    [2]HOU Y L, HU X Z, ZHOU Y L. Bionic joint design based on a novel over-constrained spherical parallel mechanism[J]. Chinese Mechanical Engineering, 2014,25(6):723-726.

    [3]GARNER B A, PANDY M G. A kinematic model of the upper limb based on the visible human project (VHP) image dataset[J]. Computer Method in Biomechanics and Biomedical Engineering, 1999,2(2):107-124.

    [4]TERRIER A, AEBERHARD M, MICHELLOD Y, et al. A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization[J]. Medical Engineering & Physics, 2010,32(9):1050-1056.

    [5]SODEYAMA Y, NISHINO T, NAMIKI Y, et al. The designs and motions of a shoulder structure with a spherical thorax, scapulas and collarbones for humanoid Kojiro[C]∥RSJ International Conference on Intelligent Robots and Systems. France: IEEE, 2008:1465-1470.

    [6]DAERDEN F, LEFEBER D, VERRELST B, et al. Pneumatic artificial muscles: actuators for automation and robotics[C]∥Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. New York: IEEE, 2001:738-743.

    [7]TAO G L, XIE J W, ZHOU H. Research achievement and development trends of pneumatic artificial muscles[J]. Chinese Journal of Mechanical Engineering, 2009,45(10):75-83.

    [8]SUI L M, WANG Z W, BAO G. Analysis of stiffness characteristics of the pneumatic muscle actuator[J]. Chinese Mechanical Engineering, 2004,15(3):242-244.

    [9]ZHANG L J, GUO F, LI Y Q, et al. Optimun design of parallel mechanism based on kinematics distribution performance[J]. Transactions of the Chinese Society for Agricultural, 2015,46(4):365-371.

    [10]HOU Y L, WANG Y, FAN J K, et al. Optimization and bionic design of 3-PCSS/S spherical parallel mechanism for the shoulder joint[J]. Journal of Mechanical Engineering, 2015,51(11):16-23.

    [11]ZHANG L A, WANG J, TAN Y L. Dimensional synthesis of ahut-delta parallel mechanism based on improved chaotic particle swarm algorithm[J]. Transactions of the Chinese Society for Agricultural, 2015,46(8):344-351.

    [12]SUN F G, HUANG W. Parameter optimal design of the parallel mechanism based on particle swarm optimization[J]. Machine Design and Research, 2006,22(3):16-18.

    [13]KENNEDY J, EBERHART R C. Particle swarm optimization[C]∥Proceedings of IEEE International Conference on Neural Networks. New York: IEEE, 1995:1942-1948.

    [14]LIU S, WANG T, FAN W, et al. Optimization of joint driven by pneumatic muscle actuator based on PSO algorithm[J]. Journal of Beijing Institute of Technology, 2012,32(1):47-50.

    [15]STOCK M, MILLER K. Optimal kinematic design of spatial parallel manipulators: application to linear delta robot[J]. Transactions of the ASME, 2003,125(2):292-300.

    [16]SUN L N, DING Q Y, LIU X Y. Optimal kinematic design of 2-DOF planar parallel robot with high speed and high precision[J]. Chinese Journal of Mechanical Engineering, 2005,41(7):95-97.

    [17]ZHANG L H, YAO S Q, XIE W C. Voice conversion based on adaptive particle swarm optimization radial basis function neural network[J]. Journal of Data Acquisition and Processing, 2015,30(2):336-343.

    [18]GU W B, TAN D B, ZHENG K. Solving job-shop scheduling problem based on improved adaptive particle swarm optimization algorithm[J]. Trans. Nanjing Univ. of Aeronaut. Astronaut., 2014, 31(5):559-567.

    Dr. Liu Kai is an associate professor at College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), China. He received his Ph.D. degree from NUAA in 2007. His main research interest is bionic robot and numerical control technology.

    Mr. Ge Zhishang received his B.Sc. degree from Shenyang Ligong University, China, in 2014. He is currently pursuing master degree in Nanjing University of Aeronautics and Astronautics. His research interests are primarily in the area of motion control and bionic robot.

    Mr. Xu Jiaqi received his B.Sc. degree from Nanhang Jincheng College, China, in 2015. He is currently pursuing master degree in NUAA. His research interests are primarily in the area of motion control and robotics.

    Mr. Gu Baotong received his M.Sc. degree from NUAA in 2015. His research interests are primarily in the area of motion control and measurement system.

    Dr. Wang Yangwei received his M.S. degree and Ph.D. degree from Harbin Institute of Technology (HIT), China. He is currently a lecturer at the College of Mechanical and Electrical Engineering at NUAA in Nanjing, China. His research interests include bionic robot, robotics, and control system.

    Dr. Zhao Dongbiao received his M.S. degree and Ph.D. degree from Nanjing University of Aeronautics and Astronautics (NUAA), China. He is currently a Professor at the College of Mechanical and Electrical Engineering at NUAA in Nanjing, China. Dr. Zhao's research interests include CNC system, robotics, and control system.

    (Executive Editor: Zhang Tong)

    , E-mail address: liukai@nuaa.edu.cn.

    How to cite this article: Liu Kai, Ge Zhishang, Xu Jiaqi, et al. Kinematic optimization of bionic shoulder driven by pneumatic muscle actuators based on particle swarm optimization[J]. Trans. Nanjing Univ. Aero. Astro., 2016,33(3):301-309.

    http://dx.doi.org/10.16356/j.1005-1120.2016.03.301

    TH138; TP242Document code:AArticle ID:1005-1120(2016)03-0301-09

    日本av免费视频播放| 午夜福利影视在线免费观看| av天堂久久9| 国产精品 欧美亚洲| 精品久久久久久久毛片微露脸 | 手机成人av网站| 欧美日韩精品网址| 亚洲欧美一区二区三区久久| 精品一区在线观看国产| 18禁裸乳无遮挡动漫免费视频| 国产麻豆69| 满18在线观看网站| 国产福利在线免费观看视频| 天天添夜夜摸| 欧美变态另类bdsm刘玥| 国产免费av片在线观看野外av| 久久国产精品男人的天堂亚洲| 国产亚洲精品第一综合不卡| 天天躁狠狠躁夜夜躁狠狠躁| 成人国产一区最新在线观看| 黄色 视频免费看| 久久久久久人人人人人| 热re99久久精品国产66热6| 美女国产高潮福利片在线看| 久久久久久免费高清国产稀缺| 天天躁夜夜躁狠狠躁躁| 国产在线一区二区三区精| 欧美97在线视频| 国产91精品成人一区二区三区 | 亚洲精品久久成人aⅴ小说| 国产精品久久久人人做人人爽| 美女午夜性视频免费| 精品国产一区二区三区四区第35| 日本欧美视频一区| 亚洲国产看品久久| 在线观看免费视频网站a站| 夜夜骑夜夜射夜夜干| 女性被躁到高潮视频| 又黄又粗又硬又大视频| av不卡在线播放| 狂野欧美激情性bbbbbb| 少妇 在线观看| 亚洲欧美一区二区三区久久| 午夜福利影视在线免费观看| 精品卡一卡二卡四卡免费| 免费在线观看视频国产中文字幕亚洲 | 日本wwww免费看| 在线av久久热| 久久久久视频综合| 婷婷丁香在线五月| 自拍欧美九色日韩亚洲蝌蚪91| √禁漫天堂资源中文www| 欧美精品av麻豆av| 青春草亚洲视频在线观看| 欧美另类亚洲清纯唯美| 国产精品欧美亚洲77777| 久久久久精品国产欧美久久久 | 99国产精品一区二区三区| 精品一区在线观看国产| 国产成人av激情在线播放| 精品国内亚洲2022精品成人 | 热99re8久久精品国产| 色婷婷av一区二区三区视频| 国产成人欧美在线观看 | 黄色毛片三级朝国网站| 国产1区2区3区精品| 久久青草综合色| 丁香六月欧美| av在线播放精品| 国产成人免费无遮挡视频| 91精品国产国语对白视频| 精品卡一卡二卡四卡免费| 亚洲自偷自拍图片 自拍| 不卡av一区二区三区| 欧美日韩精品网址| 午夜精品国产一区二区电影| 精品亚洲成a人片在线观看| av天堂在线播放| av在线老鸭窝| 国产精品久久久av美女十八| 青春草视频在线免费观看| 热99久久久久精品小说推荐| 精品人妻在线不人妻| 国产91精品成人一区二区三区 | 男人爽女人下面视频在线观看| 亚洲欧美清纯卡通| 老司机影院成人| 大片免费播放器 马上看| 国产在视频线精品| av免费在线观看网站| 国产视频一区二区在线看| 国产精品熟女久久久久浪| 99久久99久久久精品蜜桃| 黑人操中国人逼视频| 国产亚洲精品一区二区www | 国产又色又爽无遮挡免| 免费在线观看完整版高清| www.av在线官网国产| 亚洲九九香蕉| 人人妻人人澡人人爽人人夜夜| 亚洲七黄色美女视频| 久久免费观看电影| 十八禁人妻一区二区| 久久香蕉激情| 日本vs欧美在线观看视频| 免费不卡黄色视频| 中文字幕色久视频| √禁漫天堂资源中文www| 黄片播放在线免费| 丝袜美足系列| 国产在视频线精品| 久久久久国产精品人妻一区二区| 欧美成人午夜精品| 久久精品国产a三级三级三级| 久久久久久人人人人人| 午夜免费成人在线视频| 国产免费av片在线观看野外av| 成年人免费黄色播放视频| 欧美日韩亚洲综合一区二区三区_| 高清黄色对白视频在线免费看| 最近最新中文字幕大全免费视频| 国产精品 国内视频| 男人操女人黄网站| 亚洲第一欧美日韩一区二区三区 | 窝窝影院91人妻| 啦啦啦在线免费观看视频4| 美女国产高潮福利片在线看| 欧美 日韩 精品 国产| 天天影视国产精品| 19禁男女啪啪无遮挡网站| 亚洲精品美女久久av网站| 亚洲精品美女久久av网站| 久久精品人人爽人人爽视色| 日韩欧美免费精品| 亚洲熟女精品中文字幕| 国产成人av教育| 国产淫语在线视频| 国产在线免费精品| 亚洲五月婷婷丁香| 久久久久国产一级毛片高清牌| 亚洲欧美日韩高清在线视频 | 免费日韩欧美在线观看| 精品人妻一区二区三区麻豆| 岛国毛片在线播放| 国产黄色免费在线视频| 久久久久视频综合| 午夜91福利影院| 老司机靠b影院| 波多野结衣av一区二区av| 十八禁网站免费在线| 超色免费av| 法律面前人人平等表现在哪些方面 | 男人舔女人的私密视频| 十八禁网站免费在线| 亚洲五月婷婷丁香| 伦理电影免费视频| a级毛片黄视频| 国产日韩欧美亚洲二区| videosex国产| 国产熟女午夜一区二区三区| 91大片在线观看| 亚洲一区中文字幕在线| av在线老鸭窝| 成在线人永久免费视频| 制服诱惑二区| 精品第一国产精品| 97人妻天天添夜夜摸| 天天躁狠狠躁夜夜躁狠狠躁| 日韩,欧美,国产一区二区三区| 高清黄色对白视频在线免费看| 两人在一起打扑克的视频| 黑人欧美特级aaaaaa片| 岛国在线观看网站| 精品人妻1区二区| 国产精品二区激情视频| 亚洲精品日韩在线中文字幕| 一本色道久久久久久精品综合| 9191精品国产免费久久| 999久久久精品免费观看国产| 久热这里只有精品99| 男女免费视频国产| 一进一出抽搐动态| 搡老乐熟女国产| 欧美人与性动交α欧美软件| 91字幕亚洲| 亚洲成av片中文字幕在线观看| 免费高清在线观看视频在线观看| 久久久国产一区二区| 一本综合久久免费| 自线自在国产av| 国产精品九九99| 久久久国产成人免费| 青春草亚洲视频在线观看| 黄色视频在线播放观看不卡| 国产xxxxx性猛交| 精品国产一区二区三区久久久樱花| av网站免费在线观看视频| 各种免费的搞黄视频| 精品国产国语对白av| 欧美亚洲日本最大视频资源| 亚洲成人国产一区在线观看| 69av精品久久久久久 | 精品久久蜜臀av无| 搡老熟女国产l中国老女人| 久久久久久久大尺度免费视频| 久久久欧美国产精品| 永久免费av网站大全| 亚洲成国产人片在线观看| 欧美乱码精品一区二区三区| 老熟女久久久| 五月开心婷婷网| 香蕉国产在线看| 天堂8中文在线网| 麻豆乱淫一区二区| 少妇被粗大的猛进出69影院| 99国产精品一区二区蜜桃av | 男女无遮挡免费网站观看| 欧美激情高清一区二区三区| 亚洲人成电影免费在线| 精品国产乱子伦一区二区三区 | 麻豆av在线久日| 日本猛色少妇xxxxx猛交久久| 欧美 亚洲 国产 日韩一| 日本五十路高清| 美女脱内裤让男人舔精品视频| 少妇人妻久久综合中文| 黑人欧美特级aaaaaa片| 亚洲精品在线美女| 飞空精品影院首页| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻丝袜制服| 国产成人欧美在线观看 | 国产精品偷伦视频观看了| 国产高清国产精品国产三级| 麻豆乱淫一区二区| 1024香蕉在线观看| 中文欧美无线码| 正在播放国产对白刺激| av免费在线观看网站| 午夜福利一区二区在线看| 亚洲黑人精品在线| 国产亚洲欧美精品永久| 两性午夜刺激爽爽歪歪视频在线观看 | 一级毛片电影观看| 一级a爱视频在线免费观看| 精品视频人人做人人爽| 亚洲一码二码三码区别大吗| 日本猛色少妇xxxxx猛交久久| 欧美日韩精品网址| 国产一卡二卡三卡精品| 亚洲av欧美aⅴ国产| 丰满人妻熟妇乱又伦精品不卡| 久热爱精品视频在线9| 国产av一区二区精品久久| 亚洲精品日韩在线中文字幕| 国产一区二区 视频在线| 动漫黄色视频在线观看| 美女高潮喷水抽搐中文字幕| 国产欧美日韩一区二区精品| 人人妻人人添人人爽欧美一区卜| 日韩一区二区三区影片| 宅男免费午夜| av网站免费在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 欧美成人午夜精品| 精品人妻熟女毛片av久久网站| 日韩有码中文字幕| 丰满少妇做爰视频| 久久国产精品男人的天堂亚洲| 啪啪无遮挡十八禁网站| 国产人伦9x9x在线观看| 亚洲成人免费电影在线观看| 亚洲成av片中文字幕在线观看| 制服诱惑二区| 一级毛片精品| 国产深夜福利视频在线观看| 男女之事视频高清在线观看| 日本猛色少妇xxxxx猛交久久| 一二三四在线观看免费中文在| 人妻 亚洲 视频| 欧美亚洲 丝袜 人妻 在线| 午夜免费鲁丝| 18禁观看日本| 性高湖久久久久久久久免费观看| 极品人妻少妇av视频| 又黄又粗又硬又大视频| 男人添女人高潮全过程视频| 久久天躁狠狠躁夜夜2o2o| 成人影院久久| 婷婷色av中文字幕| 亚洲精品粉嫩美女一区| 国产麻豆69| 夜夜骑夜夜射夜夜干| 成年动漫av网址| 中文字幕另类日韩欧美亚洲嫩草| 少妇的丰满在线观看| 亚洲国产精品成人久久小说| 考比视频在线观看| 青草久久国产| 国产免费视频播放在线视频| 精品人妻1区二区| 亚洲一码二码三码区别大吗| 国产高清国产精品国产三级| 动漫黄色视频在线观看| 国产精品.久久久| 十分钟在线观看高清视频www| 女性被躁到高潮视频| 亚洲视频免费观看视频| 99香蕉大伊视频| 午夜福利影视在线免费观看| 80岁老熟妇乱子伦牲交| 久久九九热精品免费| 国产成人a∨麻豆精品| 丝袜喷水一区| 久久免费观看电影| 日日爽夜夜爽网站| 少妇精品久久久久久久| 久久久久国内视频| 亚洲 欧美一区二区三区| 韩国精品一区二区三区| 成年美女黄网站色视频大全免费| svipshipincom国产片| 欧美亚洲日本最大视频资源| 大陆偷拍与自拍| √禁漫天堂资源中文www| 婷婷色av中文字幕| 老司机影院毛片| 日本猛色少妇xxxxx猛交久久| 999精品在线视频| 人人妻人人澡人人爽人人夜夜| 欧美日韩亚洲国产一区二区在线观看 | www.自偷自拍.com| 亚洲av日韩在线播放| 久久国产精品人妻蜜桃| 亚洲 国产 在线| 成年美女黄网站色视频大全免费| 亚洲欧洲精品一区二区精品久久久| 午夜精品国产一区二区电影| 国产伦人伦偷精品视频| 91大片在线观看| 精品亚洲乱码少妇综合久久| 国产精品久久久久久人妻精品电影 | 欧美成狂野欧美在线观看| 在线观看舔阴道视频| 国产精品香港三级国产av潘金莲| 在线观看免费日韩欧美大片| 黑人操中国人逼视频| 久久久精品免费免费高清| 免费在线观看黄色视频的| 99国产精品一区二区三区| 久久中文看片网| 精品久久久久久电影网| 成年人午夜在线观看视频| 深夜精品福利| 精品久久久久久电影网| 手机成人av网站| 久久久水蜜桃国产精品网| 女人精品久久久久毛片| 一级a爱视频在线免费观看| 性高湖久久久久久久久免费观看| 中文字幕av电影在线播放| 91成人精品电影| 亚洲av国产av综合av卡| 大片免费播放器 马上看| 久久亚洲精品不卡| 日本一区二区免费在线视频| 亚洲午夜精品一区,二区,三区| 老汉色av国产亚洲站长工具| 中文字幕色久视频| 999精品在线视频| 精品免费久久久久久久清纯 | 亚洲人成77777在线视频| 亚洲精品国产一区二区精华液| 欧美日韩黄片免| 狠狠婷婷综合久久久久久88av| 欧美少妇被猛烈插入视频| 婷婷成人精品国产| 亚洲精品中文字幕一二三四区 | 日日摸夜夜添夜夜添小说| 亚洲国产看品久久| 精品熟女少妇八av免费久了| 色老头精品视频在线观看| 久久久水蜜桃国产精品网| 欧美另类亚洲清纯唯美| 999久久久国产精品视频| av网站免费在线观看视频| 啦啦啦视频在线资源免费观看| 搡老岳熟女国产| 日本av免费视频播放| 欧美国产精品va在线观看不卡| 国产一区二区三区综合在线观看| 亚洲国产欧美在线一区| 久久久久久人人人人人| 日韩人妻精品一区2区三区| 精品卡一卡二卡四卡免费| 国产不卡av网站在线观看| 亚洲免费av在线视频| 超碰97精品在线观看| 亚洲国产精品一区二区三区在线| 亚洲色图综合在线观看| 国产xxxxx性猛交| 国产欧美日韩综合在线一区二区| 黄色视频在线播放观看不卡| 国产一区二区三区在线臀色熟女 | 国产精品熟女久久久久浪| 成年人免费黄色播放视频| 国产亚洲午夜精品一区二区久久| 欧美+亚洲+日韩+国产| 日韩大码丰满熟妇| 免费在线观看视频国产中文字幕亚洲 | 亚洲人成电影观看| 丝袜美足系列| 深夜精品福利| 亚洲精品国产一区二区精华液| 91字幕亚洲| 一区二区三区精品91| 热99国产精品久久久久久7| 日韩三级视频一区二区三区| 亚洲avbb在线观看| 午夜免费成人在线视频| 欧美成狂野欧美在线观看| 水蜜桃什么品种好| 国产一区二区三区在线臀色熟女 | 九色亚洲精品在线播放| 黄色视频,在线免费观看| 色视频在线一区二区三区| 日韩欧美一区视频在线观看| 久久精品久久久久久噜噜老黄| 97精品久久久久久久久久精品| 丝袜美腿诱惑在线| 脱女人内裤的视频| 欧美午夜高清在线| 成年女人毛片免费观看观看9 | 如日韩欧美国产精品一区二区三区| 久久久久网色| 天天添夜夜摸| 亚洲av片天天在线观看| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| 精品人妻1区二区| 如日韩欧美国产精品一区二区三区| 色老头精品视频在线观看| 人人妻人人澡人人爽人人夜夜| 久久热在线av| 国产精品香港三级国产av潘金莲| 日韩一卡2卡3卡4卡2021年| 欧美亚洲日本最大视频资源| 亚洲精品自拍成人| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av高清一级| 欧美少妇被猛烈插入视频| 国产亚洲av高清不卡| 久久精品人人爽人人爽视色| 精品一区在线观看国产| 妹子高潮喷水视频| 日韩欧美免费精品| 91精品国产国语对白视频| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 精品亚洲乱码少妇综合久久| 免费观看a级毛片全部| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久男人| 少妇猛男粗大的猛烈进出视频| 精品乱码久久久久久99久播| 亚洲国产中文字幕在线视频| 免费黄频网站在线观看国产| 99久久国产精品久久久| 国产无遮挡羞羞视频在线观看| 电影成人av| 欧美性长视频在线观看| 老司机影院毛片| 国产成人免费无遮挡视频| 男女床上黄色一级片免费看| 高清在线国产一区| av欧美777| 欧美黄色淫秽网站| 欧美+亚洲+日韩+国产| 一区在线观看完整版| 国产精品国产三级国产专区5o| 满18在线观看网站| 国产在视频线精品| 免费高清在线观看日韩| 亚洲 欧美一区二区三区| 免费在线观看完整版高清| 777米奇影视久久| 精品人妻1区二区| 国产极品粉嫩免费观看在线| 动漫黄色视频在线观看| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 久久精品国产亚洲av高清一级| av电影中文网址| 午夜福利免费观看在线| 一级毛片精品| 欧美日本中文国产一区发布| 50天的宝宝边吃奶边哭怎么回事| 欧美午夜高清在线| svipshipincom国产片| 美女中出高潮动态图| 18禁裸乳无遮挡动漫免费视频| 亚洲精品一区蜜桃| 黄色片一级片一级黄色片| 老司机靠b影院| 亚洲国产成人一精品久久久| 国产精品偷伦视频观看了| 一级a爱视频在线免费观看| 母亲3免费完整高清在线观看| 女性被躁到高潮视频| 亚洲精品中文字幕一二三四区 | 色婷婷久久久亚洲欧美| 亚洲av电影在线进入| 男男h啪啪无遮挡| 黄色视频不卡| 窝窝影院91人妻| 亚洲精品美女久久av网站| 黄色a级毛片大全视频| 人妻一区二区av| 黑人欧美特级aaaaaa片| 亚洲视频免费观看视频| 国产片内射在线| 久久中文看片网| 青春草亚洲视频在线观看| 亚洲第一青青草原| 亚洲情色 制服丝袜| 亚洲成人国产一区在线观看| www.熟女人妻精品国产| 国产免费av片在线观看野外av| 国产精品 欧美亚洲| 午夜免费观看性视频| 国产精品 欧美亚洲| 午夜福利一区二区在线看| 欧美国产精品一级二级三级| 久久亚洲精品不卡| 高清在线国产一区| kizo精华| 久久热在线av| 99精品欧美一区二区三区四区| 人人澡人人妻人| 久久久久精品人妻al黑| 脱女人内裤的视频| 岛国毛片在线播放| 中文字幕av电影在线播放| av有码第一页| 午夜日韩欧美国产| 日韩视频一区二区在线观看| 精品久久久精品久久久| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲 | 国产欧美日韩综合在线一区二区| 亚洲国产成人一精品久久久| 日本一区二区免费在线视频| 丝瓜视频免费看黄片| 99热网站在线观看| 无遮挡黄片免费观看| 精品久久蜜臀av无| 久久精品熟女亚洲av麻豆精品| 多毛熟女@视频| 精品国产一区二区三区四区第35| 国产成人啪精品午夜网站| 久久毛片免费看一区二区三区| 久久影院123| 十八禁网站网址无遮挡| 久久国产亚洲av麻豆专区| 日韩视频一区二区在线观看| 超碰成人久久| 伊人亚洲综合成人网| 欧美成人午夜精品| 制服诱惑二区| 午夜精品国产一区二区电影| 99热网站在线观看| 亚洲第一av免费看| 多毛熟女@视频| 免费在线观看完整版高清| 免费在线观看日本一区| 国产在线免费精品| 咕卡用的链子| 大型av网站在线播放| 一级黄色大片毛片| 国产一区二区三区av在线| 男人舔女人的私密视频| e午夜精品久久久久久久| 免费黄频网站在线观看国产| 久久久久国产一级毛片高清牌| av欧美777| 久久热在线av| 女人久久www免费人成看片| 在线观看舔阴道视频| 亚洲av日韩在线播放| 97精品久久久久久久久久精品| 青草久久国产| 好男人电影高清在线观看| 国产区一区二久久| 国产精品香港三级国产av潘金莲| 国产高清videossex| 一二三四社区在线视频社区8| 亚洲色图综合在线观看| 国产一区二区三区在线臀色熟女 | 久久久久久人人人人人| 日本撒尿小便嘘嘘汇集6| 无遮挡黄片免费观看| 国产亚洲午夜精品一区二区久久| 欧美激情 高清一区二区三区| 亚洲精品av麻豆狂野| 久久精品人人爽人人爽视色| 我要看黄色一级片免费的| 狠狠狠狠99中文字幕| 亚洲熟女毛片儿| 国产av又大| 18禁观看日本| 少妇的丰满在线观看| 日韩欧美一区二区三区在线观看 | 女人高潮潮喷娇喘18禁视频| 亚洲成国产人片在线观看| 精品视频人人做人人爽|