• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model Updating for High Speed Aircraft in Thermal Environment Using Adaptive Weighted-Sum Methods

    2016-09-06 01:02:42HeHuanHeChengChenGuoping

    He Huan, He Cheng, Chen Guoping

    1.The State Key Lab of Mechanics and Control for Mechanical Structures,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China;2.Research Institute of Pilotless Aircraft, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, P.R. China

    (Received 31 February 2015; revised 13 April 2015; accepted 18 April 2015)

    Model Updating for High Speed Aircraft in Thermal Environment Using Adaptive Weighted-Sum Methods

    He Huan1, He Cheng2*, Chen Guoping1

    1.The State Key Lab of Mechanics and Control for Mechanical Structures,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China;2.Research Institute of Pilotless Aircraft, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, P.R. China

    (Received 31 February 2015; revised 13 April 2015; accepted 18 April 2015)

    Model updating for aircraft in a high temperature environment (HTE) is proposed based on the hierarchical method. With this method, the problem can be decomposed into temperature field updating and dynamic structural updating. In order to improve the estimation accuracy, the model updating problem is turned into a multi-objective optimization problem by constructing the objective function which combined with residues of modal frequency and effective modal mass. Then the metamodeling, support vector regression (SVR) is introduced to improve the optimization efficiency, and the solution can be determined by adaptive weighted-sum method (AWS). Finally, the proposed method is tested on a finite element (FE) model of a reentry vehicle model. The results show that the multi-objective model updating method in HTE can identify the input parameters of the temperature field and structure with good accuracy.

    hierarchical; high temperature environment (HTE); support vector regression (SVR); multi-objective optimization; model updating

    0 Introduction

    The United States is developing scramjet engine technology that is expected to be needed by the next generation of high speed air breathing vehicles. NASA, through the X-43A program, is developing hydrogen fueled scramjet engines and has demonstrated Mach number of approximately 7 to 10. The structural integrity of proposed high-speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle′s structure, which can seriously affect the struc-ture′s elastic characteristics. Fortunately, the finite element (FE) method, as a important and practical numerical analysis tool, can be used to simulate dynamic characteristics of structural. Hence, the accuracy of FE model is crucial for structural dynamic analysis.

    On the one hand, the complexity of dynamic analysis in high temperature environment (HTE), caused by the thermal effects, has made it difficult to directly establish an accurate dynamic model; on the other hand, the FE model of a structure is normally constructed on the basis of highly idealized engineering blueprints and designs that may not truly represent all the aspects of an actual structure. As a result, the analytical predictions from a FE model often differ from the results of a real structure. These discrepancies originate from the uncertainties in simplifying assumptions of structural geometry, materials as well as inaccurate boundary conditions. FE model updating is a viable approach to increase the correlation between the dynamic response of a structure and the predictions from a model. This method based on residuals between a measurement set and the corresponding model predictions to adjust the uncertain parameters of FE models by optimization approach. Typical experimental datas include the modal model (natural frequencies and mode shapes), the frequency response functions and effective modal mass. The choice of objective function, and also the optimization approach, have been the subject of much research and are well covered by the authors′ survey paper[1-2].

    If the structure of interest is represented by, e.g. a large FE model, the large number of computations involved can rule out many approaches due to the expense of carrying out many runs. In addition, the FE analysis programs at present do not have parameterized modeling function since the parameters need to be updated in the estimation process. To overcome those problem, we have focused on using metamodels (or surrogate models) that can mimic the behavior of the simulation model as closely as possible while being computationally very efficient and convenient to evaluate since the objective function have be parameterized. Amongst existing metamodels, such as the conventional response surface method[3], radial basic function[4]neural networks[5]and support vector regression (SVR)[6], the latter are found to be excellent predictors of numerical model behaviour with small samples. In recently, many additional applications (largely a consequence of the increased use of computational analyses) have broadened the range of application of SVR in the statistical and engineering literature.

    Structural model parameter estimation problems based on measured modal data (e.g Ref.[5—7]) are often formulated as weighted least-squares problems in which modal metrics, measuring the residuals between measured and model predicted modal properties, are build up into a single weighted modal residuals metric formed as a weighted average of the individual modal metrics using weighting factors. Standard optimization techniques are then used to find the optimal values of the structural parameters that minimize the single weighted residuals metric representing an overall measure of fit between measured and model predicted modal properties. Due to model error and measurement noise, the results of the optimization are affected by the values assumed for the weighting factors. The choice of the weighting factors depends on the model adequacy and the uncertainty in the available measured data, which are not known a priori. Different values of the weights result in different optimal models and consequently different predictions from the optimal models.

    In this work, the structural model updating in HTE using multi-objective optimization method is proposed. As one of metamodels, support vector regression (SVR), will be introduced to improve the efficiency of estimation, and adaptive weighted-sum method (AWS), as a multi-objective optimization method, is employed to update the structural parameters in HTE.

    1 Hierarchical Methodology in Model Updating of High-Temperature System

    1.1Model updating of temperature field

    It is well know the mechanical and thermal aspects are coupled and inseparable: high surface temperatures and large temperature gradients will affect the modal characteristics of the structure. Similarly, the temperature distribution of a structure can also vary with its deformation, but this change are so slightly that Nowinski[8]suggested discounting the coupling in practice and separately evaluating the temperature and deformation fields in this order. Cheng et al. have proposed an model updating method in HTE based on hierarchical ideology. With this method, the temperature field updating of a structure is taken as the first stage, and the temperature distribution achieved from the former is imposed on the structure as a thermal load to complete the model updating in HTE. The thermo-physical properties are the important factors that affect temperature distribution of structure. In the case of thermal loads are determined, the model updating problem of temperature distribution model can be translated into the estimation of thermo-physical parameters problem.

    Inverse parameter estimation methods are based on the minimization of an objective function containing both estimated and measured temperatures. Ordinary least squares estimator is by far the most frequently used method for the estimation of thermo-physical parameters as no prior knowledge is needed, therefore, the optimization problems can be formalized as follows

    (1)

    1.2Model updating of dynamic structure in HTE

    As discussed before, the dynamic responses in HTE, which can be expressed as[9]

    (2)

    For model updating techniques, either identified modal parameters such as eigenvalues and eigenvectors or measured frequency response functions (FRFs) are widely used as reference data[10-11]. In recent years, some new dynamic parameters have also been used in the model updating. Aerospace engineers make wide use of the effective modal mass concept in structural spacecraft design[12].The effective modal mass,as is known, represents the participation of an elastic mode to the reaction at the junction and therefore the knowledge of such a parameter is useful for the analysis of the dynamic behaviour of satellites and aerospace substructures coupled with the launcher. Therefore, the effective modal mass, as a complement could provide more information for model updating to reduce the ill-posed problem which caused by the errors arise form uncertainties.

    The model updating problem has recently been formulated in a multi-objective context[13]that allows the simultaneous minimization of the multimodal indicators, which include eigenvalues, eigenvectors and effective modal mass, etc. Then, the problem of model updating for identifying the model parameter values that given the best fit in all groups of modal properties can be formulated as a multi-objective optimization problem. In this work, the multi-objective model updating method based on residuals of modal frequency (ω) and effective modal mass (M) are introduced, the multi-objective optimization problem can be written as

    (3)

    (4)

    Although the weighted-sum approach is simple to understand and easy to implement, the traditional weighted-sum approach has two main drawbacks which are hard to avoid[14]: First, an even distribution of the weights among objective functions does not always result in an even distribution of solutions on the Pareto front; Second, the weighted-sum approach cannot find solutions on non-convex parts of the Pareto front, although such non-dominated solutions (Pareto optimal solutions) do often exist. For that reasons, Kim[14]propose a new adaptive method, based on the weighted-sum approach, for multi-objective optimization—adaptive weighted-sum method (AWS). In this approach, the weights are not predetermined, but they evolve according to the nature of the Pareto front of the problem. The AWS algorithm produces an even spread of points along the Pareto front, even for problems for which the relative scaling of the objectives are vastly different. Firstly, the uniform step size of the weighting factorΔλ is determined. By using a large step size of the weighting factor,Δλ, a coarse representation of the solution is generated and regions where more refinement is needed are identified. The specific regions are then designated as a feasible region for sub-optimization by imposing inequality constraints in the objective space. In this region, the typical weighted-sum multi-objective optimization is performed. The algorithm will terminates when all the regions of the Pareto front reach a pre-specified resolution. More details about the AWS method in terms of advantages and drawbacks can be found in Ref.[14].

    2 Overview of Support Vector Regression

    (5)

    When the identity function is used, i.e.Φ(x)→x, no transformation is carried out, and linear SVR models are obtained.

    (6)

    (7)

    (8)

    (1) Polynomial:k(x,xi)=((x,xi)+c)p,p∈R,c≥0;

    (2) Gaussian:k(x,xi)=exp[-|x-xi|2/σ2];

    (9)

    (3) Exponential:k(x,xi)=exp(-a|x-xi|),a>0;

    The penalty coefficient c can be determined by cross validation method.

    3 Numerical Examples and Discussion

    The FE model of reentry vehicle structure in an HTE will be used as an example to check the feasibility of the multi-objective identification method for structural model updating methodology proposed in this paper, as shown in Fig.1. A simplified system of the reentry vehicle and its internal structure, by assuming that the aircraft is in the sub orbital flight and will be subjected to extremely high surface temperatures and large temperature gradients. The model comprises two parts: the surface of reentry vehicle is made by ceramic matrix composites (C-SiC) and internal structure made of oxide dispersion strengthened super alloys (PM1000), both of them are exist in inside and outside of the structure in order to withstand the high temperatures generated by aerodynamic heating, interlayer with reinforcing ribs connected. The ambient temperature is 20 ℃, and we ignore the influence of installation location of bolts at the specimen on the temperature distribution.

    Fig. 1 Temperature distribution of reentry vehicle and its cutaway view of FE model

    It is possible to imagine many different parameterizations for updating the FE of the reentry vehicle structure. In this paper, the heat transfer derivative of cone and pyramidal structure, χ1and χ2, are chosen as the updating parameters, which have significantly effects on temperature distribution of the reentry vehicle by using sensitivity analysis. Similarly, the elastic modulus of cone E1and thickness of pyramidal structure t2are chosen as updating parameters for structural dynamic model updating. Then, we will employ the SVR-GS to update the FE model of thermal transfer and dynamic structures, respectively, based on hierarchical method in HTE proposed by Ref.[9] once they are confirmed to be updating parameters.

    Table 1 Initial design space of thermal parameters modific

    Table 1 shows the initial design space of thermal parameters by trying. The normalization process is described as transition from the original interval [x1i,x2i] of the design variables xito the new interval [-1, 1] of the design variables yi, where i=1,2,…,k for convenience. Assume that the target values of required thermal correction parameters are α1=0.3 W/mm and α2=0.2 W/mm, which are used to calculate temperature distribution as the real value. Pick up 16 sample points randomly using the Latin hypercube design in the initial design space of thermal parameters, and calculate the temperature value as the theoretical value. Approximately substitute the SVR-GS surrogate models for the relation between objective function and design variables. The temperature residual model is shown in Fig. 2 in the form of SVR-GS. Then we get the optimal solution by the genetic algorithm owing to their excellent performance in the global optimization problem. The updated thermal parameter values are shown in Table 2.

    Fig. 2 SVM-GS surrogate model

    Table 2 Modified thermal parameter values

    Table 3 shows the temperature deviations before and after modification for A, B, C, D, E, F (Fig. 1) six points. We found that the largest temperature deviation based on the SVM-GS model is no more than 0.909 9%, which indicates

    that the temperature distribution of vehicle calculated by the updated parameters agrees well with the true temperature distribution. Then, the process of structural dynamics model updating is conducted based on the updated steady-state temperature distribution. The 16 sample points are selected randomly by the Latin hypercube design in the initial design space of each thermal parameter, and the first fourth-order natural frequency is calculated as the theoretical value. Assume that E1=90 GPa and t2=3 mm are the error resource of structural dynamics parameters needed to be updated, and calculating the first fourth-order natural frequency of vehicle in HTE as experimental values based on the ture values. The residuals of the theoretical value and the experimental value of each order natural frequency and effective modal mass are built by Eq.(3), respectively. Similarly, the SVM-GS predictor of objective function in Eq.(3) could be established to estimate the elastic modulus (E1) and thickness (t2). The identified Pareto curve is composed of 15 Pareto optimal solutions and shown in Fig. 3 by using the AWS described above.

    Tables 3—4 present the updated parameters and the errors of reentry vehicle dynamic characteristic using AWS. It is observed that the maximum error of updated parameters is no more than 2.727%, and the maximum error of updated frequency is no more than 2.9%. There are slight differences between the parameters of the updated model and the test ones, which indicates that the model updating method proposed in this paper is available for practical applications.

    Table 3 Comparison of test frequencies with updated temperature

    Table 4 Initial design space of dynamic structural updating parameters

    Fig. 3 Pareto frontier calculated by AWS

    Table 5 Comparison between updated parameters and real parameters

    Table 6 Comparison between updated results and experiment values of Pareto frontier

    4 Conclusions

    An inverse approach for solving the model updating in HTE is presented. The following conclusions can be drawn:

    (1) By employing the hierarchical method, we decompose the problem into temperature field updating and dynamic structural updating. To improve the efficiency and robustness of estimation, the proposed method is constructed from SVR and AWS by turning the estimation of physical properties into a multi-objective optimization problem, with an approach of constructing the objective function, which combines the residues of modal frequency and effective modal mass. The method is verified by an FE model of the reentry vehicle with respect to the effect of temperature change.

    (2) The developed method based on multi-objective optimization can improve the stability which influenced by the error of SVR.

    (3) The estimation algorithm is proposed based on the thermal analysis module of MSC.Nastran code thus can be applied to estimate the physical properties of complex structures for model updating.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (No. 11472132), the Fundamental Research Funds for Central University (No.NJ20160050), and the Fundamental Research Funds for Central University (No.NJ2016098).

    [1]STEENACKERS G, GUILLAUME P. Finite element model updating taking into account the uncertainty on the modal parameters estimates[J]. Journal of Sound and Vibration, 2006, 296(4):919-934.

    [2]THONON C, GOLINVAL J C. Results obtained by minimizing natural frequency and MAC-value errors of a beam model[J]. Mechanical Systems and Signal Processing, 2003, 17(1):65-72.

    [3]MYERS R H, MONTGOMERY D C. Response surface methodology; process and product optimisation using designed experiments[M]. New York, USA: John Wiley and Sons, 2002.

    [4]HE Cheng, HE Huan, CHEN Guoping. Multiobjective optimization of thin-walled structures for crashworthiness based on the global approximate function[J]. Journal of Nanjing University of Aeronautics and Astronautics,2012,44(4):472-477.(in Chinese)

    [5]HAYKIN S. Neural networks: A comprehensive foundation[M]. First Ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1994.

    [6]HE W, WANG Z, JIANG H. Model optimizing and feature selecting for support vector regression in time series forecasting[J]. Neuro Computing, 2008, 72:600-611.

    [7]TEUGHELS A, DE ROECK G. Damage detection and parameter identification by finite element model updating[J]. Archives of Computational Methods in Engineering, 2005, 12(2):123-164.

    [8]NOWINSKI J L. Theory of thermoelasticity with applications[M]. The Netherlands: Sijthoff and Noordhoff, 1978.

    [9]HE Cheng, CHEN Guoping, HE Huan, et al. Model updating of a dynamic system in a high-temperature environment based on a hierarchical method[J]. Finite Elements in Analysis and Design, 2013, 77:59-68.

    [10]KHODAPARAST H H, MOTTERSHEAD J E, BADCOCK K J. Interval model updating with irreducible uncertainty using the Kriging predictor[J]. Mechanical Systems and Signal Processing, 2011, 25:1204-1226.

    [11]HAAG T, HERRMANN J, HANSS M. Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic[J]. Mechanical Systems and Signal Processing, 2010, 24(7): 2021-2034.

    [12]BERTHELON T, CAPITAINE A. Improvements for interpretation of structural dynamics calculation using effective parameters for substructures[C]// Proc Int Conf Spacecrafi Structures and Mechanical Testing. Noordwijk, The Netherlands, ESA SP-321, 1991: 63-68.

    [13]HARALAMPIDIS Y, PAPADIMITRIOU C, PAVLIDOU M. Multi-objective framework for structural model identification[J]. Earthquake Engrg. Struct. Yn, 2005, 34 (6):665-685.

    [14]KIM I Y,WECK DE O L. Adaptive weighted-sum method for bi-objective optimization: Pareto front generation[J]. Struct Multidisc Optim, 2005, 29: 149-158.

    [15]VAPNIK V. Statistical learning theory[M]. New York: John Wiley and Sons, 1998.

    [16]VAPNIK V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.

    Dr. He Huan is an associate professor in Nanjing University of Aeronautics and Astronautics (NUAA). He received his first degree and Ph.D. degree in NUAA. His research interests focus on computational structural dynamics.

    Dr. He Cheng is a research assistant in NUAA. He received his Ph.D. degree in NUAA. His research interests focus on computational structural dynamics, emission and recovery for UAV.

    Dr. Chen Guoping is a professor and doctoral supervisor in NUAA. He received his Ph.D. degree from NUAA. His research interests focus on structural dynamics.

    (Executive Editor: Zhang Tong)

    , E-mail address: hechengary@163.com.

    How to cite this article: He Huan, He Cheng, Chen Guoping, et al. Model updating for high speed aircraft in thermal environment using adaptive weighted-sum methods[J]. Trans. Nanjing Univ. Aero. Astro., 2016,33(3):362-369.

    http://dx.doi.org/10.16356/j.1005-1120.2016.03.362

    TP391Document code:AArticle ID:1005-1120(2016)03-0362-08

    亚洲激情在线av| 久久伊人香网站| 国产成人影院久久av| 久久人妻福利社区极品人妻图片| 日韩有码中文字幕| 日日爽夜夜爽网站| 不卡一级毛片| 亚洲精品美女久久av网站| 18美女黄网站色大片免费观看| 女警被强在线播放| 啦啦啦韩国在线观看视频| 午夜两性在线视频| 亚洲视频免费观看视频| 久久久久久久久久久久大奶| svipshipincom国产片| 搞女人的毛片| 亚洲欧美日韩无卡精品| 欧美成人性av电影在线观看| 成人亚洲精品av一区二区| 麻豆一二三区av精品| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美激情在线| 亚洲片人在线观看| 午夜福利在线观看吧| 亚洲第一欧美日韩一区二区三区| 国产免费男女视频| av中文乱码字幕在线| 女生性感内裤真人,穿戴方法视频| 桃红色精品国产亚洲av| 国产成人av激情在线播放| 精品少妇一区二区三区视频日本电影| 国产蜜桃级精品一区二区三区| 两个人视频免费观看高清| 性少妇av在线| 亚洲国产精品合色在线| 黄色女人牲交| 国产精品 国内视频| 午夜福利成人在线免费观看| 亚洲av五月六月丁香网| 男女下面进入的视频免费午夜 | 久久天躁狠狠躁夜夜2o2o| 欧美成人免费av一区二区三区| 一本综合久久免费| 97人妻精品一区二区三区麻豆 | 啪啪无遮挡十八禁网站| 亚洲精品国产色婷婷电影| 久热爱精品视频在线9| 男女下面进入的视频免费午夜 | 欧美成人一区二区免费高清观看 | 欧美中文日本在线观看视频| 免费看美女性在线毛片视频| 色综合站精品国产| 黄色视频,在线免费观看| 亚洲av熟女| 亚洲av日韩精品久久久久久密| 亚洲视频免费观看视频| 一区福利在线观看| 伊人久久大香线蕉亚洲五| 欧美日韩黄片免| ponron亚洲| 亚洲av五月六月丁香网| 精品福利观看| 国产精品免费视频内射| 亚洲国产精品合色在线| 久久久久国产精品人妻aⅴ院| 一二三四在线观看免费中文在| 日本黄色视频三级网站网址| 亚洲国产毛片av蜜桃av| 日韩 欧美 亚洲 中文字幕| 精品国产美女av久久久久小说| 久久香蕉激情| 1024香蕉在线观看| 美女大奶头视频| 国产精品久久久久久亚洲av鲁大| 老汉色∧v一级毛片| 丝袜在线中文字幕| 少妇 在线观看| 欧美性长视频在线观看| 色综合婷婷激情| 9191精品国产免费久久| 国产精品亚洲美女久久久| 日本黄色视频三级网站网址| 搡老岳熟女国产| 午夜a级毛片| 十分钟在线观看高清视频www| 亚洲成a人片在线一区二区| 久久国产亚洲av麻豆专区| 好看av亚洲va欧美ⅴa在| 久久国产精品影院| 久久久国产欧美日韩av| 亚洲av美国av| 精品国产乱码久久久久久男人| 母亲3免费完整高清在线观看| 夜夜夜夜夜久久久久| 亚洲av成人av| 侵犯人妻中文字幕一二三四区| 亚洲国产毛片av蜜桃av| 大陆偷拍与自拍| 99在线视频只有这里精品首页| 国内久久婷婷六月综合欲色啪| 日韩国内少妇激情av| 嫩草影视91久久| 99热只有精品国产| 亚洲五月婷婷丁香| 国内久久婷婷六月综合欲色啪| 国产精品国产高清国产av| 亚洲av成人不卡在线观看播放网| 日本 av在线| 久久久国产精品麻豆| 久9热在线精品视频| 日本三级黄在线观看| 国产精品乱码一区二三区的特点 | 亚洲精品国产精品久久久不卡| 亚洲国产看品久久| 巨乳人妻的诱惑在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美成人午夜精品| 中文亚洲av片在线观看爽| 亚洲中文字幕一区二区三区有码在线看 | 国语自产精品视频在线第100页| 日韩国内少妇激情av| 亚洲国产高清在线一区二区三 | 精品一品国产午夜福利视频| 欧美色视频一区免费| 亚洲中文日韩欧美视频| 一区福利在线观看| 国产国语露脸激情在线看| 亚洲国产日韩欧美精品在线观看 | 亚洲精品中文字幕一二三四区| 校园春色视频在线观看| 精品国产超薄肉色丝袜足j| 亚洲精品国产精品久久久不卡| 国产亚洲欧美98| 女性被躁到高潮视频| 国产免费av片在线观看野外av| 一区二区三区精品91| 可以在线观看毛片的网站| 午夜影院日韩av| 亚洲aⅴ乱码一区二区在线播放 | 婷婷丁香在线五月| 妹子高潮喷水视频| 欧美日韩亚洲综合一区二区三区_| 91麻豆av在线| 亚洲成人免费电影在线观看| 国产精品自产拍在线观看55亚洲| 亚洲男人的天堂狠狠| 亚洲人成网站在线播放欧美日韩| 久久久精品欧美日韩精品| 可以免费在线观看a视频的电影网站| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区二区三区在线观看| 久久久久久久久久久久大奶| 亚洲欧美激情综合另类| 最新美女视频免费是黄的| 久久国产精品人妻蜜桃| 欧美日韩瑟瑟在线播放| 亚洲国产精品999在线| 国产午夜精品久久久久久| 麻豆国产av国片精品| 精品一区二区三区av网在线观看| 国产一级毛片七仙女欲春2 | 亚洲av电影在线进入| 一级作爱视频免费观看| 欧美大码av| 欧美性长视频在线观看| 色在线成人网| 女生性感内裤真人,穿戴方法视频| 香蕉国产在线看| 最近最新中文字幕大全电影3 | 国产99久久九九免费精品| 黑人巨大精品欧美一区二区mp4| 婷婷精品国产亚洲av在线| or卡值多少钱| 麻豆av在线久日| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利影视在线免费观看| 999久久久精品免费观看国产| 一级毛片高清免费大全| av视频免费观看在线观看| 女人高潮潮喷娇喘18禁视频| 久久香蕉精品热| 妹子高潮喷水视频| 久久人人精品亚洲av| 欧美av亚洲av综合av国产av| 黄色 视频免费看| 日韩成人在线观看一区二区三区| 日韩成人在线观看一区二区三区| av在线播放免费不卡| 国产成年人精品一区二区| 国产三级黄色录像| 久久久久九九精品影院| 精品卡一卡二卡四卡免费| 两个人免费观看高清视频| 一级作爱视频免费观看| 黑人巨大精品欧美一区二区mp4| videosex国产| 欧美中文综合在线视频| 91成人精品电影| 一级,二级,三级黄色视频| 国产精品电影一区二区三区| 男女做爰动态图高潮gif福利片 | 亚洲最大成人中文| videosex国产| 嫩草影视91久久| 中文字幕另类日韩欧美亚洲嫩草| 怎么达到女性高潮| 男人舔女人下体高潮全视频| 亚洲成a人片在线一区二区| 亚洲成人免费电影在线观看| 免费看美女性在线毛片视频| 国产成人免费无遮挡视频| 国产不卡一卡二| 国产av又大| 久久精品亚洲熟妇少妇任你| 天堂√8在线中文| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区激情视频| 久久亚洲真实| 女人爽到高潮嗷嗷叫在线视频| 国产精品免费一区二区三区在线| 最新在线观看一区二区三区| 成人av一区二区三区在线看| 夜夜爽天天搞| 美国免费a级毛片| 久久天堂一区二区三区四区| 91麻豆av在线| 精品电影一区二区在线| 1024视频免费在线观看| 欧美绝顶高潮抽搐喷水| 淫秽高清视频在线观看| 久久影院123| 久久国产乱子伦精品免费另类| 高清毛片免费观看视频网站| 老司机深夜福利视频在线观看| 99精品欧美一区二区三区四区| 十分钟在线观看高清视频www| 欧美成人午夜精品| 国产精品二区激情视频| 国产精品 国内视频| 国产精品 欧美亚洲| 97人妻天天添夜夜摸| 丁香欧美五月| 国产成人精品在线电影| 人人妻人人澡人人看| 亚洲中文日韩欧美视频| 久久久久亚洲av毛片大全| 亚洲熟妇熟女久久| 如日韩欧美国产精品一区二区三区| www.精华液| 啦啦啦韩国在线观看视频| 日韩精品中文字幕看吧| 人人妻人人澡欧美一区二区 | 国产片内射在线| 搡老熟女国产l中国老女人| 精品福利观看| 国产精品久久久av美女十八| 国产精品自产拍在线观看55亚洲| 久9热在线精品视频| 亚洲精品国产色婷婷电影| 亚洲五月色婷婷综合| 色综合站精品国产| 免费在线观看日本一区| 欧美黑人精品巨大| 国产97色在线日韩免费| 纯流量卡能插随身wifi吗| 这个男人来自地球电影免费观看| 超碰成人久久| 国产精品自产拍在线观看55亚洲| 成人精品一区二区免费| 99在线人妻在线中文字幕| 久久伊人香网站| 亚洲欧美日韩无卡精品| av片东京热男人的天堂| 亚洲全国av大片| 日韩高清综合在线| 久久国产精品影院| 亚洲五月天丁香| 久久精品亚洲精品国产色婷小说| 黑丝袜美女国产一区| 久久热在线av| avwww免费| 夜夜夜夜夜久久久久| 每晚都被弄得嗷嗷叫到高潮| 午夜福利视频1000在线观看 | 两性夫妻黄色片| 精品福利观看| av网站免费在线观看视频| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| 可以在线观看毛片的网站| 亚洲成人国产一区在线观看| 日韩欧美在线二视频| 男女午夜视频在线观看| 免费在线观看黄色视频的| 亚洲欧美日韩另类电影网站| 免费人成视频x8x8入口观看| www日本在线高清视频| 亚洲性夜色夜夜综合| 亚洲精品av麻豆狂野| 岛国视频午夜一区免费看| 欧美另类亚洲清纯唯美| 午夜福利欧美成人| 久久精品国产99精品国产亚洲性色 | 国产蜜桃级精品一区二区三区| 少妇的丰满在线观看| 天天躁夜夜躁狠狠躁躁| av福利片在线| 麻豆久久精品国产亚洲av| 亚洲五月天丁香| 少妇熟女aⅴ在线视频| 亚洲性夜色夜夜综合| 免费一级毛片在线播放高清视频 | 亚洲国产欧美网| 老汉色av国产亚洲站长工具| 国产成人av激情在线播放| 精品国产美女av久久久久小说| 色av中文字幕| 在线观看免费视频网站a站| 美女 人体艺术 gogo| 免费无遮挡裸体视频| 国产一区二区三区综合在线观看| 欧美黄色淫秽网站| 精品高清国产在线一区| 亚洲少妇的诱惑av| 日韩三级视频一区二区三区| 久久精品91无色码中文字幕| 制服丝袜大香蕉在线| 国产欧美日韩综合在线一区二区| 久久 成人 亚洲| 身体一侧抽搐| 嫩草影院精品99| 国产成人av激情在线播放| 男女下面进入的视频免费午夜 | АⅤ资源中文在线天堂| 桃色一区二区三区在线观看| 日韩中文字幕欧美一区二区| 黄色视频,在线免费观看| 久久久久精品国产欧美久久久| 国产精品综合久久久久久久免费 | 久久精品国产99精品国产亚洲性色 | 成人特级黄色片久久久久久久| 亚洲无线在线观看| 欧美成人免费av一区二区三区| 亚洲精品国产区一区二| 丝袜美腿诱惑在线| 国产精品一区二区在线不卡| 久久人人97超碰香蕉20202| 满18在线观看网站| 精品国内亚洲2022精品成人| 亚洲国产精品999在线| 香蕉国产在线看| 少妇熟女aⅴ在线视频| 天堂√8在线中文| 青草久久国产| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久亚洲av鲁大| 一级,二级,三级黄色视频| 丝袜美足系列| 国产欧美日韩一区二区三| 可以在线观看的亚洲视频| 久久国产精品影院| 亚洲狠狠婷婷综合久久图片| √禁漫天堂资源中文www| 国产欧美日韩一区二区三区在线| 色播亚洲综合网| 久久国产亚洲av麻豆专区| 黄色女人牲交| 国产区一区二久久| 久久久久久免费高清国产稀缺| 黄色视频,在线免费观看| 国产aⅴ精品一区二区三区波| 精品人妻1区二区| 亚洲五月婷婷丁香| 久久精品亚洲熟妇少妇任你| АⅤ资源中文在线天堂| 法律面前人人平等表现在哪些方面| 老汉色∧v一级毛片| 男女下面插进去视频免费观看| 50天的宝宝边吃奶边哭怎么回事| 午夜影院日韩av| tocl精华| 亚洲一区中文字幕在线| 啦啦啦 在线观看视频| 国产精品久久电影中文字幕| 午夜精品国产一区二区电影| 亚洲五月天丁香| 欧美日本视频| 亚洲,欧美精品.| 久久久久国产一级毛片高清牌| 欧美日韩黄片免| 免费人成视频x8x8入口观看| 又黄又粗又硬又大视频| 美女高潮喷水抽搐中文字幕| 黄色视频,在线免费观看| 久久九九热精品免费| 超碰成人久久| 亚洲精品美女久久久久99蜜臀| 91麻豆av在线| 悠悠久久av| 人成视频在线观看免费观看| 非洲黑人性xxxx精品又粗又长| 国产视频一区二区在线看| 亚洲精品美女久久av网站| 在线播放国产精品三级| 人人妻,人人澡人人爽秒播| 国产亚洲av嫩草精品影院| av免费在线观看网站| 香蕉丝袜av| 午夜免费鲁丝| 久久亚洲精品不卡| 欧美中文日本在线观看视频| 久久久久久久久久久久大奶| 99久久综合精品五月天人人| 在线观看66精品国产| 免费观看人在逋| 可以免费在线观看a视频的电影网站| 每晚都被弄得嗷嗷叫到高潮| 久久久久九九精品影院| 变态另类成人亚洲欧美熟女 | 日日摸夜夜添夜夜添小说| 亚洲成av片中文字幕在线观看| 国产亚洲欧美精品永久| 纯流量卡能插随身wifi吗| 18禁美女被吸乳视频| 免费在线观看日本一区| 久久精品国产清高在天天线| 亚洲欧洲精品一区二区精品久久久| 久久精品aⅴ一区二区三区四区| 可以免费在线观看a视频的电影网站| 午夜福利18| 很黄的视频免费| ponron亚洲| 香蕉国产在线看| 精品少妇一区二区三区视频日本电影| www.999成人在线观看| 十八禁网站免费在线| www.熟女人妻精品国产| 夜夜躁狠狠躁天天躁| 一区在线观看完整版| 女人精品久久久久毛片| 在线观看66精品国产| av视频在线观看入口| 精品卡一卡二卡四卡免费| 黄色视频不卡| 脱女人内裤的视频| 国产欧美日韩一区二区三| 午夜久久久在线观看| av在线播放免费不卡| 夜夜夜夜夜久久久久| 老司机靠b影院| 给我免费播放毛片高清在线观看| 无限看片的www在线观看| 91成年电影在线观看| 制服人妻中文乱码| 午夜福利一区二区在线看| 亚洲欧美精品综合久久99| 亚洲 国产 在线| 制服诱惑二区| 手机成人av网站| 国产高清有码在线观看视频 | 国产亚洲av高清不卡| 欧美在线一区亚洲| 天天一区二区日本电影三级 | 老司机深夜福利视频在线观看| 精品久久久久久久毛片微露脸| 日日爽夜夜爽网站| 久久精品影院6| 我的亚洲天堂| 国产一卡二卡三卡精品| 色尼玛亚洲综合影院| 国产成人系列免费观看| 两人在一起打扑克的视频| 嫩草影视91久久| 女警被强在线播放| 纯流量卡能插随身wifi吗| 国产熟女午夜一区二区三区| 亚洲一区二区三区色噜噜| 久久中文字幕一级| 一本久久中文字幕| 午夜两性在线视频| 日本 欧美在线| 国产乱人伦免费视频| 亚洲国产精品成人综合色| 欧美 亚洲 国产 日韩一| 精品久久久久久久毛片微露脸| 国内精品久久久久精免费| 欧美午夜高清在线| 精品欧美一区二区三区在线| 精品久久久久久,| 亚洲人成电影免费在线| 午夜视频精品福利| 嫁个100分男人电影在线观看| x7x7x7水蜜桃| 国产精品免费视频内射| 久久亚洲真实| 欧美日韩精品网址| 啪啪无遮挡十八禁网站| 九色亚洲精品在线播放| 欧美成人性av电影在线观看| 国产伦一二天堂av在线观看| 亚洲精品在线观看二区| 一区在线观看完整版| 国产一级毛片七仙女欲春2 | 国产成人精品在线电影| 成人欧美大片| 18禁国产床啪视频网站| 久久伊人香网站| 久久天堂一区二区三区四区| 国产激情久久老熟女| 亚洲国产看品久久| 中出人妻视频一区二区| 亚洲自拍偷在线| 国产极品粉嫩免费观看在线| 在线观看www视频免费| 1024视频免费在线观看| 一级a爱视频在线免费观看| 高清黄色对白视频在线免费看| 免费在线观看视频国产中文字幕亚洲| 久久精品人人爽人人爽视色| 亚洲天堂国产精品一区在线| 午夜福利一区二区在线看| 多毛熟女@视频| 国产又色又爽无遮挡免费看| 婷婷丁香在线五月| 国产一区在线观看成人免费| 桃色一区二区三区在线观看| 涩涩av久久男人的天堂| 精品无人区乱码1区二区| 国产一级毛片七仙女欲春2 | 婷婷丁香在线五月| 久热这里只有精品99| 多毛熟女@视频| 国产蜜桃级精品一区二区三区| 久久伊人香网站| av视频免费观看在线观看| www.熟女人妻精品国产| 国产私拍福利视频在线观看| 黑人欧美特级aaaaaa片| 亚洲精品国产精品久久久不卡| 啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| 亚洲午夜理论影院| 国产一区二区三区在线臀色熟女| 成人永久免费在线观看视频| 欧美日韩乱码在线| 手机成人av网站| 久久精品成人免费网站| 国产一区二区三区视频了| 女警被强在线播放| 国产男靠女视频免费网站| 成熟少妇高潮喷水视频| av视频免费观看在线观看| 久久国产精品人妻蜜桃| 亚洲精品美女久久久久99蜜臀| 亚洲精品av麻豆狂野| 国产一区二区三区在线臀色熟女| 国产成+人综合+亚洲专区| 国产亚洲欧美在线一区二区| 亚洲午夜理论影院| 国产精品av久久久久免费| 欧美性长视频在线观看| 国产精品久久久久久人妻精品电影| 免费无遮挡裸体视频| 高清毛片免费观看视频网站| 丝袜在线中文字幕| 精品无人区乱码1区二区| 亚洲国产精品sss在线观看| 午夜福利成人在线免费观看| 国产精品久久久久久精品电影 | 91精品国产国语对白视频| av在线天堂中文字幕| 亚洲国产精品合色在线| 欧美成人一区二区免费高清观看 | 人人妻人人爽人人添夜夜欢视频| 日日夜夜操网爽| 99国产综合亚洲精品| 激情在线观看视频在线高清| a在线观看视频网站| 精品电影一区二区在线| 成人国语在线视频| 久久狼人影院| 久久国产精品人妻蜜桃| 国产亚洲欧美在线一区二区| 亚洲专区字幕在线| 亚洲国产欧美一区二区综合| 亚洲电影在线观看av| 久久久国产成人免费| 韩国精品一区二区三区| 久久久久久亚洲精品国产蜜桃av| 国产不卡一卡二| 亚洲情色 制服丝袜| 成人免费观看视频高清| 亚洲自偷自拍图片 自拍| 久久精品91无色码中文字幕| 久久婷婷成人综合色麻豆| 亚洲欧美激情综合另类| 亚洲国产看品久久| 亚洲情色 制服丝袜| 国产成人精品在线电影| 手机成人av网站| 午夜精品在线福利| 人人妻,人人澡人人爽秒播| 国产亚洲欧美精品永久| 亚洲男人天堂网一区| 丝袜美足系列| 日韩av在线大香蕉| 久久久久久免费高清国产稀缺| 国产麻豆69| 美女午夜性视频免费| 国产人伦9x9x在线观看| 亚洲中文av在线| 欧美精品啪啪一区二区三区| 如日韩欧美国产精品一区二区三区| 久久欧美精品欧美久久欧美| 成年女人毛片免费观看观看9|