• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Calculations of Aerodynamic and Acoustic Characteristicsfor Scissor Tail-Rotor in Forward Flight

    2016-09-06 01:01:03FanFengHuangShuilinLinYongfeng

    Fan Feng, Huang Shuilin, Lin Yongfeng

    China Helicopter Research and Development Institute, Aviation Industry Corporation of China,Jingdezhen 333000, P.R.China

    (Received 22 December 2014; revised 12 March 2015; accepted 19 March 2015)

    Numerical Calculations of Aerodynamic and Acoustic Characteristicsfor Scissor Tail-Rotor in Forward Flight

    Fan Feng*, Huang Shuilin, Lin Yongfeng

    China Helicopter Research and Development Institute, Aviation Industry Corporation of China,Jingdezhen 333000, P.R.China

    (Received 22 December 2014; revised 12 March 2015; accepted 19 March 2015)

    The aerodynamic and aeroacoustic characteristics of a scissor tail-rotor in a forward flight are numerically calculated. A novel computational fluid dynamics (CFD) model based on Navier-Stokes (N-S) equations is presented to simulate the unsteady flowfield and the aerodynamic characteristics of a scissor tail-rotor in the forward flight. Then the Farassat Formulation 1A derived from the FW-H equation is coupled into the CFD model in order to compute the aeroacoustic characteristics of the scissor tail-rotor. In addition, two different scissor tail-rotor configurations, i.e., the L- and U-configuration, are analyzed in details and compared with a conventional one. The influence of scissor angles on the aerodynamic and aeroacoustic characteristics of the scissor tail-rotor is also investigated. The simulation results demonstrate that the flowfield, aerodynamic force and aeroacoustic characteristics of a scissor tail-rotor are significantly different from the conventional one, and the aerodynamic interaction decreases with the increase of scissor angle, which leads to a reduction of amplitude variation of the tail-rotor thrust in the forward flight. The scissor angle has an important effect on the aerodynamics and aeroacoustics of the scissor tail-rotor.

    computational fluid dynamics (CFD); scissor tail-rotors; aerodynamic characteristics; aeroacoustic characteristics; Navier-Stokes (N-S) equations

    0 Introduction

    The scissor tail-rotor has an unconventional configuration, and it is mainly employed on modern armed helicopters such as the AH-64 Apache and the Mi-28 Havoc. A typical feature of scissor tail-rotors is the uneven blade azimuthal spacing for both the upper and lower pairs of blades. Previous research demonstrated that scissor tail-rotors had certain advantages in noise reduction when compared with the conventional ones. However, only a limited amount of work has been carried out on the scissor configurations and the majority of researchers focused on the conventional helicopter tail-rotors with an equal azimuthal spacing. Therefore, it is essential to investigate the aerodynamic and aeroacoutistic of scissor tail rotor configurations for its design application.

    So far, most of the research has been focused on the scissor tail-rotors in a hover condition, and only few studies were associated with forward flight condition. Unfortunately, some conclusions led by different researchers were contradictory. For example, Sonneborn et al.[1]conducted an experiment on the scissor rotor in 1974, and his results indicated that the scissor rotor had no advantages in aerodynamics and acoustics when compared with the conventional one. Rozhdestvensky[2]carried out a new experiment on the hover performance of scissor tail-rotor in 1996, and compared the noise level of Mi-28 helicopter equipped with both a conventional tail-rotor and a scissor one. However, results in Ref. [2] were quite different from Sonneborn′s, which indicated that the scissor configuration was superior to the conventional one in aerodynamic and aeroacoustic characteristics. The differences between the studies of Sonneborn and Rozhdestvensky were thought to be due to the higher rotational speed of Rozhdestvensky′s rotor model. In 2007, the noise and induced velocity of a scissor rotor was measured by experiments conducted in the Nanjing University of Aeronautics and Astronautics[3], and the hover performance for the test rotor using a free-wake method[4]was also numerically calculated. The experimental and computational results demonstrated that the configuration parameters had an important effect on both aerodynamics and aeroacoustics of scissor rotors. In Ref. [5], the aerodynamic and aeroacoustic characteristics of scissor tail-rotors in hovering were discussed, but those in a forward flight have not been addressed.

    Different from most of the previous research which were mainly focused on hover conditions, this paper aims to conduct numerical studies on both the aerodynamic and aeroacoustic characteristics of the scissor tail-rotors in a forward flight, which is more difficult to investigate when compared with that in hover due to unsteady flow. In addition, the effect of the configuration parameters of scissor tail-rotors is also investigated.

    1 Computational Methodology and Validation

    1.1Aerodynamic model

    A CFD computational model is adopted to simulate the unsteady flowfield of scissor tail-rotors in the forward flight. The three-dimensional (3D) unsteady Reynolds-average Navier-Stokes (RANS) equations are employed as the governing equations, which can be written aswhere W is the vector of conserved variables. F(W) and G(W) are the convective (inviscid) and the viscous flux vectors, respectively.

    (1)

    In the current CFD solver, a third-order upwind scheme (Roe scheme)[6]is used to calculate the convective fluxes on the faces of the control volume. For the time integration, a dual-time stepping method is applied to simulate the unsteady flow phenomenon, together with the LU-SGS scheme[7]at every pseudo-time step. The Spalart-Allmaras one equation model[8]is used as the turbulent model, which is uncoupled with the flow governing equations.

    A moving overset-grid system is used to deal with the rotation and the pitch motion of the tail-rotor blades in the forward flight, which is different from the overset-grid system used in hover. In a grid system, a C-O type grid is used for the body-fitted blade grid (the near grid) and a Cartesian type is adopted as the background grid, respectively. The topological relationship between the blade near-body grid and the background grid is established using the hole cutting and donor cell identifying process, and the flowfiled data between the two set of grids are exchanged using a high-order interpolation scheme.

    1.2Acoustic model

    (2)

    (3)

    1.3Computational results and validations

    Due to the lack of available tail-rotor experimental data in the forward flight, the benchmark case for the Lynx tail rotor in a hover condition[10]is selected to validate the current CFD code for aerodynamic predictions. The advance ratio can be set to zero in the current CFD code to simulate the flowfiled in hover. Fig.1 compares the CFD predicted thrust and torque coefficients of the tail-rotor with the corresponding experimental data[10]. The excellent correlation between calculation and measurements validates the capability of the CFD analysis.

    Fig.1 Comparison of hover performance between CFD and experimental results for the Lynx tail-rotor

    Fig.2 Comparison of predicted and measured time histories of sound pressure for the AH-1/OLS rotor in hover

    To validate the current acoustic model, the noise level of AH-1/OLS rotor[11]is calculated and compared with the available experimental data in Ref.[11]. A blade vortex interaction(BVI) test condition (No.10014) is selected as a numerical benchmark, and the results are shown in Fig. 2. The comparison between the calculated results and experimental data demonstrated that, the present method can predict the representative characteristics of BVI acoustics effectively except for some discrepancies in the detailed magnitude. As shown, the correlations between the CFD simulation and the measurements also demonstrate the capability of the current CFD solver for the complex BVI flowfield, which is important for the analysis of interferences among scissor tail-rotor blades. However, the calculated results, which may be affected by the grid quality and numerical oscillation, do not consist very well with the experimental data at some microphones.

    2 Results and Discussions

    The tail-rotor model used in Rozhdestven-sky′s experiment was selected as a benchmark numerical example in the current study of scissor tail rotors in the forward flight. The detailed rotor model parameters can be found in Ref. [2]. As mentioned in Ref. [2], there are two types of configurations for a scissor tail-rotor, that is, the L- and U-configuration. In the L-configuration, the leading blade is lower than the following one, while in the U-configuration, the leading blade is higher than the following one. For convenience, the leading blade is further defined as blade 1, and the following blade is defined as blade 2. According to the definition, blade L-1 represents the leading blade in the L-configuration. Similarly, the other blades can be defined, as shown in Fig.3.

    Fig.3 Schematic illustration of different configurations for a scissor tail-rotor

    Here the vertical space of the scissor tail-rotor is fixed at a constant value ofΔh/R=0.1, where R represents the tail-rotor radius. The overset grid system used for scissor tail-rotor flow field simulation is shown in Fig.4.

    Fig.4 Schematic of grid system for scissor tail-rotor in forward flight

    2.1Flow field characteristics

    Fig.5 Comparison of tip vortex trajectory for scissor tail-rotor between L- and U-configurations (δ=30°) in forward flight

    The BVI phenomenon for tail-rotor often occurs in a forward flight[12]. The smaller blade space of scissor tail-rotors may result in a more severe BVI, which significantly affects the aerodynamics of tail-rotors. Fig. 5 shows the CFD predicted representative snapshots for the tip vortex trajectories of both the L- and U-configurations at different reference rotor azimuth in a forward flight. It can be seen that the tip-vortex shed from the conventional tail-rotor distributes more uniformly than that from the scissor tail-rotor configuration, which is due to the nonuniform azimuthal space between the neighboring blades of a scissor tail-rotor. The severe blade-vortex and vortex-vortex interference will have important impacts on the tail-rotor aerodynamics.

    Comparing the front side (solid circle) and the aftward side (dashed circle) of wake structures in Fig. 5, it can be seen that, for the scissor tail-rotor with both the L- and U-configurations, the vortices shed from the neighboring blades form a “vortex-pair” during the process of wake evolution due to the smaller blade spacing, which makes the wake structure of a four-bladed tail-rotor similar to that of a two-bladed tail-rotor. In addition, when vortices convect further away from the tail-rotor blades, the two vortex filaments approach to each other. Furthermore, it can be seen from Fig. 5 that, the downwash velocity of the scissor tail-rotor is smaller than that of the conventional one at the same advance ratio.

    2.2Aerodynamic characteristics

    Fig. 6 presents the azimuthal variation of the tail-rotor thrust at different scissor angles, where the subscript ORG refers to the conventional (original) configuration, and L30 represents the L-configuration with a scissor angle of δ=30°. All the other labels can be defined similarly. When compared with the conventional one, the thrust of the scissor tail-rotor varies significantly with azimuth angle, and the period is 2/Rev due to the symmetric layout of the lower/upper blades in the scissor tail-rotor. A smaller blade azimuthal spacing between the neighboring blades leads to a stronger aerodynamic interference. Meanwhile, the vertical space of the upper/lower blades can drive the tip-vortex shed from the leading blade be closer to the following blade, which may result in a stronger aerodynamic interference. In addition, the calculation results show that the aerodynamic interference reduces with the increase of scissor angle, which reduces the variation amplitude of the tail-rotor thrust. It should be pointed out that the increased variation of the tail-rotor thrust will have an important effect on the performance and handling qualities of the helicopter installed with the scissor tail rotor.

    Fig.6 Effects of scissor angle on unsteady tail-rotor thrust

    Fig. 7 shows the effect of the scissor angle on the time-averaged tail-rotor thrust. The results are normalized using the mean thrust of the conventional configuration, i.e., the constant straight-line in Fig. 7 which represents the conventional tail-rotor. The thrust of both the L- and U-configurations are consistently higher than that of the conventional one at all the scissor angles considered. In addition, the L-configuration shows superior aerodynamic performance when compared with the U-configuration, which may be explained by the reduced blade-vortex interaction in the L-configuration (Fig.5).

    Fig.7 Effects of scissor angle on the time-averaged tail-rotor thrust

    Fig.8 shows the azimuthal (unsteady) variation of the thrust on individual blade of both the L- and U-configurations. The general azimuthal variation trend of the scissor tail-rotor is similar to that of the conventional one. However, the blade thrusts of the scissor tail rotor in the azimuthal range of 90°—270° are significantly different from that of the conventional one, which is due to the different patterns of blade-vortex interaction. For example, in the first quadrant (0°—90°) and the fourth rotor quadrant (270°—360°) of the rotor disk, the tip-vortex shed from the preceding blade moves away from the rotor disk, and has a small influence on the following blade. In contrast, in the second and third rotor quadrants (90°—270°), when the tip-vortex moves toward the rear of tail-rotor disk, it encounters the successive blade, which may cause a stronger aerodynamic interference.

    In hover, the blade L-2 is far from the tip-vortex shed from the preceding blade, so it suffers little interference. However, as shown in Fig.8, the blade L-2 suffers a very strong aerodynamic interference in a forward flight. It can be concluded that, within the first 90° of the wake age, the tip-vortex convects above the rotor disk, thereby causing the blade L-2 to approach to the tip-vortex shed from the blade L-1. Consequently, the blade L-2 suffers more intense interference in a forward flight compared with that in hovering.

    Fig.8 Effects of scissors angle on individual blade unsteady thrust

    Fig.9 shows the mean thrust of individual blade versus scissors angle. The mean thrust of each individual blade significantly differs from each other for both the L- and U-configurations. In addition, the difference decreases with an increase in the scissors angle. At all the scissor angles considered, the mean thrusts of the blade L-1 are close to that of the blade U-1. However, the mean thrust of the blade L-2 is consistently higher than that of the blade U-2, which makes the total thrust of the L-configuration higher than that of the U-configuration (Fig. 7).

    Fig.9 Effects of scissors angle on the mean thrust of individual blade

    2.3Acoustic characteristics

    To investigate the acoustic characteristics of scissor tail-rotors in a forward flight, the thickness, loading and total noise at several scissors angles are calculated using the developed acoustics solver. The noise is computed on a plane of 100 m×150 m, which is put 30 m away below the tail-rotor disk.

    Fig.10 compares the time histories of sound pressure between the scissor and the conventional tail-rotors. Results show that, the phase of the sound-pressure peaks is changed due to the uneven blade azimuthal spacing, which is called the ″modulated effect″[13].

    Fig.10 Comparison of time histories of sound pressures between conventional and scissor tail-rotors

    2.4Thickness noise

    Fig.11 presents the effects of the scissor angle on the thickness noise of the tail-rotor in a forward flight. Since the vertical separation space is insignificant for the thickness noise, the noise between the L- and U-configurations is not explicitly distinguished here. In Fig. 11, the thickness noise level of the uneven spaced layout is lower than that of the conventional one. Also, the thickness noise increases with an increase in the scissor angle. In addition, Fig. 12 shows the maximum thickness sound pressure level (SPL) on the observation plane versus the scissors angle. It can be clearly seen that the maximum thickness SPL increases monotonically with the scissor angle, which means that the so-called ″modulation effect″ is gradually reduced.

    Fig.11 Effects of scissor angle on thickness noise of tail-rotor

    Fig.12 The maximum SPL value of thickness noise v.s.scissor angle

    2.5Loading noise

    Fig.13 shows the contours of the loading noise SPL calculated on the observation plane, and Fig. 14 presents the variation of the maximum SPL value on the observation plane versus the scissor angle. As shown from Figs. 13,14, as the scissor angle increases, the loading noise level of the tail-rotor decreases initially and then increases. At scissor angles of 45° and 60°, the tail-rotor loading noise levels of both the L- and U-configurations are lower than that of the conventional one. Also, the L-configuration is superior to the U-configuration. The uneven blade azimuthal spacing of scissors tail-rotors changed the phase difference among the sound pressure peaks, which may decrease the amplitude of the some pressure peaks (Fig.10), and therefore decrease the noise level. In addition, the so-called “modulation effect” further modifies the discrete frequency spectrum, which spreads the acoustic energy into more extensive frequency ranges, and therefore decreases the noise level in low- and mid-frequencies. However, as pointed out in the previous section, a reduced blade azimuthal spacing will intensify the aerodynamic interference, and therefore, lead to a larger loading noise in a forward flight.

    Fig.13 Loading noise characteristics of the scissor tail-rotor

    2.6Total noise

    Fig. 15 shows the effects of the scissor angle on the maximum SPL of the total noise. The constant straight-line in the plot represents the conventional tail-rotor. As shown, there exists an optimal scissor angle for both the L- and U-configurations in the range of 30°—60° which can make a lowest tail-rotor noise level. For the current tail rotor configuration, δ=45° is the optimal scissors angle.

    Fig.15 The maximum SPL value of total noise v.s.scissor angle

    3 Conclusions

    An unsteady N-S solver and an acoustic solver based on the FW-H equation were combined to calculate the aerodynamic and aeroacoustic characteristics of a scissor tail-rotor. Based on the simulation results and analysis in this paper, the following conclusions can be obtained:

    (1) The wake characteristics of a four-bladed scissor tail-rotor with a smaller blade azimuthal spacing are similar to that of a two-bladed tail-rotor.

    (2) The scissor tail-rotor suffers more severe aerodynamic interference when compared with the conventional one due to the reduced blade azimuthal spacing.

    (3) The aeroacoustic characteristics of the scissor tail-rotor are significantly different from the conventional one. The scissor angle has an important effect on the tail-rotor aeroacoustics. An optimal scissors angle could be determined for achieving the lowest tail-rotor noise level.

    (4) The aerodynamic interference reduces with an increase in the scissor angle, which reduces the amplitude variation of the tail-rotor thrust in a forward flight.

    (5) The L-configuration is superior to the U-configuration in both aerodynamic and aeroacoustic characteristics.

    [1]SONNEBORN W G O, DREES J M. The scissor rotor[C]∥The American Helicopter Society 30th Annual Forum. Washington D. C.: [s.n.], 1974: 18-27.

    [2]ROZHDESTENSKY M G. Scissors rotor concept: new results obtained[C]∥ The American Helicopter Society 52nd Annual Forum. Washington D. C.:[s.n.], 1996: 1231-1241.

    [3]XU G H, ZHAO Q J, PENG Y H. Study on the induced velocity and noise characteristics of a scissors rotor[J]. Journal of Aircraft, 2007, 44(3): 806-811.

    [4]XU G H, WANG S C, ZHAO J G. Experimental and analytical investigation on aerodynamic characteristics of helicopter scissors tail rotor[J]. Chinese Journal of Aeronautics, 2001, 14(4): 193-199.

    [5]FAN F, SHI Y J, XU G H. Computational research on aerodynamic and aeroacoustic characteristics of scissors tail-rotor in hover[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2100-2109.

    [6]ROE P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.

    [7]LUO H, BAUM J D. A fast, matrix-free implicit method for computing low mach number flows on unstructured grids[J].International Journal of Computational Fluid Dynamics, 2000, 14(2):133-157.

    [8]SPALART P R, ALLMARAS S R. An one-equation turbulence model for aerodynamic flows[J]La Recherche Aérospatiale, 1992, 439(1):5-21.

    [9]BRENTNER K S. Prediction of helicopter rotor discrete frequency noise: NASA Technical Memorandum 87721 [R]. 1986:1-78.

    [10]DAVID B S, GLORIA K Y, CHARLES A S, et al. Performance and loads data from an outdoor hover test of a lynx tail rotor: NASA TM-101057[R]. 1989:1-78.

    [11]SCHMITZ F H, BOXWELL D A, SPLETTSTOESSER W R, et al. Model-rotor high-speed impulsive noise: full-scale comparisons and parametric variations[J]. Vertica, 1987, 8(4): 395-422.

    [12]NEWMAN S. The foundations of helicopter flight [M]. Great Britain: Edward Arnold, 1994.

    [13]BRENTNER K S, EDWARDS B D, RILEY R, et al. Predicted noise for a main rotor with modulated blade spacing[J]. Journal of the American Helicopter Society, 2005, 50(1):18-25.

    Dr. Fan Feng is an engineer in China Helicopter Research and Development Institute. His research interests lie in helicopter aerodynamics and helicopter aeroacoustics.

    Dr. Huang Shuilin is a senior engineer in China Helicopter Research and Development Institute. His research interests lie in helicopter aerodynamics and helicopter preliminary design.

    Mr. Lin Yongfeng is a senior researcher in China Helicopter Research and Development Institute. His research interests lie in helicopter aerodynamics and helicopter aeroacoustics.

    (Executive Editor: Zhang Tong)

    , E-mail address:ff18709598@avic.com.

    How to cite this article: Fan Feng, Huang Shuilin, Lin Yongfeng. Numerical calculations of aerodynamic and acoustic characteristics for scissor tail-rotor in forward flight[J]. Trans. Nanjing Univ. Aero. Astro., 2016, 33(3):285-293.

    http://dx.doi.org/10.16356/j.1005-1120.2016.03.285

    V211.52Document code: AArticle ID: 1005-1120(2016)03-0285-09

    嫩草影视91久久| av国产免费在线观看| 91av网一区二区| 国产老妇女一区| 精品国产亚洲在线| 亚洲成人免费电影在线观看| 亚洲中文字幕一区二区三区有码在线看| 免费人成在线观看视频色| 中文字幕久久专区| 亚洲精品乱码久久久v下载方式 | 在线视频色国产色| 日韩精品青青久久久久久| 国产三级中文精品| 一区福利在线观看| 亚洲av免费在线观看| 久久久久久久久久黄片| 天堂√8在线中文| 成年女人永久免费观看视频| 亚洲国产欧洲综合997久久,| www.999成人在线观看| 久久精品国产清高在天天线| 宅男免费午夜| 欧美日韩中文字幕国产精品一区二区三区| 国产一区二区在线av高清观看| 欧美一区二区亚洲| 亚洲五月天丁香| 欧美成人a在线观看| 成人av在线播放网站| 国产精品美女特级片免费视频播放器| 成年女人毛片免费观看观看9| 老司机福利观看| 亚洲在线自拍视频| 成人一区二区视频在线观看| 一进一出抽搐gif免费好疼| 色综合亚洲欧美另类图片| 老鸭窝网址在线观看| 蜜桃亚洲精品一区二区三区| 日韩精品中文字幕看吧| 热99在线观看视频| 日本 欧美在线| 少妇人妻精品综合一区二区 | 热99re8久久精品国产| 久久久久久久久久黄片| 免费电影在线观看免费观看| 欧美又色又爽又黄视频| 国产精品亚洲av一区麻豆| 欧美中文日本在线观看视频| 亚洲av不卡在线观看| 亚洲第一电影网av| 九色国产91popny在线| 精品久久久久久久久久免费视频| 成人欧美大片| 成人永久免费在线观看视频| 91九色精品人成在线观看| 黄色成人免费大全| 亚洲真实伦在线观看| 高清日韩中文字幕在线| 女人十人毛片免费观看3o分钟| 女人被狂操c到高潮| 国产精品亚洲美女久久久| 国产av在哪里看| 听说在线观看完整版免费高清| 中文字幕精品亚洲无线码一区| 日日摸夜夜添夜夜添小说| 日韩免费av在线播放| 亚洲熟妇熟女久久| 欧美色欧美亚洲另类二区| av专区在线播放| 人妻夜夜爽99麻豆av| 十八禁网站免费在线| 午夜福利视频1000在线观看| 亚洲av中文字字幕乱码综合| 国产三级中文精品| а√天堂www在线а√下载| www国产在线视频色| 久久久久国产精品人妻aⅴ院| av国产免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 校园春色视频在线观看| 久久国产精品影院| 九色成人免费人妻av| 亚洲成av人片免费观看| 免费在线观看日本一区| 国内少妇人妻偷人精品xxx网站| 亚洲精品色激情综合| 久久性视频一级片| 麻豆一二三区av精品| 亚洲精品亚洲一区二区| 久久久精品欧美日韩精品| 免费在线观看成人毛片| 又黄又爽又免费观看的视频| 精品国产美女av久久久久小说| 免费看十八禁软件| 啦啦啦韩国在线观看视频| 久久久久久九九精品二区国产| 九九热线精品视视频播放| 国产日本99.免费观看| 国产熟女xx| 午夜福利18| 乱人视频在线观看| 免费在线观看成人毛片| 精品一区二区三区av网在线观看| 国产免费一级a男人的天堂| 97人妻精品一区二区三区麻豆| 亚洲熟妇熟女久久| 最新在线观看一区二区三区| 成人国产综合亚洲| 美女高潮喷水抽搐中文字幕| 别揉我奶头~嗯~啊~动态视频| 国产激情欧美一区二区| 五月伊人婷婷丁香| 日本一二三区视频观看| 国产伦精品一区二区三区四那| 日本五十路高清| 性色av乱码一区二区三区2| 91麻豆av在线| 国产一区二区三区视频了| 一区二区三区激情视频| 国产精品久久久人人做人人爽| 久久精品91无色码中文字幕| 99久久精品一区二区三区| 好男人电影高清在线观看| 亚洲性夜色夜夜综合| 女人被狂操c到高潮| 欧美不卡视频在线免费观看| 香蕉av资源在线| 亚洲欧美日韩高清专用| 国产伦在线观看视频一区| 日韩 欧美 亚洲 中文字幕| 色精品久久人妻99蜜桃| 免费观看精品视频网站| 亚洲成人精品中文字幕电影| 嫁个100分男人电影在线观看| 窝窝影院91人妻| 女人高潮潮喷娇喘18禁视频| 18禁裸乳无遮挡免费网站照片| 久久久精品大字幕| 少妇人妻一区二区三区视频| 老鸭窝网址在线观看| 亚洲不卡免费看| 99视频精品全部免费 在线| 欧美黑人欧美精品刺激| 国产精品久久久久久人妻精品电影| 国产淫片久久久久久久久 | av欧美777| 国产黄色小视频在线观看| 亚洲人与动物交配视频| xxx96com| 在线观看免费视频日本深夜| 国内揄拍国产精品人妻在线| 亚洲av熟女| 国产成人欧美在线观看| 国产精品电影一区二区三区| 欧美三级亚洲精品| 日本 av在线| 天堂√8在线中文| 成人无遮挡网站| www国产在线视频色| 怎么达到女性高潮| 成人特级黄色片久久久久久久| 人人妻人人澡欧美一区二区| 啦啦啦免费观看视频1| 欧美性猛交黑人性爽| 超碰av人人做人人爽久久 | 久久草成人影院| 九色国产91popny在线| 手机成人av网站| 欧美不卡视频在线免费观看| 精品人妻偷拍中文字幕| 精华霜和精华液先用哪个| 亚洲国产欧洲综合997久久,| 日本a在线网址| 成人av在线播放网站| 两个人看的免费小视频| 99久久九九国产精品国产免费| 男女下面进入的视频免费午夜| 禁无遮挡网站| 国产成+人综合+亚洲专区| 国产精品综合久久久久久久免费| 日本a在线网址| 精品久久久久久久久久久久久| 亚洲 欧美 日韩 在线 免费| 搡老妇女老女人老熟妇| 看片在线看免费视频| 97人妻精品一区二区三区麻豆| 久久久久九九精品影院| 9191精品国产免费久久| 亚洲国产欧洲综合997久久,| 蜜桃久久精品国产亚洲av| 日本黄大片高清| 叶爱在线成人免费视频播放| xxx96com| 国产一区在线观看成人免费| 精品欧美国产一区二区三| 午夜视频国产福利| 免费av毛片视频| 女警被强在线播放| 在线观看免费视频日本深夜| 亚洲欧美一区二区三区黑人| 成人一区二区视频在线观看| 久久精品国产自在天天线| 成年人黄色毛片网站| 韩国av一区二区三区四区| 日本 av在线| 国产精品美女特级片免费视频播放器| 欧美日韩综合久久久久久 | ponron亚洲| 免费搜索国产男女视频| 国产激情欧美一区二区| 国产精品免费一区二区三区在线| 国产精品久久久久久久久免 | 此物有八面人人有两片| 日本一二三区视频观看| 亚洲av五月六月丁香网| 嫩草影院精品99| 国产av一区在线观看免费| 伊人久久大香线蕉亚洲五| 亚洲黑人精品在线| 国产精品野战在线观看| 亚洲av免费在线观看| 又爽又黄无遮挡网站| 亚洲中文字幕日韩| 一个人免费在线观看电影| 夜夜躁狠狠躁天天躁| 欧美av亚洲av综合av国产av| 国产美女午夜福利| 老司机在亚洲福利影院| 国内毛片毛片毛片毛片毛片| 欧美最黄视频在线播放免费| 久久精品国产清高在天天线| 精品99又大又爽又粗少妇毛片 | 欧美区成人在线视频| av在线天堂中文字幕| 国产精品一区二区免费欧美| 99久久精品热视频| 老司机福利观看| 在线观看av片永久免费下载| 男插女下体视频免费在线播放| 搞女人的毛片| 国产一区二区三区在线臀色熟女| 日韩大尺度精品在线看网址| 国产免费av片在线观看野外av| 99在线视频只有这里精品首页| 亚洲色图av天堂| 久久精品综合一区二区三区| 久久久久久久亚洲中文字幕 | 亚洲七黄色美女视频| 国产探花在线观看一区二区| 97超视频在线观看视频| 亚洲精品乱码久久久v下载方式 | 黑人欧美特级aaaaaa片| 亚洲成人中文字幕在线播放| xxxwww97欧美| 国产三级中文精品| 99精品久久久久人妻精品| 亚洲 欧美 日韩 在线 免费| 欧美在线一区亚洲| 内射极品少妇av片p| 19禁男女啪啪无遮挡网站| 亚洲久久久久久中文字幕| 国产精品久久久久久亚洲av鲁大| 国产欧美日韩一区二区精品| 久久精品91蜜桃| 搡老妇女老女人老熟妇| 亚洲无线观看免费| 久久久久久久午夜电影| 一本精品99久久精品77| 黄色女人牲交| 校园春色视频在线观看| 18禁黄网站禁片免费观看直播| 熟女人妻精品中文字幕| 精品一区二区三区视频在线观看免费| 久久久久国内视频| 婷婷精品国产亚洲av| 俄罗斯特黄特色一大片| 午夜视频国产福利| 国产一区二区在线av高清观看| 精品久久久久久久久久久久久| 成人三级黄色视频| 一级黄片播放器| 一区二区三区激情视频| 亚洲精品影视一区二区三区av| 国产午夜精品论理片| 九色成人免费人妻av| 天堂影院成人在线观看| 色噜噜av男人的天堂激情| 少妇人妻精品综合一区二区 | 无遮挡黄片免费观看| 亚洲国产色片| 国产极品精品免费视频能看的| 欧美黑人巨大hd| 好看av亚洲va欧美ⅴa在| 一二三四社区在线视频社区8| 欧美另类亚洲清纯唯美| 色噜噜av男人的天堂激情| 最新在线观看一区二区三区| 午夜免费成人在线视频| 99热6这里只有精品| av天堂中文字幕网| 夜夜爽天天搞| 欧美日韩瑟瑟在线播放| 俄罗斯特黄特色一大片| 好看av亚洲va欧美ⅴa在| 国产三级黄色录像| 丁香六月欧美| 国产一区二区在线av高清观看| 国产高清三级在线| 美女高潮喷水抽搐中文字幕| xxx96com| 日本精品一区二区三区蜜桃| 一本精品99久久精品77| 宅男免费午夜| 黑人欧美特级aaaaaa片| 他把我摸到了高潮在线观看| 老司机福利观看| 亚洲成人精品中文字幕电影| 成人鲁丝片一二三区免费| 久久欧美精品欧美久久欧美| 狂野欧美白嫩少妇大欣赏| 亚洲精品在线美女| 午夜福利视频1000在线观看| 亚洲 欧美 日韩 在线 免费| 一本久久中文字幕| 精品不卡国产一区二区三区| 久久天躁狠狠躁夜夜2o2o| 免费观看精品视频网站| 国产一区在线观看成人免费| 亚洲欧美精品综合久久99| 91久久精品电影网| 免费观看人在逋| 国产av麻豆久久久久久久| 中文字幕人妻丝袜一区二区| 欧美一级a爱片免费观看看| 免费电影在线观看免费观看| 男女那种视频在线观看| 久久久久久久久久黄片| 高潮久久久久久久久久久不卡| 日韩欧美一区二区三区在线观看| 色尼玛亚洲综合影院| 欧美在线黄色| 老司机午夜福利在线观看视频| 午夜影院日韩av| 亚洲成a人片在线一区二区| 成人国产一区最新在线观看| bbb黄色大片| 老汉色∧v一级毛片| 男插女下体视频免费在线播放| 国产老妇女一区| 欧美xxxx黑人xx丫x性爽| 婷婷亚洲欧美| 一区二区三区免费毛片| 中文亚洲av片在线观看爽| 精品免费久久久久久久清纯| 久久久久国产精品人妻aⅴ院| 亚洲av第一区精品v没综合| 欧美乱色亚洲激情| 最近最新中文字幕大全免费视频| 婷婷亚洲欧美| 18美女黄网站色大片免费观看| 激情在线观看视频在线高清| 国产精品久久视频播放| 成人特级黄色片久久久久久久| 俺也久久电影网| 在线天堂最新版资源| 国产精品 国内视频| 激情在线观看视频在线高清| 午夜福利在线观看吧| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利高清视频| 亚洲国产色片| 久久欧美精品欧美久久欧美| 欧美丝袜亚洲另类 | 亚洲成人久久性| 国产精品嫩草影院av在线观看 | 一级毛片女人18水好多| 床上黄色一级片| 国产精品野战在线观看| 天天添夜夜摸| 国产亚洲精品一区二区www| 国产精品女同一区二区软件 | 看黄色毛片网站| 亚洲av日韩精品久久久久久密| 日日摸夜夜添夜夜添小说| 亚洲国产欧美人成| 亚洲无线观看免费| 日日干狠狠操夜夜爽| 岛国在线观看网站| 亚洲精品久久国产高清桃花| 日本黄大片高清| 久久久国产成人免费| 国产精品综合久久久久久久免费| 一级黄片播放器| 2021天堂中文幕一二区在线观| 美女高潮的动态| 村上凉子中文字幕在线| 亚洲一区高清亚洲精品| av国产免费在线观看| 亚洲avbb在线观看| 国产欧美日韩一区二区三| 尤物成人国产欧美一区二区三区| 亚洲精品色激情综合| 99热精品在线国产| 综合色av麻豆| 国产精品乱码一区二三区的特点| 夜夜爽天天搞| 999久久久精品免费观看国产| 久久久国产成人免费| 好男人电影高清在线观看| 老司机午夜十八禁免费视频| 在线视频色国产色| 日本三级黄在线观看| 91麻豆精品激情在线观看国产| 一本精品99久久精品77| 国产黄a三级三级三级人| 国产欧美日韩精品一区二区| 叶爱在线成人免费视频播放| 激情在线观看视频在线高清| 午夜福利视频1000在线观看| 日韩人妻高清精品专区| 日本撒尿小便嘘嘘汇集6| 少妇人妻一区二区三区视频| 国产久久久一区二区三区| 久久久成人免费电影| 国产色爽女视频免费观看| 99精品欧美一区二区三区四区| 99精品在免费线老司机午夜| 舔av片在线| 国产精品乱码一区二三区的特点| 国模一区二区三区四区视频| 欧美日韩黄片免| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 国产一区在线观看成人免费| 啦啦啦观看免费观看视频高清| 在线十欧美十亚洲十日本专区| 一个人免费在线观看的高清视频| 成人精品一区二区免费| 欧美黄色片欧美黄色片| 欧美国产日韩亚洲一区| 国产三级在线视频| 精品熟女少妇八av免费久了| 夜夜看夜夜爽夜夜摸| 成人午夜高清在线视频| 日韩欧美在线乱码| 丰满的人妻完整版| 欧美黄色淫秽网站| 国产高清视频在线播放一区| 欧美激情在线99| 久久久久免费精品人妻一区二区| 中文字幕人妻丝袜一区二区| 亚洲久久久久久中文字幕| 男女午夜视频在线观看| 麻豆成人午夜福利视频| 一个人看的www免费观看视频| 国产精品女同一区二区软件 | 国产精品av视频在线免费观看| 老司机午夜十八禁免费视频| 亚洲一区二区三区色噜噜| 国产精品久久久久久人妻精品电影| 欧美日本视频| 欧美黄色片欧美黄色片| 亚洲不卡免费看| 欧美bdsm另类| 国产成人aa在线观看| 动漫黄色视频在线观看| 最近最新免费中文字幕在线| 欧美+日韩+精品| 欧美一区二区国产精品久久精品| 淫妇啪啪啪对白视频| 日韩欧美一区二区三区在线观看| 欧美黄色淫秽网站| 欧美+亚洲+日韩+国产| a在线观看视频网站| 老司机深夜福利视频在线观看| 久久香蕉国产精品| 天堂网av新在线| 国产欧美日韩一区二区三| 老司机福利观看| 久久人人精品亚洲av| 国产亚洲av嫩草精品影院| 熟妇人妻久久中文字幕3abv| 久久久久久久午夜电影| 国内精品久久久久精免费| 搡老岳熟女国产| 亚洲最大成人手机在线| 欧美不卡视频在线免费观看| 一个人免费在线观看的高清视频| 国产综合懂色| 男女做爰动态图高潮gif福利片| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区视频在线观看免费| 亚洲精品久久国产高清桃花| 老司机在亚洲福利影院| 超碰av人人做人人爽久久 | 神马国产精品三级电影在线观看| 久久久久九九精品影院| 午夜两性在线视频| 欧美成人一区二区免费高清观看| 亚洲欧美日韩东京热| or卡值多少钱| 在线国产一区二区在线| 国产精品日韩av在线免费观看| 怎么达到女性高潮| 国产高清视频在线观看网站| 久久国产精品人妻蜜桃| 丰满的人妻完整版| svipshipincom国产片| avwww免费| 色av中文字幕| 亚洲成人精品中文字幕电影| 很黄的视频免费| 亚洲av成人不卡在线观看播放网| 午夜精品久久久久久毛片777| 国产高潮美女av| 国产淫片久久久久久久久 | 日韩精品中文字幕看吧| 精品免费久久久久久久清纯| 国产亚洲精品一区二区www| 亚洲无线在线观看| 免费av观看视频| 亚洲熟妇熟女久久| 精品一区二区三区av网在线观看| 免费电影在线观看免费观看| 精品久久久久久成人av| 亚洲精品日韩av片在线观看 | 老司机深夜福利视频在线观看| 我要搜黄色片| 伊人久久精品亚洲午夜| 90打野战视频偷拍视频| 色综合婷婷激情| 亚洲无线在线观看| 在线播放无遮挡| 偷拍熟女少妇极品色| 一级毛片高清免费大全| 国产一区二区亚洲精品在线观看| 一区二区三区国产精品乱码| 国产一区二区亚洲精品在线观看| 啦啦啦韩国在线观看视频| 哪里可以看免费的av片| 国产高清三级在线| 国产欧美日韩精品亚洲av| 夜夜躁狠狠躁天天躁| 国产精品,欧美在线| 亚洲人成网站高清观看| 免费高清视频大片| 亚洲av成人精品一区久久| 亚洲av美国av| 啦啦啦观看免费观看视频高清| 天堂动漫精品| 精品国内亚洲2022精品成人| 哪里可以看免费的av片| 一级毛片高清免费大全| 欧美性感艳星| 成人国产综合亚洲| 最近最新免费中文字幕在线| 亚洲国产高清在线一区二区三| 国产亚洲精品久久久com| 日本成人三级电影网站| 一边摸一边抽搐一进一小说| 国产一级毛片七仙女欲春2| 男人的好看免费观看在线视频| 国产色爽女视频免费观看| 美女大奶头视频| 国产麻豆成人av免费视频| 国产爱豆传媒在线观看| 免费人成视频x8x8入口观看| 成人永久免费在线观看视频| 欧美一区二区国产精品久久精品| 国产 一区 欧美 日韩| 美女大奶头视频| 午夜激情福利司机影院| 日本黄大片高清| 桃红色精品国产亚洲av| 不卡一级毛片| 青草久久国产| 日韩免费av在线播放| 免费观看的影片在线观看| 夜夜看夜夜爽夜夜摸| 久久久色成人| av在线蜜桃| 桃红色精品国产亚洲av| 欧美日韩精品网址| 母亲3免费完整高清在线观看| 在线观看免费视频日本深夜| 国产精品嫩草影院av在线观看 | 亚洲国产欧洲综合997久久,| 网址你懂的国产日韩在线| 九色成人免费人妻av| 脱女人内裤的视频| 国产精品爽爽va在线观看网站| 搡老熟女国产l中国老女人| 日日干狠狠操夜夜爽| 天天一区二区日本电影三级| 亚洲av熟女| 少妇高潮的动态图| 国产精品 国内视频| 成人特级黄色片久久久久久久| 久久久久国内视频| 在线a可以看的网站| 亚洲人与动物交配视频| eeuss影院久久| 国内精品久久久久精免费| 一个人免费在线观看的高清视频| 日日夜夜操网爽| 我要搜黄色片| av天堂中文字幕网| 欧美日韩福利视频一区二区| 亚洲精品日韩av片在线观看 | 日本黄大片高清| 欧美色欧美亚洲另类二区| 国产伦精品一区二区三区视频9 | 日韩人妻高清精品专区| 久久草成人影院| 久久精品国产清高在天天线| 波多野结衣巨乳人妻|