• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Fault-Tolerant Control for Longitudinal Dynamics of Aircraft with Input Saturation

    2016-09-06 01:02:05YangQingyunChenMou

    Yang Qingyun, Chen Mou

    College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P.R. China

    (Received 22 September 2015; revised 12 December 2015; accepted 19 December 2015)

    Robust Fault-Tolerant Control for Longitudinal Dynamics of Aircraft with Input Saturation

    Yang Qingyun, Chen Mou*

    College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P.R. China

    (Received 22 September 2015; revised 12 December 2015; accepted 19 December 2015)

    A robust fault-tolerant control scheme is proposed for the longitudinal dynamics of an aircraft with input saturation, using the anti-windup method and the fault detection observer technology. To estimate the system fault, a detection observer is designed for the longitudinal dynamics, and a fault-tolerant control law is developed to compensate for the fault effects of the longitudinal dynamics. Then, an anti-windup compensator is augmented into the fault-tolerant control law to eliminate the effect of input saturation. Using linear matrix inequality (LMI) technology, the detection observer based fault-tolerant controller is designed to ensure the stability of the closed-loop system and the convergence of the detection observer. Finally, the developed robust fault-tolerant control scheme is applied to the longitudinal model of an aircraft and simulation results are presented to illustrate the effectiveness of the proposed control scheme.

    longitudinal dynamics; input saturation; detection observer; fault-tolerant control; aircrafts

    0 Introduction

    With the development of aircraft technology in recent years, the performance requirements for complexly advanced aircraft, such as the military fighter and the civil aircraft have increased, and their associated control system have become more complicated. Thus, the design of flight control system for the aircraft is a critical and challenging work[1]. Unexpected faults such as the failure, loss of effectiveness or the aging inevitably occur in actuators and sensors of the practical system because of the various work environment[2], which may change system behavior, and if fault-tolerance capability is not considered in the process of control design, actuator or sensor faults will cause control performance degradation, system instability and even aircraft loss of control[3]. Therefore, fault-tolerant capability drawn by the need of aircraft safety and reliability is one of the most important problems that should be explicitly considered in the control design. In addition, the nonlinear system usually possess unmodelled dynamics, modeling error, system parameter perturbations, and other uncertainties[4-8]. Generally speaking, the control performance is severely affected by uncertainties[9-10]. Therefore, it is meaningful and necessary to develop efficient fault-tolerant control (FTC) methods against faults and uncertainties for practical applications.

    The past two decades have seen a rapid growing interest in FTC and the development of several designed methods on the FTC problem[11]. There are generally two main methods, i.e., passive FTC and active FTC. In the passive FTC method, the robust control scheme is designed to eliminate the effects of system faults regarded as external disturbances or a special kind of uncertainties. While the fault detection and diagnose (FDD) mechanism is adopted in the active FTC method to detect and identify the system faults[12]. Compared with the passive FTC method, the active FTC can achieve better tolerant control performance. Therefore, the active FTC method and its applications play an important role in FTC research. So far, many kinds of schemes for active FTC have been found in the literatures, for example, adaptive design[3], sliding mode observer design[13], neural network-based design[14]and so on. However, the active FTC methods applied to the aircraft should be further considered.

    In recent years, the application on the aircraft has been published in many literatures. In Ref.[1], an adaptive fault-tolerant flight controller was developed for the F-16 aircraft model by estimating an eventual fault. In Ref.[15], a sliding-mode fault-tolerant control was presented for a civil aircraft with sensor fault. In Ref.[16], a multi-objective fault-tolerant output tracking control was investigated for the longitudinal model of a flexible air-breathing hypersonic vehicle (FAHV). In Ref.[17], a novel fault-tolerant attitude control based on sliding mode control was studied for a flexible spacecraft subject to actuator faults and uncertain inertia parameters. A hybrid fault-tolerant control system combining the passive and active FTC technologies was designed for an aircraft subject to different degree of loss of control effectiveness in Ref.[18]. In Ref.[19], a fault tolerant attitude tracking controller based on backstepping technology was developed for flexible spacecraft subject to actuator effectiveness fault. In Ref.[20], a trajectory tracking fault tolerant control (FTC) scheme was proposed for a vertical takeoff and landing (VTOL) aircraft with external disturbances and actuator faults. Although most of the existing research results consider the system faults and uncertainties, actuator saturation has not been seriously considered. Therefore, the control input saturation problem needs to be explicitly considered for the aircraft.

    Actuator saturation is another critical problem that needs to be considered in the control system design for the logitudinal dynamics of an aircraft, especially in FTC system design. The reason is that the actuator outputs of the aircraft are inevitably subject to amplitudes or rates saturation constraints due to the physical characteristics of the actuators[19-21]. If the controller is designed without considering this kind of nonlinearity, actuator will quickly reach saturation due to the needed massive control effort to maintain control performance when actuator fault occurs. In this case, the unchanged control output will destroy the stability of the logitudinal dynamics, or even make the aircraft crashed[22-23]. Therefore, the input saturation problem has attracted a great deal of attention and various methods have been developed, such as positively invariant set method[24], sliding mode control[25], small-gain method[26], and so on. One of the most efficient methods for solving input saturation problem is the anti-windup technology[27-31]. The basic idea of anti-windup scheme is that introducing the anti-windup compensator will generate the signal based on the difference between the nominal control input and the actual control input. Then, the designed controller augmented with a compensator can eliminate the adverse effect of input saturation. In Ref.[28], an anti-windup scheme was proposed for a class of linear systems with input saturation. The LMI method for designing dynamic/static anti-windup compensators was presented to improve regional performance and stability of linear control systems with saturating actuators in Ref.[29]. In Ref.[30], a modified anti-windup control method was developed to solve the input saturation problem and applied to the forth order lateral dynamics of F16 aircraft. In Ref.[31], an anticipatory anti-windup scheme which can improve the closed-loop performance was developed, where the compensator is activated before the input saturation occurs because the level of the artificial saturation function is lower. However, the actuator or sensor fault problem has been rarely considered in almost existing research works on input saturation control. Thus, a control scheme will be developed for the system with unknown faults and input saturation in this paper.

    Motivated by the above analysis, a robust fault-tolerant control scheme will be proposed for the longitudinal dynamics of an aircraft with input saturation, system uncertainties and actuator/sensor faults in this paper. To estimate the system fault, a detection observer is designed for the longitudinal dynamics. Based on the detection observer, a fault-tolerant control law is developed to compensate for the fault effects of the longitudinal dynamics. Meanwhile, to tackle the input saturation, a dynamic anti-windup compensator is designed and augmented into the fault-tolerant controller to ensure the stability of the closed-loop system and convergence of the detection observer.

    1 Problem Formulation

    According to Ref.[32], the longitudinal model of an aircraft can be linearized as the following uncertain multi-input and multi-output (MIMO) systems

    (1)

    wherexp∈Rnpis the state, u∈Rmis the control input, and yp∈Rpis the output. In the dynamics model of the aircraft, np=4,m=2. g(t,xp) is a continuous nonlinear vector function. sat(·) represents the input saturation which is described as

    (2)

    Faults are described by the vector f∈Rq, assumed to be zero prior to the failure time, non-zero and differentiable after the fault occurrence. Ap,B1,B2,C,D are the appropriate dimensional constant matrices.ΔA represents the parametric uncertainties of system (1), which is assumed to satisfy the following form

    (3)

    (4)

    To proceed the fault-tolerant control design, the following assumptions and lemma for the given system (1) are required[33]

    Assumption 1(Ap,B1) is stabilizable, (Ap,C) is observable.

    (5)

    In this paper, the control objective is that the fault-tolerance control law and anti-windup compensator using detection observer will be designed for uncertain systems (1) with input saturation and faults such that the closed-loop system is asymptotical stable. To diagnose the faults, a detection observer is proposed to estimate the fault. Then, considering the anti-windup compensator, a fault-tolerant control law based on the detection observer is designed to ensure the stability of the closed-loop system and the convergence of the detection observer.

    2 Detection Observer Design

    In this section, a detection observer is developed to estimate the fault of the system (1). To detect the fault, the following observer is constructed[35].

    (6)

    The estimate errors are defined as

    (7)

    Considering Eqs.(1,6), the estimate error and output error equations can be written as

    (8)

    Under the Assumption 1, we can know that (Ap,C) is detectable. Thus, the gain matrix L can be chosen such that Ap+LC is a stable matrix. Furthermore, the design of the gain matrices L, M, N and the convergence of the detection observer will be discussed in the next section.

    3 Fault-Tolerant Control and Anti-windup Compensator Design Based on Detection Observer

    In this section, we will proceed the design of fault-tolerant control law and anti-windup compensator based on the detection observer. For the convenience of the control design, the fault-tolerant control law design will be integrated with anti-windup compensator design.

    To achieve the closed-loop performance specifications in the absence of the input saturation, the fault-tolerant controller is designed as[3]

    (9)

    where K1is the state feedback design gain matrix, K2is the fault-tolerant term to decrease the effect of the fault. To eliminate or decrease the effect on the closed-loop system in the event of input saturation, an anti-windup compensator is designed as

    (10)

    where xa∈Rnais the anti-windup state, q=sat(u)-u is the input of the anti-windup compensator, and v is the output of the anti-windup compensator. The matrices Aa,Ba,Ca,Daare of suitable dimensions.

    Adding the compensator to the fault-tolerant controller, we have

    (11)

    Substituting the control law (11) into the system (1) yields

    (12)

    Invoking Eqs.(7—9), the closed-loop system can be described as

    (13)

    We choose a Lyapunov function as

    (14)

    where P1,P2,P3,P4are all definite-positive matrices. Prior to the stability of the closed-loop system, we define the variables w and z as

    (15)

    The design objective of the fault-tolerant control law and anti-windup compensator is not only to ensure the stability of the stability and convergence of the detection observer, but also to minimize the L2gainμfrom w to z, where μ>0[36].

    Considering Eq.(14) and the design objective, we obtain

    (16)

    Thus, based on Eq.(13), it is obtained that

    (17)

    Invoking the Lemma 1, we have

    (18)

    where α1,α2,α3,α4are the positive constants.

    Substituting Eq.(18) into Eq.(17) yields

    (19)

    The above inequality (19) can be written as

    (20)

    where

    (21)

    (22)

    Eq.(22) can be rewritten as

    (23)

    where

    (24)

    According to the Schur complement theorem, we obtain that if the following LMI holds

    (25)

    then the inequality Eq.(16) can be satisfied.

    Considering the convergence of the closed-loop system and detection observer, we can obtain the following theorem.

    Theorem 1For a given positive constant α1, matrix Ca∈Rm×na, if there exist positive constantsα2,α3,α4,μ, matrices

    Theorem 1 can be easily proved according to the inequalities (20,25).

    4 Simulation Results

    In this section, the developed fault-tolerant control scheme will be applied to the longitudinal model of the F-16 with multi-axis thrust vectoring (MATV)[32,37]and the simulation results will be given to demonstrate its effectiveness. The longitudinal dynamics of F-16 characterized by Eq.(1) is used in our simulation. xp=[q,α,V,γ]Tis the states of system which represent pitch rate, angle of attack, velocity and flight-path angle, respectively. u=[δe,δT]Tis control input which are the elevator deflection and thrust respectively, and the saturation level of the input umax=[25,10]T. Parameter matrices are given by

    E1=0.2I4

    by solving Eq.(23), we have

    K1=

    L=

    N=[36.8,152,7.778,14.73],α2=0.032 6,μ=18.636 7

    Aa=

    Ba=

    The initial state values are

    x0=[1,0.375,40,1]T, the detection observer, anti-windup compensator and fault-tolerant controller are designed according to Eqs.(6, 10, 11).

    The time-varying fault is considered, which is generated as follows

    (26)

    Under two different controllers, namely, the fault-tolerant controller Eq.(11) based on the detection observer Eq.(6), the anti-windup compensator Eq.(10) and the traditional fault-tolerant controller without anti-windup compensator, the simulation results are shown in Figs.1—3. It can be seen from Fig.1 that the fault detection observer can estimate the system fault with small error. At the same time, the states of the closed-loop system are asymptotically stable with varying-time fault, input saturation and system uncertainties under the designed robuste fault-tolerant controller from Fig.2. However, the states fluctuate wildly with steady-state eorrors under the traditional fault-tolerant controller without anti-windup compensator. In addition, Fig.3 shows that the actuators did not exceed the input

    Fig.1 Responses of fault f, estimate and estimate error

    Fig.2 Responses of the system states with two different controllers

    Fig.3 Responses of control input with two different controllers

    limitation under the control of Eq.(8) and achieves better transient and steady-state performances than that of the traditional controller. Thus, contrast results prove the effectiveness of the developed control scheme in the presence of varying-time fault and input saturation.

    From the above simulation results, we can know that the developed fault-tolerant scheme is valid for the longitudinal model of F-16 with input saturation and time-varying fault.

    5 Conclusions

    A robust fault-tolerant control scheme based on the anti-windup and detection observer technology has been proposed for the longitudinal dynamics of an aircraft subject to input saturation, parametric uncertainties and unknown faults. Using the fault detection observer to estimate the system fault, a robust FTC has been developed to isolate the fault. Meanwhile, to solve the input saturation problem, an anti-windup compensator has been proposed and augmented into the FTC. Finally, the control method has been applied to the longitudinal model of an aircraft to illustrate the effectiveness of the proposed control scheme. The simulation results manifest the effectiveness of the designed robust FTC scheme. The future direction is to extend the anti-windup method to nonlinear systems.

    Acknowledgements

    This work was supported by the National Natural Science Foundations of China (No. 61573184, 61374212), the Natural Science Foundation of Jiangsu Province, China (No. SBK20130033), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20133218110013), and the Six Talents Peak Project of Jiangsu Province of China (No. 2012CXXRJ-010).

    [1]YE Dan, YANG Guanghong. Adaptive fault-tolerant tracking control against actuator faults with application to flight control[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6): 1088-1096.

    [2]ZHANG Xiaodong, PARISINI T, POLYCARPOU M M. Adaptive fault-tolerant control of nonlinear uncertain systems: An information-based diagnostic approach[J]. IEEE Transactions on Automatic Control, 2004, 49(8): 1259-1274.

    [3]JIANG Bin, STAROSWIECKI M, COCQUEMPOT V. Fault accommodation for nonlinear dynamic systems[J].IEEE Transactions on Automatic Control, 2006, 51(9): 1578-1583.

    [4]YANG Jun, CHEN Wenhua, LI Shihua. Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties[J]. IET Control Theory & Applications, 2011, 5(18): 2053-2062.

    [5]LI Hongyi, ZHOU Qi, CHEN Bing, et al. Parameter-dependent robust stability for uncertain Markovian jump systems with time delay[J]. Journal of the Franklin Institute, 2011, 348(4): 738-748.

    [6]LIU Yanjun, TONG Shaocheng, CHEN C L P. Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(2): 275-288.

    [7]CHEN Fuyang, JIANG Bin, TAO Gang. Direct self-repairing control for helicopter via quantum control and adaptive compensator[J]. Trans Nanjing Univ of Aero Astro, 2011, 28(4): 337-342.

    [8]JIANG Bin, ZHAO Jing, QI Ruiyun, et al. Survey of fault diagnosis and fault-tolerant control for Near space vehicle[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(5): 603-610.(in Chinese)

    [9]LIU Yanjun, TONG Shaocheng, WANG Wei. Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems[J]. Fuzzy Sets and Systems, 2009, 160(19): 2727-2754.

    [10]LI Hongyi, JING Xingjian, LAM H K, et al. Fuzzy sampled-data control for uncertain vehicle suspension systems[J]. IEEE Transactions on Cybernetics, 2014, 44(7): 1111-1126.

    [11]CHEN Fuyang, LU Feiei, JIANG Bin, et al. Adaptive compensation control of the quadrotor helicopter using quantum information technology and disturbance observer[J]. Journal of the Franklin Institute, 2014, 351(1): 442-455.

    [12]CHEN Fuyang, JIANG Bin, TAO Gang. Fault self-repairing flight control of a small helicopter via fuzzy feedforward and quantum control techniques[J]. Cognitive Computation, 2012, 4(4): 543-548.

    [13]LI Hongyi, GAO Huijun, SHI Peng, et al. Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach[J]. Automatica, 2014, 50(7): 1825-1834.

    [14]DU Zhimin, JIN Xinqiao, YANG Yunyu. Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network[J]. Applied Energy, 2009, 86(9): 1624-1631.

    [15]ALWI H, EDWARDS C. Fault detection and fault-tolerant control of a civil aircraft using a sliding-mode-based scheme[J]. IEEE Transactions on Control Systems Technology, 2008, 16(3): 499-510.

    [16]LI Hongyi, WU Ligang, SI Yan, et al. Multi-objective fault-tolerant output tracking control of a flexible air-breathing hypersonic vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2010, 224(6): 647-667.

    [17]HU Qinglei, XIAO Bing. Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness[J]. Nonlinear Dynamics, 2011, 64(1-2): 13-23.

    [18]YU Xiang, JIANG Jin. Hybrid fault-tolerant flight control system design against partial actuator failures[J]. IEEE Transactions on Control Systems Technology, 2012, 20(4): 871-886.

    [19]XIAO Bing, HU Qinglei, ZHANG Youmin. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1605-1612.

    [20]CHEN Mou, CHEN Wenhua, WU Qingxian. Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer[J]. Science China Information Sciences, 2014, 57(1): 1-13.

    [21]CHEN Mou, REN Beibei, WU Qingxian, et al. Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer[J]. Science China Information Sciences, 2015, 58(7): 1-12.

    [22]CHADLI M, AOUAOUDA S, KARIMI H R, et al. Robust fault tolerant tracking controller design for a VTOL aircraft[J]. Journal of the Franklin Institute, 2013, 350(9): 2627-2645.

    [23]XU Bin, HUANG Xiyuan, WANG Danwei, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J]. Asian Journal of Control, 2014, 16(1): 162-174.

    [24]CAO Yongyan, LIN Zongli, HU Tingshu. Stability analysis of linear time-delay systems subject to input saturation[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(2): 233-240.

    [25]HU Qinglei, MA Guangfu, XIE Lihua. Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity[J]. Automatica, 2008, 44(2): 552-559.

    [26]LI Yongmin, TONG Shaocheng, LIU Yanjun, et al. Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(1): 164-176.

    [27]CAO Yongyan, LIN Zongli, WARD D G. An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation[J]. IEEE Transactions on Automatic Control, 2002, 47(1): 140-145.

    [28]GRIMM G, HATFIELD J, POSTLETHWAITE I, et al. Antiwindup for stable linear systems with input saturation: an LMI-based synthesis[J]. IEEE Transactions on Automatic Control, 2003, 48(9): 1509-1525.

    [29]HU Tingshu, TEEL A R, ZACCARIAN L. Regional anti-windup compensation for linear systems with input saturation[C]∥Proceedings of the 2005 American Control Conference.[S.l.]: IEEE, 2005: 3397-3402.

    [30]SAJJADI-KIA S, JABBARI F. Modified anti-windup compensators for stable plants[J]. IEEE Transactions on Automatic Control, 2009, 54(8): 1934-1939.

    [31]WU Xiongjun, LIN Zongli. On immediate, delayed and anticipatory activation of anti-windup mechanism: Static anti-windup case[J]. IEEE Transactions on Automatic Control, 2012, 57(3): 771-777.

    [32]GAO Zhifeng, JIANG Bin, Fault accommodation for a class of l inear time-varying systems with parametric uncertainties[J]. Systems Engineering and Elect ronics, 2009, 31(12): 2924-2928.

    [33]BATES D, HAGSTR?M M. Nonlinear analysis and synthesis techniques for aircraft control[M]. Germany: Springer, 2007.

    [32]CHEN Mou, CHEN Wenhua. Disturbance-observer-based robust control for time delay uncertain systems[J]. International Journal of Control, Automation and Systems, 2010, 8(2): 445-453.

    [34]CHENG Guoyang, PENG Kemao. Robust composite nonlinear feedback control with application to a servo positioning system[J]. IEEE Transactions on Industrial Electronics, 2007, 54(2): 1132-1140.

    [35]JIANG Bin, CHOWDHURY F N. Parameter fault detection and estimation of a class of nonlinear systems using observers[J]. Journal of the Franklin Institute, 2005, 342(7): 725-736.

    [36]HONEYWELL, LOCKHEED M. Multivariable control design guidelines: Final Report, WL-TR-96-3099[R]OH, U.S.A.: Wright Patterson AFB,1996.

    Dr. Yang Qingyun received his B.Sc. degree in Measuring and controlling technology and instrument at Jiangsu University of Science and Technology, Zhenjiang, China, in 2008, the M.Sc. degree in Pattern recognition and intelligent system from Nanjing University of Aeronautics & Astronautics (NUAA), Nanjing, China, in 2011, and the Ph.D. degree in Control theory and control engineering at NUAA in 2016. His research interests include nonlinear control and flight control.

    Prof. Chen Mou is currently a professor of the College of Automation Engineering in NUAA. He received his B.Sc. degree in Material science and engineering at NUAA, Nanjing, China, in 1998, the M.Sc. and the Ph.D. degree in Automatic control engineering at NUAA in 2004. He was an Academic Visitor at the Department of Aeronautical and Automotive Engineering, Loughborough University, UK, from November 2007 to February 2008. From June 2008 to September 2009, he was a research fellow in the Department of Electrical and Computer Engineering, the National University of Singapore. He was a senior Academic Visitor at the School of Electrical and Electronic Engineering, the University of Adelaide, Australia, from May 2014 to November 2014. His research interests include nonlinear system control, intelligent control, and flight control.

    (Executive Editor: Zhang Tong)

    , E-mail address:chenmou@nuaa.edu.cn.

    How to cite this article: Yang Qingyun, Chen Mou. Robust fault-tolerant control for longitudinal dynamics of aircraft with input saturation[J]. Trans. Nanjing Univ. Aero. Astro., 2016, 33(3):319-328.

    http://dx.doi.org/10.16356/j.1005-1120.2016.03.319

    TP273Document code: AArticle ID: 1005-1120(2016)03-0319-10

    成人黄色视频免费在线看| 国产精品亚洲一级av第二区| 亚洲情色 制服丝袜| 久久这里只有精品19| 天天添夜夜摸| 日韩欧美一区二区三区在线观看| 欧美一区二区精品小视频在线| 老司机深夜福利视频在线观看| 最近最新中文字幕大全电影3 | 黄色a级毛片大全视频| 精品一区二区三区四区五区乱码| 性色av乱码一区二区三区2| 久热这里只有精品99| 99久久人妻综合| 亚洲精品一卡2卡三卡4卡5卡| 91精品国产国语对白视频| 中出人妻视频一区二区| 日韩av在线大香蕉| 老汉色av国产亚洲站长工具| 丁香欧美五月| 亚洲中文字幕日韩| 精品一区二区三区视频在线观看免费 | 丝袜美腿诱惑在线| 国产成年人精品一区二区 | 99热国产这里只有精品6| 少妇裸体淫交视频免费看高清 | 成人特级黄色片久久久久久久| 欧美乱码精品一区二区三区| 国产人伦9x9x在线观看| 99久久精品国产亚洲精品| 久久久久国内视频| 91av网站免费观看| 黄色视频不卡| a级片在线免费高清观看视频| 亚洲少妇的诱惑av| 日韩中文字幕欧美一区二区| 手机成人av网站| 国产成+人综合+亚洲专区| 怎么达到女性高潮| 成人18禁在线播放| 国产区一区二久久| 久久草成人影院| 国产97色在线日韩免费| 操美女的视频在线观看| 在线av久久热| 精品无人区乱码1区二区| 99香蕉大伊视频| 久久久精品国产亚洲av高清涩受| 人人妻人人澡人人看| 制服诱惑二区| 国产精品偷伦视频观看了| 19禁男女啪啪无遮挡网站| 在线观看免费视频网站a站| 波多野结衣av一区二区av| 日韩精品青青久久久久久| 亚洲 欧美 日韩 在线 免费| 又黄又爽又免费观看的视频| 亚洲va日本ⅴa欧美va伊人久久| 在线国产一区二区在线| 国产片内射在线| 可以免费在线观看a视频的电影网站| 亚洲免费av在线视频| 免费不卡黄色视频| 国产精品美女特级片免费视频播放器 | 亚洲第一欧美日韩一区二区三区| 国产成人av教育| 国产欧美日韩一区二区精品| 制服诱惑二区| 桃红色精品国产亚洲av| 香蕉国产在线看| 日本一区二区免费在线视频| 欧美成狂野欧美在线观看| 男人的好看免费观看在线视频 | 久久99一区二区三区| 国产亚洲精品久久久久5区| videosex国产| 国产三级黄色录像| 亚洲视频免费观看视频| 精品国产一区二区三区四区第35| 欧美日本亚洲视频在线播放| 在线观看www视频免费| 亚洲欧美一区二区三区久久| 香蕉久久夜色| 亚洲av成人一区二区三| 亚洲国产欧美网| 91九色精品人成在线观看| 一区二区三区国产精品乱码| 国产成人免费无遮挡视频| 一级毛片精品| 天堂影院成人在线观看| 精品国产乱子伦一区二区三区| 超碰成人久久| 超碰成人久久| 欧美乱码精品一区二区三区| 丝袜美足系列| 在线观看66精品国产| 老汉色∧v一级毛片| 黄色成人免费大全| 免费在线观看影片大全网站| 亚洲成人免费电影在线观看| 国产野战对白在线观看| 岛国视频午夜一区免费看| 女生性感内裤真人,穿戴方法视频| 成人亚洲精品一区在线观看| 亚洲精品国产精品久久久不卡| 国产欧美日韩一区二区三| 他把我摸到了高潮在线观看| 欧美在线黄色| 精品人妻1区二区| 国产一区在线观看成人免费| 在线观看免费视频网站a站| 一级a爱片免费观看的视频| 动漫黄色视频在线观看| 人妻丰满熟妇av一区二区三区| 怎么达到女性高潮| 午夜免费鲁丝| 看片在线看免费视频| 日韩免费高清中文字幕av| 91大片在线观看| 久久午夜综合久久蜜桃| 国产人伦9x9x在线观看| svipshipincom国产片| 亚洲精品国产一区二区精华液| 最新在线观看一区二区三区| 夜夜夜夜夜久久久久| 如日韩欧美国产精品一区二区三区| 18禁裸乳无遮挡免费网站照片 | 免费看十八禁软件| 久久久久久久久久久久大奶| 久久人妻熟女aⅴ| 久久中文字幕一级| 久久中文字幕人妻熟女| 女性生殖器流出的白浆| 亚洲成av片中文字幕在线观看| 亚洲精品粉嫩美女一区| 99国产综合亚洲精品| 视频在线观看一区二区三区| 国产欧美日韩一区二区精品| 精品久久久久久电影网| www国产在线视频色| 最新在线观看一区二区三区| 高清av免费在线| 在线观看舔阴道视频| 最近最新中文字幕大全免费视频| 中亚洲国语对白在线视频| 欧美精品一区二区免费开放| 超色免费av| 黄片大片在线免费观看| 国产欧美日韩一区二区精品| 欧美日韩一级在线毛片| 如日韩欧美国产精品一区二区三区| 欧美日韩福利视频一区二区| 免费在线观看黄色视频的| 国产欧美日韩一区二区精品| 国产极品粉嫩免费观看在线| 免费在线观看亚洲国产| 色综合欧美亚洲国产小说| 十分钟在线观看高清视频www| 91大片在线观看| 丝袜美足系列| 99久久99久久久精品蜜桃| 日日摸夜夜添夜夜添小说| 精品高清国产在线一区| 欧美日韩精品网址| 亚洲 欧美 日韩 在线 免费| av天堂在线播放| 亚洲视频免费观看视频| 日本黄色日本黄色录像| 嫩草影院精品99| 男女床上黄色一级片免费看| 天天影视国产精品| av视频免费观看在线观看| 亚洲视频免费观看视频| 成人亚洲精品一区在线观看| 欧美激情高清一区二区三区| 成人亚洲精品一区在线观看| 嫩草影院精品99| 香蕉丝袜av| 黄色视频,在线免费观看| 亚洲九九香蕉| 一夜夜www| 日本a在线网址| 亚洲精品中文字幕一二三四区| 欧美成人性av电影在线观看| 国产亚洲精品久久久久5区| 久久中文字幕人妻熟女| 免费女性裸体啪啪无遮挡网站| 交换朋友夫妻互换小说| 欧美日韩乱码在线| a级片在线免费高清观看视频| 免费av毛片视频| 欧美黄色片欧美黄色片| 亚洲男人天堂网一区| 亚洲成av片中文字幕在线观看| 日韩三级视频一区二区三区| 欧美成人性av电影在线观看| 欧美日韩福利视频一区二区| 色尼玛亚洲综合影院| 日韩欧美在线二视频| 国产av一区在线观看免费| 久久国产精品人妻蜜桃| xxxhd国产人妻xxx| 美国免费a级毛片| 国产精品99久久99久久久不卡| 国产亚洲精品久久久久久毛片| 亚洲国产欧美日韩在线播放| 涩涩av久久男人的天堂| 在线观看免费视频网站a站| 国产91精品成人一区二区三区| av有码第一页| 性色av乱码一区二区三区2| 交换朋友夫妻互换小说| 欧美成狂野欧美在线观看| 日韩一卡2卡3卡4卡2021年| 国产成人欧美在线观看| 色尼玛亚洲综合影院| 看黄色毛片网站| 久久久久国产精品人妻aⅴ院| 欧美日本亚洲视频在线播放| 亚洲久久久国产精品| av在线天堂中文字幕 | 欧美成人性av电影在线观看| 大型av网站在线播放| 一进一出抽搐动态| 欧美中文综合在线视频| 午夜免费鲁丝| 亚洲色图av天堂| 黄色 视频免费看| 亚洲国产毛片av蜜桃av| 岛国视频午夜一区免费看| 国产av精品麻豆| 91国产中文字幕| 免费不卡黄色视频| 国产日韩一区二区三区精品不卡| 色播在线永久视频| 国产亚洲av高清不卡| 欧美+亚洲+日韩+国产| 亚洲激情在线av| 久久久精品欧美日韩精品| 国产精品久久久久久人妻精品电影| 97超级碰碰碰精品色视频在线观看| 亚洲av片天天在线观看| 中文亚洲av片在线观看爽| 乱人伦中国视频| 88av欧美| 天堂中文最新版在线下载| 成年人黄色毛片网站| 最新在线观看一区二区三区| 精品久久久久久久久久免费视频 | 久久中文看片网| 国产又色又爽无遮挡免费看| 午夜福利,免费看| 久久中文字幕一级| 久久久国产成人免费| 婷婷丁香在线五月| 看免费av毛片| 一级黄色大片毛片| 国产精品免费一区二区三区在线| 国产亚洲欧美在线一区二区| 在线观看午夜福利视频| 一级作爱视频免费观看| 久久久久久久久免费视频了| 色播在线永久视频| 国产精品亚洲一级av第二区| 免费少妇av软件| 国内毛片毛片毛片毛片毛片| 成人手机av| www.精华液| 色婷婷久久久亚洲欧美| 久久欧美精品欧美久久欧美| 国产欧美日韩精品亚洲av| 亚洲精华国产精华精| 午夜老司机福利片| 国产av一区在线观看免费| 欧美乱码精品一区二区三区| 黄网站色视频无遮挡免费观看| av天堂在线播放| 欧美黄色片欧美黄色片| 丝袜美腿诱惑在线| 欧美成狂野欧美在线观看| 欧美中文日本在线观看视频| xxx96com| av电影中文网址| 丰满饥渴人妻一区二区三| 国产男靠女视频免费网站| 岛国视频午夜一区免费看| 免费在线观看日本一区| 色婷婷久久久亚洲欧美| 精品电影一区二区在线| 亚洲精品久久成人aⅴ小说| 国产精品av久久久久免费| 欧美人与性动交α欧美精品济南到| 国产成人av激情在线播放| 成年版毛片免费区| 国产av在哪里看| 亚洲av日韩精品久久久久久密| 欧美乱妇无乱码| 免费久久久久久久精品成人欧美视频| 无限看片的www在线观看| 老熟妇仑乱视频hdxx| 深夜精品福利| 久久亚洲真实| 中出人妻视频一区二区| 丝袜美足系列| 亚洲成人久久性| 亚洲第一青青草原| 桃红色精品国产亚洲av| 人人澡人人妻人| 女人被躁到高潮嗷嗷叫费观| videosex国产| 人人妻人人澡人人看| 丰满迷人的少妇在线观看| 久久精品亚洲熟妇少妇任你| 好男人电影高清在线观看| 日本精品一区二区三区蜜桃| 欧美在线一区亚洲| 日本vs欧美在线观看视频| 日日摸夜夜添夜夜添小说| 欧美日韩黄片免| 免费av毛片视频| cao死你这个sao货| 色婷婷av一区二区三区视频| 日日摸夜夜添夜夜添小说| 成人av一区二区三区在线看| 亚洲,欧美精品.| 色精品久久人妻99蜜桃| 亚洲男人的天堂狠狠| www日本在线高清视频| 男女下面进入的视频免费午夜 | 日韩欧美免费精品| 99久久国产精品久久久| 亚洲国产欧美网| 999久久久国产精品视频| 欧美激情极品国产一区二区三区| 香蕉国产在线看| 国产精品一区二区免费欧美| 欧美性长视频在线观看| 波多野结衣高清无吗| 国产黄a三级三级三级人| 欧美日韩福利视频一区二区| 午夜免费鲁丝| 999久久久国产精品视频| 欧美激情高清一区二区三区| 精品久久久久久成人av| 亚洲五月色婷婷综合| 亚洲片人在线观看| 最近最新免费中文字幕在线| 免费久久久久久久精品成人欧美视频| 亚洲国产精品合色在线| 亚洲美女黄片视频| 99精国产麻豆久久婷婷| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲情色 制服丝袜| 亚洲五月色婷婷综合| 少妇被粗大的猛进出69影院| 欧美在线一区亚洲| 桃色一区二区三区在线观看| xxxhd国产人妻xxx| 国产高清视频在线播放一区| 99国产精品免费福利视频| 18禁裸乳无遮挡免费网站照片 | 成人18禁高潮啪啪吃奶动态图| 国产视频一区二区在线看| 久久亚洲精品不卡| 亚洲精品中文字幕一二三四区| 欧美中文日本在线观看视频| 窝窝影院91人妻| 变态另类成人亚洲欧美熟女 | 午夜精品国产一区二区电影| 久久久久久大精品| 国产极品粉嫩免费观看在线| 免费观看精品视频网站| 日韩免费av在线播放| 大陆偷拍与自拍| 操出白浆在线播放| 亚洲av片天天在线观看| 亚洲五月色婷婷综合| 亚洲久久久国产精品| 高清毛片免费观看视频网站 | 午夜日韩欧美国产| 久久人人97超碰香蕉20202| 亚洲精品粉嫩美女一区| 99riav亚洲国产免费| 在线播放国产精品三级| 又黄又爽又免费观看的视频| 国产成人系列免费观看| 日韩欧美免费精品| 十分钟在线观看高清视频www| 亚洲av片天天在线观看| 国产欧美日韩一区二区三区在线| 亚洲熟妇熟女久久| 别揉我奶头~嗯~啊~动态视频| 50天的宝宝边吃奶边哭怎么回事| 激情视频va一区二区三区| 亚洲视频免费观看视频| 69av精品久久久久久| www国产在线视频色| 超碰成人久久| 欧美av亚洲av综合av国产av| 国产亚洲精品久久久久5区| 国产单亲对白刺激| 久久精品亚洲熟妇少妇任你| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成77777在线视频| 午夜老司机福利片| 国产成人精品久久二区二区免费| 亚洲av成人不卡在线观看播放网| 99在线人妻在线中文字幕| 在线观看免费午夜福利视频| 脱女人内裤的视频| 三上悠亚av全集在线观看| 91精品三级在线观看| 中文字幕人妻熟女乱码| 国产精品电影一区二区三区| 97碰自拍视频| 嫩草影院精品99| 成人国语在线视频| 老熟妇乱子伦视频在线观看| 啦啦啦免费观看视频1| 亚洲一码二码三码区别大吗| √禁漫天堂资源中文www| 亚洲一区中文字幕在线| 国产真人三级小视频在线观看| 日韩av在线大香蕉| 午夜成年电影在线免费观看| 一二三四在线观看免费中文在| 欧美黑人精品巨大| 久久精品成人免费网站| 亚洲欧美日韩高清在线视频| 久久人人97超碰香蕉20202| 成在线人永久免费视频| 欧美一级毛片孕妇| av免费在线观看网站| 91成年电影在线观看| 女人精品久久久久毛片| 女同久久另类99精品国产91| 18禁国产床啪视频网站| 青草久久国产| 中文字幕av电影在线播放| 亚洲精品在线观看二区| 丝袜美腿诱惑在线| 久久草成人影院| 老司机亚洲免费影院| 国产91精品成人一区二区三区| 欧美日韩一级在线毛片| 国产免费男女视频| 欧美黑人精品巨大| 日韩高清综合在线| 久久国产亚洲av麻豆专区| 亚洲va日本ⅴa欧美va伊人久久| 精品一区二区三卡| a在线观看视频网站| 免费在线观看日本一区| 亚洲成人久久性| 俄罗斯特黄特色一大片| 法律面前人人平等表现在哪些方面| 亚洲精品国产区一区二| 成人亚洲精品一区在线观看| 欧美中文日本在线观看视频| 国产精品国产高清国产av| 国产免费av片在线观看野外av| 久久亚洲真实| 我的亚洲天堂| 国产深夜福利视频在线观看| 国产有黄有色有爽视频| 婷婷丁香在线五月| 一本大道久久a久久精品| 两个人免费观看高清视频| 一级,二级,三级黄色视频| 怎么达到女性高潮| 亚洲美女黄片视频| 人成视频在线观看免费观看| 国产高清videossex| 乱人伦中国视频| 人成视频在线观看免费观看| 精品一区二区三区av网在线观看| 精品人妻1区二区| 久久精品成人免费网站| 男男h啪啪无遮挡| 国产真人三级小视频在线观看| 久久午夜亚洲精品久久| 国产成人免费无遮挡视频| 国产又色又爽无遮挡免费看| 久久性视频一级片| 亚洲中文日韩欧美视频| av视频免费观看在线观看| 日本一区二区免费在线视频| www日本在线高清视频| 国产av在哪里看| 午夜福利免费观看在线| 欧美黄色淫秽网站| 国产精品98久久久久久宅男小说| 久久精品影院6| √禁漫天堂资源中文www| 少妇 在线观看| 天堂√8在线中文| 午夜久久久在线观看| 999久久久精品免费观看国产| 久久精品影院6| 色综合欧美亚洲国产小说| 一二三四在线观看免费中文在| 五月开心婷婷网| √禁漫天堂资源中文www| 欧美亚洲日本最大视频资源| 欧美日韩中文字幕国产精品一区二区三区 | 校园春色视频在线观看| 夜夜看夜夜爽夜夜摸 | 1024视频免费在线观看| 丁香六月欧美| 久久国产精品男人的天堂亚洲| 超色免费av| 真人做人爱边吃奶动态| 久久亚洲精品不卡| av网站免费在线观看视频| 午夜久久久在线观看| 亚洲成人久久性| 国产91精品成人一区二区三区| 日韩有码中文字幕| 精品少妇一区二区三区视频日本电影| 国产精品爽爽va在线观看网站 | 人妻丰满熟妇av一区二区三区| 巨乳人妻的诱惑在线观看| 久久性视频一级片| 久久精品亚洲熟妇少妇任你| 亚洲精品美女久久av网站| 亚洲avbb在线观看| 亚洲国产欧美日韩在线播放| 国产成人精品无人区| 丁香六月欧美| 午夜福利一区二区在线看| 欧美黄色淫秽网站| 久久久久久人人人人人| 国产精品久久视频播放| 中文字幕高清在线视频| 99热只有精品国产| 成熟少妇高潮喷水视频| 嫩草影视91久久| 一边摸一边抽搐一进一小说| 男男h啪啪无遮挡| 国产欧美日韩一区二区三| 免费不卡黄色视频| 午夜两性在线视频| 天堂中文最新版在线下载| 亚洲精品av麻豆狂野| 日韩欧美一区二区三区在线观看| 性欧美人与动物交配| 身体一侧抽搐| 母亲3免费完整高清在线观看| 国产精品野战在线观看 | www国产在线视频色| 免费在线观看影片大全网站| 电影成人av| 在线观看舔阴道视频| 人人妻人人爽人人添夜夜欢视频| 欧美黄色淫秽网站| 三上悠亚av全集在线观看| 一边摸一边抽搐一进一小说| 国产熟女xx| 亚洲精品美女久久久久99蜜臀| 法律面前人人平等表现在哪些方面| 免费少妇av软件| 免费在线观看黄色视频的| 欧美亚洲日本最大视频资源| 啪啪无遮挡十八禁网站| 色播在线永久视频| 国产欧美日韩精品亚洲av| 日本三级黄在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 国产精品98久久久久久宅男小说| 国产精品日韩av在线免费观看 | 国产精品美女特级片免费视频播放器 | 两性午夜刺激爽爽歪歪视频在线观看 | 成人特级黄色片久久久久久久| 大型av网站在线播放| 又黄又粗又硬又大视频| 黑丝袜美女国产一区| 黄色毛片三级朝国网站| 国产欧美日韩精品亚洲av| 淫妇啪啪啪对白视频| 在线永久观看黄色视频| 法律面前人人平等表现在哪些方面| 亚洲国产精品999在线| 女人精品久久久久毛片| 日本五十路高清| 无人区码免费观看不卡| 午夜精品国产一区二区电影| 国产欧美日韩一区二区精品| 国产99白浆流出| 大香蕉久久成人网| 国产亚洲精品久久久久久毛片| 交换朋友夫妻互换小说| 一边摸一边抽搐一进一出视频| 满18在线观看网站| 757午夜福利合集在线观看| 亚洲av熟女| 久久精品亚洲熟妇少妇任你| 日本免费a在线| 欧美乱码精品一区二区三区| 天天添夜夜摸| 亚洲欧美一区二区三区久久| 天天添夜夜摸| 午夜91福利影院| 久久中文字幕人妻熟女| 女人爽到高潮嗷嗷叫在线视频| 亚洲性夜色夜夜综合| 中文字幕高清在线视频| 国产免费现黄频在线看| 精品一区二区三区av网在线观看| 亚洲av美国av| 人人妻人人添人人爽欧美一区卜| 亚洲精品美女久久av网站| 亚洲色图综合在线观看| 国产黄a三级三级三级人| 黄色毛片三级朝国网站|