• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Mathematical methods on management problems(2)(End)

      2016-08-31 06:57:38ZHANGShengkaiLIUChaoLIUYanZHANGFengrong
      關(guān)鍵詞:利用效率停車場排序

      ZHANG Shengkai, LIU Chao, LIU Yan, ZHANG Fengrong

      (School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China )

      ?

      Mathematical methods on management problems(2)(End)

      ZHANGShengkai,LIUChao,LIUYan,ZHANGFengrong

      (School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China )

      One-timemanagementsequencingproblemisstudied,thatisserviced-elementsservedbyservice-elementswillbecompletedintheonetime.Thismethodisappliedfortheactualsituationtosolvetheundergroundparkingservicemodeltodealwiththeparkingproblem.Asuggestionisputforwardthatthroughtheentranceoftheconversionorreservedvariablelanelifting,theutilizationefficiencyofundergroundparkingwillbeenhanced.

      serviced-elements; underground parking; utilization efficiency

      4 Underground parking lot of canonical correlation analysis of a moving vehicle

      In many practical problems, the correlation between the two sets of random variables is need to study[1-2]. Although the correlation coefficient is necessary to understand the correlation between variables, it can not fully reflect the overall correlations. Therefore, the appropriate linear combination structure of groups of variables are considered.

      4.1Canonical correlation analysis

      To study the relationship between the two variables X and Y, linear combinations between two sets of variables are given:

      Where a=(a1,a2,…,ap)\%T\%, b=(b1,b2,…,bq)\%T\%areanynonzeroconstantvector,toseethecovariancematrixofthevectorU,V can be expressed as

      Var(U)=Var(a\%T\%X)=a\%T\%Var(X)a=a\%T\%Σ11a

      Var(V)=Var(b\%T\%Y)=b\%T\%Var(Y)b=b\%T\%Σ22b

      (1)

      CovariancematrixofvectorU,V can be expressed as

      Cov(U,V)=a\%T\%Σ12b

      (2)

      SothecorrelationcoefficientofU and V is

      (3)

      Because of ρ(k1U,k2V)=ρ(U,V),therefore,defineU,V as the standardized variables:

      Var(U)=1, Var(V)=1

      (4)

      That is

      a\%T\%Σ11a=1, b\%T\%Σ22b=1

      (5)

      If and only if

      ρ(U,V)=a\%T\%Σ12breachedthemaximumvalue,thenwehave

      U1=a\%T\%1X, V1=b\%T\%1Y

      (6)

      whichisthefirstpairofcanonicalcorrelationvariables,λ1isthefirstcanonicalcorrelationcoefficient.

      ThefirstpairofcanonicalcorrelationvariablesU1and V1extracts the main part correlation between original variables X and Y, if this part is not enough, we can find out second pairs of canonical correlation variables in the residual correlation, which satisfy the constraints(4) and does not include the first pair containing the information of U2, V2. The method was ibid.

      4.2Application analysis

      The underground parking is the rational development and utilization of underground space, so underground parking is an important part of the development of underground space. Therefore, the data of Dalian city underground daily parking lot of vehicles are selected. The following variables are selected to study the relationship between the number of entering and leaving vehicles.

      x1(x2,x3) and y1(y2,y3) are indicated the maximum(minimum, average) number of entering or leaving vehicles at each unit of time(hours), respectively. Fourteen samples are selected, and the correlation between the fourteen sets of data are analyzed.

      Let X=(x1,x2,x3)\%T\%andY=(y1,y2,y3)\%T\%betwogroupsofrandomvariables,calculatingthecorrelationcoefficientR of matrix(X\%T\%,Y\%T\%)\%T\%,thatis

      λ1=ρ^21=0.9875,λ2=ρ^22=0.7378,λ3=ρ^23=0.0878

      Thusfirst,secondandthirdcanonicalcorrelationcoefficientsare

      wecangetthefirstpairsofcanonicalvariablescoefficient

      Finally,thecalculationofformula(6)is

      U^1=-0.4721x1+0.0276x2+1.4423x3V^1=-0.0230y1+0.2372y2+0.8234y3

      Empathycouldbeobtainedbythesecondtypicalvariablecoefficientsa2,b2.Fromformula(6),wecangetsecondpairsofcanonicalvariables.

      U^2=-4.1028x1-0.3469x2+3.7909x3V^2=-1.5194y1+1.0745y2+0.4630y3

      Generallyspeaking,typicalvariablemeaningwasmainlydeterminedbythosecoefficientswithlargerabsolutevaluesofvariables.

      5 Quantity analysis on the personnel safety flow in Dalian Victory Shopping Plaza

      ThepersonnelflowdistributionofDalianVictoryShoppingPlazaisveryimportanttomall’ssecurityproblem.Thediscussionwasfollowedaccordingtotheabstractmodelofthegeneral,tomaketheapplicationscopeoftheresultsmorewidely[3-4].

      (7)

      (8)

      (9)

      Sothetotalpassengerflowinthemallis

      Theaverageflowdensityofthemallpersonnelshouldbe

      (10)

      Andthemeansquarevalueofλis

      (11)

      Passengerflowdistributionisnotstatic,andthemalltrafficdensityindifferenttimesofeachdayisnotthesame.Ifthetimeintervalofadaydividedissetto

      Theflowofitseachtimealsotaggedsuperscript,thereis

      (12)

      (13)

      (14)

      (15)

      (16)

      (17)

      Sothenumberofpersonnelflowthroughoutadayis

      (18)

      Afterpreciseanalysisofmall’scustomerflow,ensuringthesafetyofmallrunningsmoothlycanpromotegreateconomicbenefits[7]fromtheperspectiveofbusinessoperators.

      6Conclusion

      In this paper, the model applied to the practical problems of the underground parking lot is studied, using the method of canonical correlation. The results show that the serviced-elements served by service-elements model is suitable for the actual situation, which has the certain instruction significance and practical significance.

      References:

      [1] 張鳳榮.關(guān)于\%n\%人合作對策與集對策若干問題的研究[D].沈陽:東北大學(xué),2006.

      [2] 劉德明.對策論在中國[J].經(jīng)濟數(shù)學(xué),2009,26(4):1-5.[3] 張盛開.P-J型最優(yōu)服務(wù)排序問題的推廣[J].科學(xué)通報,1981,26(22):1349-1352.

      [4] ZHANG S K. Generalization of sequencing problems of the optimum service for model P-J[J]. A Monthly Journal of Science, 1982, 27(6): 594-597.

      [5] ZHANG S K, YE T X. The values of denumerable persons games on the equivalent spaces[J]. Science Bulletin, 1987, 32(21): 1452-1456.

      [6] ZHANG S K, GONG X L. ZS-value for random coalition games[J]. Chinese Science Bulletin, 1989, 34(15): 1236-1242.

      [7] ZHANG S K. Convex linear generalization of random coalition games[J]. Chinese Science Bulletin, 1998, 43(9): 713-716.

      1674-1404(2016)04-0304-04

      管理問題的數(shù)學(xué)方法應(yīng)用(2)(續(xù)完)

      張 盛 開,劉 超,劉 燕,張 鳳 榮

      (大連工業(yè)大學(xué) 信息科學(xué)與工程學(xué)院, 遼寧 大連116034 )

      研究了一個時間管理排序問題,即每一個服務(wù)單位在單位時間內(nèi)只能服務(wù)一個被服務(wù)單位,同時被服務(wù)單位在單位時間內(nèi),只能被一個服務(wù)單位所服務(wù),并且一經(jīng)服務(wù)又必須一次服務(wù)完畢。將此方法應(yīng)用到實際情況中,用以解決地下停車服務(wù)模型處理停車問題。最后,提出了通過入口的轉(zhuǎn)換或預(yù)留可變車道的建議,用以提高地下停車場的利用效率。

      服務(wù)單位;地下停車場;利用效率

      TB114.1

      A

      ZHANG Shengkai, LIU Chao, LIU Yan, ZHANG Fengrong. Mathematical methods on management problems(2)(End)[J]. Journal of Dalian Polytechnic University, 2016, 35(4): 304-307.

      by: 2015-12-22.

      ZHANG Shengkai, Male, Professor.

      猜你喜歡
      利用效率停車場排序
      排序不等式
      恐怖排序
      節(jié)日排序
      避免肥料流失 提高利用效率
      停車場尋車管理系統(tǒng)
      電子制作(2018年9期)2018-08-04 03:31:18
      刻舟求劍
      兒童繪本(2018年5期)2018-04-12 16:45:32
      體制改革前后塔里木河流域水資源利用效率對比分析
      PLC在地下停車場排水系統(tǒng)的應(yīng)用
      電子制作(2016年15期)2017-01-15 13:39:21
      迷宮
      “8·12”后,何以為家
      米林县| 西乌珠穆沁旗| 三原县| 三台县| 乐昌市| 禹州市| 湘潭市| 永顺县| 墨竹工卡县| 罗源县| 雅安市| 岚皋县| 阳江市| 达州市| 哈巴河县| 天门市| 抚州市| 万盛区| 开封县| 志丹县| 洪泽县| 邯郸县| 五大连池市| 昭通市| 长寿区| 依安县| 墨江| 安顺市| 临朐县| 天镇县| 绿春县| 安泽县| 万全县| 类乌齐县| 天长市| 梁河县| 汉川市| 齐齐哈尔市| 黄冈市| 大邑县| 海兴县|