• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photosynthetic capability and Fe,Mn,Cu,and Zn contents in two Moraceae species under different phosphorus levels

    2016-08-26 07:46:09DekeXingYanyouWuRuiYuYanshengWuChuanZhangZhengLiang
    Acta Geochimica 2016年3期

    Deke Xing·Yanyou Wu·Rui Yu·Yansheng Wu·Chuan Zhang· Zheng Liang

    ?

    Photosynthetic capability and Fe,Mn,Cu,and Zn contents in two Moraceae species under different phosphorus levels

    Deke Xing1·Yanyou Wu2·Rui Yu1·Yansheng Wu1·Chuan Zhang1· Zheng Liang1

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    ThestrongadaptabilityofBroussonetia papyrifera(L.)Vent.to low phosphorus(P)conditions can be attributed to the large amount of root-exuded organic acids and the high efficiency of P extraction.However,microelement contents are influenced by low-P stress,and their effects on the photosynthetic capability of B.papyrifera remain unknown.In this study,we investigated the effects of low-P treatment on net photosynthetic rate(PN);chlorophyll a fluorescence(ChlF)characteristics;and Fe,Mn,Cu,and Zn contents of B.papyrifera and Morus alba L.seedlings.Results show that B.papyrifera exhibited better photosynthetic capability under moderate P deficiency(0.125,0.063,and 0.031 mmol/L P treatments),whereas the photosynthetic capability of M.alba decreased under moderate and severe P deficiency(0.016 and 0 mmol/L P treatments).Under moderate P deficiency,the decrease in Cu and Zn contents in B.papyrifera was lower than that in M.alba.Under severe P deficiency,a considerable decrease of photosynthetic capability in B.papyrifera and M.alba was associated with low Cu and Zn contents.The PNof the two Moraceae species exhibited a better correlation with Cu and Zn contents than with Fe or Mn content.P deficiency could not only decrease cyclic photophorylation and photosynthetic efficiency,but could also affect the stability of thylakoid membrane structure and electron transport efficiency by influencing the contents of Cu or Zn,thereby affecting photosynthesis.

    Adaptability·Chlorophyll a fluorescence· Microelement·Organic acids·Sensitive

    Abbreviations

    ΦPSIIActual photochemical quantum efficiency of PSII

    B.papyriferaBroussonetia papyrifera(L.)Vent

    ChlFChlorophyll a fluorescence

    FsFluorescence in stable state

    FoInitial fluorescence

    LSDLeast significant difference

    FmMaximum fluorescence

    F′mMaximumfluorescenceinthelightadapted state

    Fv/FmMaximum quantum yield of PSII

    M.albaMorus alba L

    PNNet photosynthetic rate

    P Phosphorus

    PSIIPhotosystem II

    SEStandard errors

    FvVariable fluorescence

    1 Introduction

    Broussonetia papyrifera(L.)Vent.and Morus alba L.are perennial tree species belonging to the family Moraceae and are characterized by higher growth rate and greater adaptability to adverse environments than other species in this family(Zhao et al.2005).B.papyrifera is moretolerant to a low-phosphorus(P)environment(Liu et al. 2010).Unlike M.alba,B.papyrifera can acclimate to karst soil and resist alien invasion(Wu et al.2009).A higher amount of organic acids is found in root exudates of B.papyrifera than in M.alba in low-P environments (Shahbaz et al.2006).Root-exuded organic acids sometimes form organometallic complexes with insoluble phosphoric compounds in soil,releasing available P(Jones and Darrah 1994);the strong adaptability of B.papyrifera to low-P environments can be attributed to the high efficiency of P extraction(Zhao and Wu 2014).However,the root-exudedorganicacidsmightalsoimprovethe bioavailability of microelements(Hoffland et al.1992).The concentration and uptake of plant microelements increase when smaller amounts of P are applied(Racz and Haluschak 1974;Rutkowska et al.2014).Nonetheless,the relationship between the increase in concentration of plant microelements and the adaptability of B.papyrifera remains unknown.

    Inorganic P is one of the least available nutrients in the soils of several terrestrial ecosystems(Alloush et al.2003;Li et al.2006).P deficiency leads to a considerable decrease in cyclic photophorylation and photosynthetic efficiency(Watanabe and Yoshida 1970).Some studies have demonstrated that P deficiency induces possible photoinhibition and damage to photosystem II(PSII)(Li et al.2004).Moreover,the uptake of microelements-such as Fe,Mn,Cu,and Zn-in plants is also related to photosynthesis.Fe is an essential micronutrient for plants(Hao et al.2007).Bertamini et al.(2002)proved that a low photosyntheticelectrontransportrateinFe-deficient grapevine leaves is mainly due to the loss of PSII activity. Mn plays an important role in the water-splitting reaction leading to oxygen evolution in photosynthesis(Sauer 1980).The most important role of Cu is associated with blocking of photosynthetic electron transport,leading to production of radicals which start peroxidative chain reactions involving membrane lipids(Fernandes and Henriques 1991).Finally,Zn deficiency causes reduction of electron use in dark reactions and decreases heat dissipation(Hajiboland et al.2010).

    A certain amount of supplemental P increases the uptake of some micronutrients,while decreasing the uptake of Zn in some plant organs(Nyoki and Ndakidemi 2014).The total amounts of Fe,Mn,Cu,and Zn absorbed by aboveground plant tissue decrease in treatments in which nutrient deficiencies are observed,but the micronutrient concentrations in tissues do not decrease(Choi and Lee 2012). Root-exuded organic acids might increase the uptake of microelements in plants,compensate for the loss of microelements under a low-P environment,and slow the decrease of microelement contents.As a result,the lower rate of decrease in microelement contents could alleviate the damage caused by microelement deficiency to plants in a low-P environment,thereby enhancing photosynthesis. Given that microelements play important roles in photosynthesis,the variations in microelement contents could be a photosynthetic adaptive mechanism of B.papyrifera to low-P stress.

    Non-invasive methods such as chlorophyll a fluorescence(ChlF)have been used to observe various types of stress affecting the photosynthetic machinery(Huang et al. 2004).ChlF has been widely used to evaluate plant tolerance to environmental stresses(Gray et al.2006).The present study examined net photosynthetic rate(PN);ChlF parameters;and Fe,Mn,Cu,and Zn contents in two Moraceae species.The influence of Fe,Mn,Cu,and Zn contents on the photosynthetic capability of B.papyrifera and M.alba was analyzed.Results of this study provide deeper understanding of the photosynthetic adaptive mechanism of B.papyrifera in a low-P environment,which can be used as a guide for selecting appropriate plant species for reforestation efforts in a heterogeneous environment.

    2 Materials and methods

    2.1Plant growth and low-P treatment

    Seedlings of B.papyrifera and M.alba were cultivated and treated according to Xing and Wu(2014).After 90 days of growth,the nutrient solution was replaced by a modified Hoagland solution(Hoagland and Arnon 1950)containing 6 mmol/L KNO3,4 mmol/LCa(NO3)2,2 mmol/L MgSO4,2 mmol/L Fe(Na)EDTA,2 μmol/LKCl,50 μmol/L H3BO3,4 μmol/L MnSO4,4 μmol/L ZnSO4,0.2 μmol/L CuSO4,and 0.2 μmol/L(NH4)6MO7O24.Five low-P treatments of 0.125,0.063,0.031,0.016,and 0 mmol/L were simulated by varying concentration combinations of NH4H2PO4and NH4Cl;0.250 mmol/L P was used as the control.Determination was conducted on day 45 from the onset of treatment.Five recently-matured leaves from each of the treated seedlings were measured.

    2.2Measurement of net photosynthetic rate

    Net photosynthetic rate was determined using the method in Xing and Wu(2012).

    2.3Measurement of chlorophyll a fluorescence

    ChlF was determined according to the method described by Xing and Wu(2012).The maximum quantum yield of PSII(Fv/Fm)was calculated as(Fm-Fo)/Fm,where Fv=Fm-Fo.The actual photochemical quantum efficiency of PSII(ΦPSII)was calculated as(F′m-Fs)/F′m.

    2.4Contents of Fe,Mn,Cu,and Zn

    Five plants from each treatment group were selected and dried in an oven at 80°C.Approximately 0.3-0.5 g of dried plant tissue was digested using the H2SO4-H2O2digestion method(Xu 2000).The Fe,Mn,Cu,and Zn contents were determined using atomic absorption spectroscopy(PE-5100-PC,PerkinElmer,USA).

    2.5Statistical analysis

    All experimental measurements consisted of five replicates. Data were analyzed using SPSS software(version 13.0,SPSS Inc).The differences between low-P treatments were assessed using the least significant difference(LSD)post hoc test at a 5%significance level(p≤0.05).Data were shown as the means±standard errors(SE),which were determined using one-sample T test(confidence interval was 95%).The correlation between PNand content of Fe,Mn,Cu,or Zn was analyzed using bivariate correlations.

    3 Results

    3.1Effect of low-P on net photosynthetic rate

    M.alba showed a significant decrease in PNfrom the onset oflow-Ptreatment(Table 1).Whilethesignificant decrease of PNof B.papyrifera appeared at 0.063 mmol/L. The PNof M.alba exhibited a more significant decrease than that of B.papyrifera from 0.031 to 0.016 mmol/L. The values of PNof B.papyrifera at 0.016 and 0 mmol/L were 49%and 41%,respectively,of the value of the control,while the values of PNof M.alba at 0.016 and 0 mmol/L were only 38%and 13%,respectively,of the value of the control.The value of PNof B.papyrifera was higher than M.alba at each low-P stress level.

    3.2Effects of low-P on ChlF parameters

    The values of initial fluorescence(Fo)of B.papyrifera subjected to 0.016 and 0 mmol/L P treatments were higher than those in 0.250,0.125,0.063,and 0.031 mmol/L P treatments;the Fovalues of B.papyrifera in treatments with P nutrient levels ranging from 0.250 to 0.031 mmol/L showed no significant difference(Fig.1a).The Fovalue of M.alba of the control was lower than that at other P nutrient levels;the Fovalues of M.alba in treatments with P nutrient levels ranging from 0.125 to 0.016 mmol/L showed no significant difference.

    The maximum quantum yields of PSII(Fv/Fm)of B.papyrifera at 0.016 and 0 mmol/L P treatments were lower than those of higher P treatments;the Fv/Fmvalues of B.papyrifera in treatments with P nutrient levels ranging from 0.250 to 0.031 mmol/L showed no significant difference(Fig.1b).The Fv/Fmof M.alba of the control was higher than that of other P nutrient levels;the Fv/Fmvalues of M.alba in treatments with P nutrient levels ranging from 0.125 to 0.016 mmol/L showed no significant difference.

    The actual photochemical quantum efficiencies of PSII (ΦPSII)closely mimicked the pattern observed in maximum quantum yields.ΦPSIIvalues of B.papyrifera at 0.016 and 0 mmol/L were lower than those with higher P treatments;the ΦPSIIvalues of B.papyrifera in treatments with P nutrient levels ranging from 0.250 to 0.031 mmol/L showed no significantdifference(Fig.1c).TheΦPSIIofM.albaofthecontrol was higher than of those subjected to P deficiency;the ΦPSIIvalues of M.alba in treatments with P nutrient levels ranging from0.125to0.031 mmol/Lshowednosignificantdifference.

    Table 1 Effect of low-P on net photosynthetic rate

    3.3Effects of low-P on contents of Fe,Mn,Cu,and Zn

    Fe,Mn,Cu,and Zn contents varied between plant species and P levels(Table 2).Low-P treatment was associatedwith lower contents of Fe and Mn at all P-deficient treatment levels in B.papyrifera,whereas the Fe and Mn contents in M.alba in treatments with P nutrient levels ranging from 0.250 to 0.031 mmol/L showed no significant difference.The micronutrient contents in M.alba in 0.016 and 0 mmol/L P treatments were lower than in higher P treatments.

    Low-P treatment was consistently associated with lower contents of Cu in both B.papyrifera and M.alba(Table 2).

    The contents of Zn in B.papyrifera in treatments with P nutrient levels ranging from 0.250 to 0.031 mmol/L showed no significant difference.The Zn contents of B.papyrifera at 0.016 and 0 mmol/L P treatments were lower than those higher-P treatments(Table 2).

    Fig.1 Effects of low-P on initial fluorescence(Fo),maximum quantum yields of PSII(Fv/Fm)and the actual photochemical quantum efficiencies of PSII(ΦPSII).a Fo;b Fv/Fm;c ΦPSII.Different letters appear above the error bars of the same parameter of the same plantspecies when subsequentvalues differsignificantly-at P≤0.05,according to one-way ANOVA and t tests

    3.4Relationship between net photosynthetic rate and content of Fe,Mn,Cu,or Zn

    The relationships between PNand the content of Cu or Zn displayed good positive correlations(Fig.2c,d),in which the determination coefficient(R2)ranged from 0.245 to 0.865;the R2of Cu or Zn was greater than that of Fe or Mn (Fig.2a,b).In other words,an increase in Cu and Zn contents correlated with an increase of PNin both B.papyrifera and M.alba.

    4 Discussion

    Photosynthetic activity represents the growth potential of a plant(Walters et al.1993).B.papyrifera exhibited better photosynthetic capability than M.alba under moderate P deficiency,whereas the photosynthetic capability of M. alba decreased significantly under moderate and severe P deficiency;the influence of low-P on photosynthesis was more severe in M.alba than in B.papyrifera.In addition,the resistances of B.papyrifera and M.alba to a low-P environment were different;the photochemical apparatus of B.papyrifera was not damaged under moderate P deficiency,whereas the increase of Fo in B.papyrifera under severe P deficiency indicated that the activity of PSII reaction centers had decreased.The response to decreased P of Fv/Fm and ΦPSIIin B.papyrifera also indicated little damage to the PSII reaction centers under moderate P deficiency.However,the activity of PSII reaction centers in M.alba decreased in low-P treatments;that is,the PSII reaction centers of M.alba were damaged under low-P stress conditions.When the P concentration of nutrient solution was higher than 0.031 mmol/L,the B.papyrifera exhibited good tolerance.However,the tolerance of M.alba decreased under even moderate P deficiency.

    Under moderate P deficiency,the amount of root-exuded organic acids in B.papyrifera increased more significantly than in M.alba(Wu and Zhao 2013),and according to Hofflandetal.(1992),thebioavailabilityofmicroelementsaround the rootof B.papyrifera couldbeimproved as a result.Dueto the increase in root-exuded acids,the Cu content in B.papyrifera washigher thanthat inM.alba,andthe Zn content in B.papyrifera exhibited a lower rate of decrease than that in M.alba.SincethemostimportantroleofCuisassociatedwith blocking of peroxidative chain reactions involving membrane lipids(Fernandes and Henriques 1991),higher Cu content in B.papyrifera could maintain the stability of thylakoid membrane structure more efficiently.Moreover,Zn could improve electron use in dark reactions(Hajiboland et al.2010);therefore,the lower rate of decrease in Zn in B.papyrifera could maintain the stability of dark reactions more efficiently.Bycontrast,the damage caused by the decrease in Cu and Zn contents to M.alba could not be alleviated efficiently,and the photosynthesisofM.albacouldnotbemeliorated.Theresults in the present study also indicate that the photosynthetic capability of B.papyrifera was relatively unaffected,whereas the photosynthetic capability of M.alba is sensitive to moderate P deficiency.Under severe P deficiency,the amount of root-exuded organic acids in M.alba increased more significantly than in B.papyrifera(Wu and Zhao 2013).Although the Cu content in M.alba exhibited a lower rate of decrease,the decrease in Zn content was significant.Under severe P deficiency,the increase in the amount of root-exuded organic acids in B.papyrifera and M.alba could not alleviate the loss of microelements.Moreover,a considerable decrease of photosynthetic capability in B.papyrifera and M.alba was associated with the lower Cu and Zn contents.

    Table 2 Effects of low-P on Fe,Mn,Cu,and Zn contents (mg/g)

    Given that the availability of Fe and Mn are higher than that of Cu or Zn in the soils of several terrestrial ecosystems(Chen et al.2013),plant growth is more easily affected by Cu or Zn content in soil.In the present study,the applied amounts of Fe and Mn were probably enough for the growth of the two Moraceae species in low-P environments.P deficiency could not only bring about a decrease in cyclic photophorylation and photosynthetic efficiency(Watanabe and Yoshida 1970),but could also affect the stability of thylakoid membrane structure and electron transport efficiency by influencing the content of Cu or Zn,thereby affecting photosynthesis.Moreover,the PNof the two Moraceae species exhibited a better correlation with Cu and Zn contents,rather than with Fe or Mn content.P deficiency had almost no effect on PSII activity or on the water-splitting reaction in either plant species.

    Fig.2 Relationships between the net photosynthetic rate(PN,μmol/m2s)and content of Fe,Mn,Cu,or Zn(mg/g).Note:Y is the PN;X is the content of Fe,Mn,Cu or Zn.a Fe;b Mn;c Cu;d Zn

    5 Conclusion

    The responses of B.papyrifera and M.alba to low-P treatment with different Fe,Mn,Cu,and Zn contents varied in terms of photosynthetic capability.B.papyrifera exhibited better photosynthetic capability under moderate P deficiency,whereas the photosynthetic capability of M.alba decreased under moderate and severe P deficiency. Under moderate P deficiency,the decreases in Cu and Zn contents in B.papyrifera were lower than those in M.alba. Under severe P deficiency,a significant decrease of photosynthetic capability in B.papyrifera and M.alba was associated with lower Cu and Zn contents.The PNof the two Moraceae species exhibited a better correlation with Cu and Zn contents than with Fe or Mn content.Furthermore,P deficiency could not only decrease the cyclic photophorylation and photosynthetic efficiency,but also affect the stability of thylakoid membrane structure and electron transport efficiency by influencing the content of Cu or Zn,thereby affecting photosynthesis.Nevertheless,P deficiency had almost no effect on PSII activity or watersplitting.

    AcknowledgmentsThis study was supported by the project of the National Natural Science Foundation of China(No.31301243),a project funded by the Priority Academic Program Development of Jiangsu higher education institutions(PAPD),the research foundation for introduce talents of Jiangsu university(13JDG030),the brainstorm project on social development of Guizhou Province(SY[2010]3043).

    References

    Alloush GA,Boyer DG,Belesky DP,Halvorson JJ(2003)Phosphorus mobility in a karst landscape under pasture grazing system. Agronomie 23:593-600

    Bertamini M,Muthuchelian K,Nedunchezhian N (2002)Iron deficiency induced changes on the donor side of PSII in field grown grapevine(Vitisvinifera L.cv.Pinot noir)leaves.Plant Sci 162:599-605

    Chen C,Yang F,Liu HL,Yao HY,Song GX(2013)Effects and evaluation of soil trace elements after grassland converted into cropland in Guizhou karst area.Trans CSAE 29:230-237

    Choi JM,Lee CW(2012)Influence of elevated phosphorus levels in nutrient solution on micronutrient uptake and deficiency symptom development in strawberry cultured with fertigation system. J Plant Nutr 35:1349-1358

    Fernandes JC,Henriques FS(1991)Biochemical,physiological,and structural effects of excess copper in plants.Bot Rev 57:246-273

    Gray DW,Gardon ZG,Lewis LA(2006)Simultaneous collection of rapid chlorophyll fluorescence induction kinetics,fluorescence quenching parameters,and environmental data using an automated PAM-2000/CR10X data logging system.Photosynth Res 87:295-301

    Hajiboland R,Pasbani B,Amirazad H(2010)Effect of low Zn supply on growth,leaf pigments and photosynthesis in red cabbage (Brassica oleracea L.var.capitata f.rubra)plants grown under different light conditions.Iran J Plant Biol 1:25-36

    Hao HL,Wei YZ,Yang XE,F(xiàn)eng Y,Wu CY(2007)Effects of different nitrogen fertilizer levels on Fe,Mn,Cu and Zn concentrations in shoot and grain quality in rice(Oryza sativa). Rice Sci 14:289-294

    Hoagland DR,Arnon DI(1950)The water-culture method for growing plants without soil.CalifAgricExpStnCirc 347:1-32

    Hoffland E,Boogaard RVD,Nelemans J,F(xiàn)indenegg G (1992)Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants.New Phytol 122:675-680

    Huang ZA,Jiang DA,Yang Y,Sun JW,Jin SH(2004)Effects of nitrogen deficiency on gas exchange,chlorophyll fluorescence,and antioxidant enzymes in leaves of rice plants.Photosynthetica 42:357-364

    Jones DL,Darrah PR(1994)Role of root derived organic-acids in the mobilization of nutrients from the rhizosphere.Plant Soil 166:247-257

    Li SC,Hu CH,Gong J,Dong ST,Dong ZX(2004)Effects of low phosphorus stress on the chlorophyll fluorescence of different phosphorus use efficient maize(Zea mays L.).Acta Agro Sin 30:365-370

    Li J,Liu CQ,Wang SL,Zhu ZZ,Zhou ZH,Xiao HY(2006)Vertical variation of phosphorus forms in surface sediments from Wuli Bay,Taihu Lake,China.Chin J Geochem 25:279-284

    Liu CC,Liu YG,Guo K,Zheng YR,Li GQ,Yu LF,Yang R(2010)Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering. PhysiolPlantarum 139:39-54

    Nyoki D,Ndakidemi PA (2014)Influence of Bradyrhizobium japonicum and phosphorus on micronutrient uptake in Cowpea. A case study of zinc(Zn),iron(Fe),copper(Cu)and manganese (Mn).Am J Plant Sci 5:427-435

    Racz GJ,Haluschak PW(1974)Effects of phosphorus concentration on Cu,Zn,F(xiàn)e and Mn utilization by wheat.Can J Soil Sci 54:357-367

    Rutkowska B,Szulc W,Sosulski T,Ste?pien′W(2014)Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications.Plant Soil Environ 60:198-203

    Sauer K (1980)A role for manganese in oxygen evolution in photosynthesis.Acc Chem Res 13:249-256

    Shahbaz AM,Oki Y,Adachi T,Murata Y,Khan MHR(2006)Phosphorus starvation induced root-mediated pH changes in solublization and acquisition of sparingly soluble P sources and organic acids exudation by Brassica cultivars.Soil Sci Plant Nutr 52:623-633

    Walters MB,Kruger EL,Reich PB(1993)Relative growth rate in relation to physiological and morphological traits for northern hardwood tree seedlings:species,light environment and ontogenetic considerations.Oecologia 96:219-231

    Watanabe H,Yoshida S(1970)Effects of nitrogen,phosphorus,and potassium on photophosphorylation in rice in relation to the photosynthetic rate of single leaves.Soil Sci Plant Nutr 16:163-166

    Wu YY,Zhao K(2013)Root-exuded malic acid versus chlorophyll fluorescence parameters in four plant species under different phosphorus levels.J Soil Sci Plant Nutr 13:604-610

    Wu YY,Liu CQ,Li PP,Wang JZ,Xing D,Wang BL(2009)Photosynthetic characteristics involved in adaptability to Karst soil and alien invasion of paper mulberry(Broussonetia papyrifera(L.)Vent.)in comparison with mulberry(Morus alba L.).Photosynthetica 47:155-160

    Xing DK,Wu YY(2012)Photosynthetic response of three climber plant species to osmotic stress induced by polyethylene glycol (PEG)6000.Acta Physiol Plant 34:1659-1668

    Xing DK,Wu YY (2014)Effect of phosphorus deficiency on photosynthetic inorganic carbon assimilation of three climber plant species.Bot Stud 55:1-8

    Xu GH(2000)Determination of plant ash and diverse nutrient element.In:Bao SD (ed)Soil and agricultural chemistry analysis.China Agriculture Press,Beijing,pp 263-270

    Zhao K,Wu YY(2014)Rhizosphere calcareous soil P-extraction at the expense of organic carbon from root-exuded organic acids induced by phosphorus deficiency in several plant species.Soil Sci Plant Nutr 60:640-650

    Zhao W,Pan Y,Zhang Z,Jia S,Miao X,Huang Y(2005)Phylogeny of the genus Morus(Urticales:Moraceae)inferred from ITS and trnL-F sequences.Afr J Biotech 4:563-569

    8 December 2015/Revised:16 January 2016/Accepted:21 February 2016/Published online:27 February 2016

    ? Yanyou Wu wuyanyou@mail.gyig.ac.cn
    1Key Laboratory of Modern Agricultural Equipment and Technology,Ministry of Education,Institute of Agricultural Engineering,Jiangsu University,Zhenjiang 212013,China2Research Center for Environmental Bio-Science and Technology,State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,China

    欧美日韩亚洲高清精品| 黄色片一级片一级黄色片| www.www免费av| av超薄肉色丝袜交足视频| 如日韩欧美国产精品一区二区三区| 国产亚洲欧美98| 亚洲精品久久午夜乱码| 侵犯人妻中文字幕一二三四区| 亚洲第一av免费看| 欧美日韩亚洲综合一区二区三区_| 欧美日韩一级在线毛片| 亚洲中文日韩欧美视频| 神马国产精品三级电影在线观看 | 日本撒尿小便嘘嘘汇集6| 我的亚洲天堂| ponron亚洲| 国产av一区二区精品久久| 狠狠狠狠99中文字幕| 日本一区二区免费在线视频| 中文字幕av电影在线播放| 麻豆成人av在线观看| 99re在线观看精品视频| 色精品久久人妻99蜜桃| 在线播放国产精品三级| 亚洲熟女毛片儿| 日韩欧美一区二区三区在线观看| 国产成人影院久久av| 法律面前人人平等表现在哪些方面| 日韩国内少妇激情av| 男女午夜视频在线观看| 18禁美女被吸乳视频| 十分钟在线观看高清视频www| 淫妇啪啪啪对白视频| 夜夜看夜夜爽夜夜摸 | 精品久久蜜臀av无| 久久久久国产精品人妻aⅴ院| 91成人精品电影| 国产免费现黄频在线看| 国产麻豆69| 在线观看免费高清a一片| 日韩免费av在线播放| 欧美日本中文国产一区发布| 热99re8久久精品国产| 日日爽夜夜爽网站| 精品人妻1区二区| 亚洲av电影在线进入| 18禁黄网站禁片午夜丰满| 日日夜夜操网爽| 少妇粗大呻吟视频| 日韩视频一区二区在线观看| 亚洲九九香蕉| 一边摸一边抽搐一进一小说| 黄色a级毛片大全视频| 精品国产超薄肉色丝袜足j| 亚洲av美国av| 后天国语完整版免费观看| 久久人人爽av亚洲精品天堂| 日本免费一区二区三区高清不卡 | 黄色片一级片一级黄色片| 91精品国产国语对白视频| 少妇粗大呻吟视频| 亚洲性夜色夜夜综合| 老司机午夜十八禁免费视频| 午夜福利影视在线免费观看| 日本 av在线| 国产成人精品无人区| 大码成人一级视频| 在线观看66精品国产| 午夜免费观看网址| 99香蕉大伊视频| 久久 成人 亚洲| 三上悠亚av全集在线观看| 19禁男女啪啪无遮挡网站| 国产欧美日韩一区二区精品| 看片在线看免费视频| 少妇粗大呻吟视频| 国产伦人伦偷精品视频| 国产人伦9x9x在线观看| 大型黄色视频在线免费观看| 男女之事视频高清在线观看| svipshipincom国产片| 亚洲欧美日韩另类电影网站| 国产精品二区激情视频| 久久久精品国产亚洲av高清涩受| 免费日韩欧美在线观看| 国产一卡二卡三卡精品| 国产精品美女特级片免费视频播放器 | 久久久国产成人精品二区 | 国产成人影院久久av| www.熟女人妻精品国产| 搡老熟女国产l中国老女人| 亚洲国产精品合色在线| 成人精品一区二区免费| 亚洲专区字幕在线| 精品国产超薄肉色丝袜足j| 在线视频色国产色| 亚洲男人天堂网一区| 欧美激情高清一区二区三区| 一区二区三区精品91| 最新在线观看一区二区三区| 最新美女视频免费是黄的| 超碰成人久久| 亚洲中文字幕日韩| 国产在线观看jvid| 在线天堂中文资源库| 久久久久久久精品吃奶| 亚洲国产中文字幕在线视频| 国产成人欧美| 免费观看人在逋| 成人亚洲精品av一区二区 | 在线观看免费日韩欧美大片| 在线观看免费高清a一片| 国产亚洲精品第一综合不卡| 国产精品 国内视频| 国产人伦9x9x在线观看| 91字幕亚洲| 日本免费a在线| 免费久久久久久久精品成人欧美视频| 精品少妇一区二区三区视频日本电影| 国产一区二区激情短视频| aaaaa片日本免费| 国产精品久久久久成人av| av视频免费观看在线观看| 一区二区三区精品91| 国产精品野战在线观看 | av天堂久久9| 超碰97精品在线观看| 美女高潮到喷水免费观看| 97超级碰碰碰精品色视频在线观看| 国产精品乱码一区二三区的特点 | 久久久久国内视频| 99久久99久久久精品蜜桃| 国产野战对白在线观看| 日韩高清综合在线| 久久久久久久久中文| 精品久久久久久,| 免费人成视频x8x8入口观看| 免费在线观看日本一区| 美女大奶头视频| 亚洲五月天丁香| 国产在线精品亚洲第一网站| 欧美日本亚洲视频在线播放| 久久性视频一级片| 美国免费a级毛片| 男女做爰动态图高潮gif福利片 | √禁漫天堂资源中文www| 日韩中文字幕欧美一区二区| 极品教师在线免费播放| 91大片在线观看| 国产欧美日韩一区二区三区在线| 亚洲av熟女| 91大片在线观看| 成人国产一区最新在线观看| 久久天躁狠狠躁夜夜2o2o| 怎么达到女性高潮| 久久狼人影院| 亚洲一卡2卡3卡4卡5卡精品中文| 激情在线观看视频在线高清| 亚洲av日韩精品久久久久久密| 老司机午夜福利在线观看视频| 女同久久另类99精品国产91| 欧美激情高清一区二区三区| 久久影院123| 久久人人97超碰香蕉20202| 丝袜美腿诱惑在线| 黑人欧美特级aaaaaa片| 美女大奶头视频| 男人的好看免费观看在线视频 | 日韩av在线大香蕉| 久久国产亚洲av麻豆专区| 欧美av亚洲av综合av国产av| 午夜精品久久久久久毛片777| 搡老熟女国产l中国老女人| 国产蜜桃级精品一区二区三区| 成人黄色视频免费在线看| 午夜福利影视在线免费观看| 精品乱码久久久久久99久播| 欧美黄色淫秽网站| 亚洲欧美一区二区三区久久| 精品久久久久久,| www.www免费av| 亚洲 欧美一区二区三区| 免费看a级黄色片| 一边摸一边抽搐一进一小说| 久久久久久久久中文| 在线观看免费视频网站a站| 国产av又大| 午夜福利影视在线免费观看| 日韩三级视频一区二区三区| 国产精品 欧美亚洲| ponron亚洲| 欧美在线一区亚洲| 国产99久久九九免费精品| 在线观看一区二区三区激情| 午夜精品久久久久久毛片777| 久久精品亚洲熟妇少妇任你| 国产午夜精品久久久久久| 色综合欧美亚洲国产小说| 国产成人欧美| 99国产精品一区二区蜜桃av| 成人精品一区二区免费| 欧美激情 高清一区二区三区| 亚洲欧美激情综合另类| 丰满饥渴人妻一区二区三| 国内毛片毛片毛片毛片毛片| 搡老乐熟女国产| ponron亚洲| 啪啪无遮挡十八禁网站| 欧美日韩国产mv在线观看视频| 久久精品国产清高在天天线| 精品午夜福利视频在线观看一区| 人人妻,人人澡人人爽秒播| 日韩高清综合在线| 日韩欧美一区二区三区在线观看| 两人在一起打扑克的视频| 欧美成人午夜精品| 少妇裸体淫交视频免费看高清 | 久热这里只有精品99| 视频区图区小说| 久久国产精品影院| 天堂中文最新版在线下载| 看免费av毛片| 免费av毛片视频| 亚洲欧美激情综合另类| 少妇粗大呻吟视频| 久久精品亚洲av国产电影网| av免费在线观看网站| 国产一区二区三区在线臀色熟女 | 亚洲av日韩精品久久久久久密| 欧美另类亚洲清纯唯美| 亚洲欧美精品综合一区二区三区| 色在线成人网| 美女高潮喷水抽搐中文字幕| 高清黄色对白视频在线免费看| 免费在线观看亚洲国产| 99国产精品99久久久久| 最好的美女福利视频网| 久久久精品欧美日韩精品| 精品国产一区二区久久| 热re99久久国产66热| 一进一出抽搐gif免费好疼 | 脱女人内裤的视频| 99久久久亚洲精品蜜臀av| av有码第一页| 三级毛片av免费| 色播在线永久视频| 国产在线观看jvid| 亚洲一码二码三码区别大吗| 中文字幕色久视频| 手机成人av网站| 在线免费观看的www视频| 黄色片一级片一级黄色片| 国产精品1区2区在线观看.| 精品久久久久久久毛片微露脸| 欧美久久黑人一区二区| 亚洲国产精品999在线| 99精品久久久久人妻精品| 国产精品一区二区精品视频观看| 91成年电影在线观看| 中文字幕最新亚洲高清| 黄色女人牲交| 欧美日韩亚洲国产一区二区在线观看| 好男人电影高清在线观看| 超色免费av| www日本在线高清视频| 久久久久久大精品| 窝窝影院91人妻| 精品国产美女av久久久久小说| e午夜精品久久久久久久| 丝袜在线中文字幕| 这个男人来自地球电影免费观看| 欧美日韩瑟瑟在线播放| 91av网站免费观看| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 亚洲国产毛片av蜜桃av| 亚洲欧美日韩另类电影网站| 日本精品一区二区三区蜜桃| 大型av网站在线播放| 欧美日韩一级在线毛片| 丰满饥渴人妻一区二区三| 日本a在线网址| 亚洲国产欧美网| 91精品三级在线观看| 高清av免费在线| 国产三级在线视频| 国产国语露脸激情在线看| 亚洲欧美激情在线| 十八禁人妻一区二区| 色婷婷久久久亚洲欧美| 欧美激情高清一区二区三区| 香蕉久久夜色| av有码第一页| 91精品国产国语对白视频| 国产91精品成人一区二区三区| 夜夜夜夜夜久久久久| 黄色成人免费大全| 免费高清视频大片| 香蕉丝袜av| www.999成人在线观看| 中文字幕人妻熟女乱码| 免费在线观看日本一区| 涩涩av久久男人的天堂| 啪啪无遮挡十八禁网站| www.熟女人妻精品国产| 超碰97精品在线观看| 午夜福利在线免费观看网站| 成人三级做爰电影| 国产亚洲精品久久久久久毛片| 久久久水蜜桃国产精品网| 精品无人区乱码1区二区| 亚洲一区二区三区不卡视频| 午夜福利欧美成人| 午夜免费激情av| 脱女人内裤的视频| 精品久久久久久,| 欧美成人性av电影在线观看| 国产成人精品久久二区二区免费| 国产免费现黄频在线看| 色播在线永久视频| 91成年电影在线观看| 啦啦啦在线免费观看视频4| 国产精品二区激情视频| 91老司机精品| 亚洲av成人av| 亚洲精品av麻豆狂野| 亚洲精品美女久久久久99蜜臀| 丰满迷人的少妇在线观看| 国产高清激情床上av| 中出人妻视频一区二区| 国产不卡一卡二| 在线av久久热| 亚洲国产精品sss在线观看 | 亚洲色图综合在线观看| 国产午夜精品久久久久久| 黄色a级毛片大全视频| 亚洲成人国产一区在线观看| 久久热在线av| 久久精品国产清高在天天线| 丰满迷人的少妇在线观看| 欧美午夜高清在线| 国产在线精品亚洲第一网站| 久久精品影院6| xxx96com| 国产成年人精品一区二区 | videosex国产| 精品高清国产在线一区| 淫秽高清视频在线观看| 国产亚洲精品一区二区www| 成人亚洲精品一区在线观看| 精品国产国语对白av| 国产精品爽爽va在线观看网站 | 操美女的视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕色久视频| 亚洲精品在线美女| 满18在线观看网站| 99国产精品99久久久久| 久久精品国产亚洲av香蕉五月| 女警被强在线播放| 激情视频va一区二区三区| 国产精品自产拍在线观看55亚洲| 国产av一区在线观看免费| 女人被躁到高潮嗷嗷叫费观| 别揉我奶头~嗯~啊~动态视频| 欧美亚洲日本最大视频资源| 操出白浆在线播放| 黑人巨大精品欧美一区二区蜜桃| 两人在一起打扑克的视频| 免费看a级黄色片| 18禁黄网站禁片午夜丰满| 好男人电影高清在线观看| 国产成人一区二区三区免费视频网站| 亚洲伊人色综图| 精品国产一区二区久久| 国产av在哪里看| 亚洲免费av在线视频| 精品久久久久久,| 狂野欧美激情性xxxx| 在线观看一区二区三区激情| 日韩欧美在线二视频| 男女做爰动态图高潮gif福利片 | 午夜91福利影院| 国产精品自产拍在线观看55亚洲| 不卡av一区二区三区| 日本a在线网址| 欧美不卡视频在线免费观看 | 日本免费一区二区三区高清不卡 | 久久精品国产综合久久久| 极品教师在线免费播放| 欧美激情久久久久久爽电影 | www.熟女人妻精品国产| 国产成年人精品一区二区 | 一夜夜www| 色婷婷久久久亚洲欧美| 久久精品成人免费网站| 亚洲精品中文字幕在线视频| bbb黄色大片| 黑人巨大精品欧美一区二区蜜桃| 少妇的丰满在线观看| 美女午夜性视频免费| 日韩欧美在线二视频| 午夜免费观看网址| 99精品在免费线老司机午夜| 嫩草影院精品99| 国产亚洲精品一区二区www| 亚洲七黄色美女视频| 岛国在线观看网站| 亚洲人成电影观看| 欧美一区二区精品小视频在线| 狠狠狠狠99中文字幕| 欧美精品啪啪一区二区三区| www.www免费av| 亚洲精品国产区一区二| 很黄的视频免费| 国产野战对白在线观看| 欧洲精品卡2卡3卡4卡5卡区| 99热只有精品国产| 可以在线观看毛片的网站| 天堂动漫精品| 黑人猛操日本美女一级片| 91成人精品电影| 国产精品 国内视频| 国产欧美日韩综合在线一区二区| 麻豆成人av在线观看| 麻豆av在线久日| 欧美大码av| 亚洲精品久久成人aⅴ小说| av超薄肉色丝袜交足视频| 亚洲国产精品合色在线| 久久人妻福利社区极品人妻图片| 可以在线观看毛片的网站| 另类亚洲欧美激情| 无人区码免费观看不卡| 亚洲人成网站在线播放欧美日韩| 亚洲精品中文字幕一二三四区| 一区二区三区国产精品乱码| 亚洲国产精品sss在线观看 | 欧美日韩瑟瑟在线播放| 黄片大片在线免费观看| 亚洲专区中文字幕在线| 精品午夜福利视频在线观看一区| 亚洲成人国产一区在线观看| 一区二区三区国产精品乱码| 一区福利在线观看| 欧美中文综合在线视频| 男女床上黄色一级片免费看| 91在线观看av| 亚洲国产欧美一区二区综合| 亚洲国产欧美日韩在线播放| 国产97色在线日韩免费| 国产又爽黄色视频| 女人精品久久久久毛片| 欧美+亚洲+日韩+国产| videosex国产| 青草久久国产| 欧美激情久久久久久爽电影 | 十八禁网站免费在线| 久久草成人影院| 波多野结衣高清无吗| 男人的好看免费观看在线视频 | 搡老岳熟女国产| 极品人妻少妇av视频| 99久久久亚洲精品蜜臀av| 国产成人影院久久av| av免费在线观看网站| 国产精品久久久久久人妻精品电影| 热99国产精品久久久久久7| 嫩草影院精品99| 久久国产亚洲av麻豆专区| 深夜精品福利| 欧美久久黑人一区二区| 久久天堂一区二区三区四区| 亚洲男人的天堂狠狠| 在线视频色国产色| 操美女的视频在线观看| 韩国精品一区二区三区| 国产欧美日韩一区二区精品| 精品国产超薄肉色丝袜足j| 18禁裸乳无遮挡免费网站照片 | 成人精品一区二区免费| 交换朋友夫妻互换小说| 亚洲国产欧美日韩在线播放| 精品久久蜜臀av无| 亚洲视频免费观看视频| 亚洲av成人一区二区三| 1024视频免费在线观看| 男人舔女人的私密视频| 精品日产1卡2卡| 欧美激情 高清一区二区三区| 在线观看免费高清a一片| 国产av精品麻豆| 国产乱人伦免费视频| 别揉我奶头~嗯~啊~动态视频| 在线视频色国产色| 人人澡人人妻人| 嫩草影院精品99| 一二三四在线观看免费中文在| 国产av又大| 男女午夜视频在线观看| 搡老乐熟女国产| 琪琪午夜伦伦电影理论片6080| 岛国在线观看网站| 99香蕉大伊视频| 精品国产一区二区三区四区第35| 免费观看精品视频网站| 久久人妻熟女aⅴ| 丰满饥渴人妻一区二区三| 制服诱惑二区| 亚洲精品中文字幕在线视频| 一级片免费观看大全| 女人精品久久久久毛片| 国产欧美日韩一区二区三区在线| 国产成人av教育| 色在线成人网| 精品午夜福利视频在线观看一区| 大型黄色视频在线免费观看| 老司机午夜十八禁免费视频| 国产野战对白在线观看| 精品日产1卡2卡| 午夜福利一区二区在线看| 91大片在线观看| 日本黄色日本黄色录像| 国产1区2区3区精品| 国产精品爽爽va在线观看网站 | 国产亚洲av高清不卡| 国产av又大| 色老头精品视频在线观看| 国产一区二区三区在线臀色熟女 | 露出奶头的视频| 亚洲午夜理论影院| 女生性感内裤真人,穿戴方法视频| 国产精品电影一区二区三区| videosex国产| 99精品在免费线老司机午夜| 视频区欧美日本亚洲| 香蕉久久夜色| 99国产精品一区二区蜜桃av| 日韩精品中文字幕看吧| 国产精品久久久久久人妻精品电影| 欧美精品亚洲一区二区| 高清黄色对白视频在线免费看| 丁香六月欧美| 亚洲激情在线av| 色尼玛亚洲综合影院| 欧美在线黄色| 老司机福利观看| 自线自在国产av| 18禁黄网站禁片午夜丰满| 激情视频va一区二区三区| 中国美女看黄片| 国产av一区在线观看免费| 日韩 欧美 亚洲 中文字幕| 高清av免费在线| 国产精品国产av在线观看| 中文字幕人妻熟女乱码| 亚洲人成网站在线播放欧美日韩| 国产精品成人在线| 12—13女人毛片做爰片一| 18美女黄网站色大片免费观看| 好看av亚洲va欧美ⅴa在| 国产精品二区激情视频| 日韩欧美在线二视频| 日韩精品免费视频一区二区三区| 欧美另类亚洲清纯唯美| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看| 三上悠亚av全集在线观看| 精品一区二区三区四区五区乱码| 嫩草影视91久久| bbb黄色大片| 搡老岳熟女国产| 久9热在线精品视频| √禁漫天堂资源中文www| 黄色片一级片一级黄色片| 亚洲精品在线美女| 成人黄色视频免费在线看| 最好的美女福利视频网| 国产亚洲欧美精品永久| 欧美黑人欧美精品刺激| 夜夜躁狠狠躁天天躁| 午夜福利在线免费观看网站| 一边摸一边抽搐一进一出视频| tocl精华| 午夜影院日韩av| 高清在线国产一区| 亚洲精品国产精品久久久不卡| 欧美激情久久久久久爽电影 | 视频在线观看一区二区三区| 亚洲中文字幕日韩| 后天国语完整版免费观看| 乱人伦中国视频| www国产在线视频色| 国产精品香港三级国产av潘金莲| 成人18禁高潮啪啪吃奶动态图| 国产亚洲欧美在线一区二区| 久久精品亚洲精品国产色婷小说| 母亲3免费完整高清在线观看| 久热爱精品视频在线9| 久久久久九九精品影院| 久久人人97超碰香蕉20202| 亚洲成国产人片在线观看| 亚洲片人在线观看| 久久国产精品人妻蜜桃| 午夜免费观看网址| 两个人看的免费小视频| 女生性感内裤真人,穿戴方法视频| 香蕉久久夜色| 又大又爽又粗| 日韩精品青青久久久久久| 欧美成人免费av一区二区三区| 国产在线观看jvid| 亚洲国产中文字幕在线视频| 99国产精品免费福利视频| 亚洲一区二区三区不卡视频|