• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geochemistry of Tertiary sandstones from southwest Sarawak,Malaysia:implications for provenance and tectonic setting

    2016-08-26 07:46:06NasimFerdousAtikulHaqueFarazi
    Acta Geochimica 2016年3期

    Nasim Ferdous·Atikul Haque Farazi

    ?

    Geochemistry of Tertiary sandstones from southwest Sarawak,Malaysia:implications for provenance and tectonic setting

    Nasim Ferdous1·Atikul Haque Farazi1

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    Tertiary sandstones collected from southwest Sarawak,Malaysia,were analyzed to decipher their provenance,weathering,and tectonic setting.The studied sandstones have a sublitharenite composition and are dominantly composed quartz with little mica and feldspar,and a small amount of volcanic fragments.These sandstones were generally derived from quartz-rich recycled orogenic sources.They have relatively high SiO2content with low Na2O,CaO,MnO,and MgO contents.Values of Chemical Index of Alteration(CIA)of these rock samples vary from 71 to 93,with an average of 81,implying intense chemical alteration during weathering.A felsic igneous source is suggested by a low concentration of TiO2compared to CIA,enrichment of Light Rare Earth Elements,depletion of Heavy Rare Earth Elements,and negative Eu anomalies.A felsic origin is further supported by a Eu/Eu* range of 0.65-0.85 and high Th/Sc,La/Sc,La/Co,and Th/ Co ratios.This work presents the first reported geochemical data of Tertiary sandstones of the Sarawak Basin.These data led us to conclude that the sandstones were dislodged from recycled orogenic sources and deposited in a slowly subsiding rifted basin in a passive continental tectonic setting.

    Geochemistry·Tertiary sandstone·

    Provenance·Tectonic setting·SW Sarawak·Malaysia

    1 Introduction

    Geochemical and petrographic analyses of sedimentary rocks revealtheirmineralogicalcomposition,chemicalcomposition,degree of weathering,and geological evolution of the source area,all of which offer clues to the tectonic setting of the depositionalbasin(Nesbittetal.1980;BhatiaandCrook1986;Roser and Korsch 1986;1988;Dabard 1990;McLennan et al. 1993;Verma and Armstrong-Altrin 2013).The history of evolutionaryprocessesofsedimentaryrocksispreservedinthe rocks'chemical composition.Immobile trace elements,rare earth elements(REEs),and major elements are reliable indicators in the evaluation of tectonic setting,weathering processes,andprovenance(Nesbittetal.1980;NesbittandYoung 1982;Bhatia 1983;1985;Taylor and McLennan 1985;Bhatia and Crook 1986;Roser and Korsch 1986;1988;Dabard 1990;McLennan et al.1993;Crichton and Condie 1993;Verma and Armstrong-Altrin 2013).Tectonic setting has strong compositional control over sedimentary rocks.Passive margin sediments are characterized by felsic composition whereas active margin or arc sediments are typically enriched in mafic components(Bhatia and Crook 1986;McLennan et al.1993).

    Several major element parameters and ratios,including Fe2O3+MgO,TiO2,Al2O3/SiO2,Al2O3/(CaO+Na2O),and K2O/Na2O,are used for studying provenance and tectonic setting(Bhatia 1983;Roser and Korsch 1986).Bhatia (1983)usedmajorelementconcentrationfunctionstocreatea discrimination diagram for differentiating tectonic settings:oceanic island arc(A),continental island arc(B),active continental margin(C),and passive margin(D).Also using major element concentrations,Roser and Korsch(1986)presented a classification scheme of three main tectonic settings:passive margin(PM),active continental margin (ACM),and oceanic island arc(ARC).Trace elements(including REEs)play a significant role in provenance study.Their low mobility relative to sedimentary processes and short residence time in seawater allow them to preserve the primordialgeochemistryoftheirsourcerockstoalargeextent (Bhatia and Crook 1986;McLennan et al.1993).Degree of weathering in the source area can be estimated by using the ChemicalIndexofAlteration(CIA)andTh/U,Th/Sc,andZr/ Sc ratios(Nesbitt and Young 1982;McLennan et al.1993).

    Although a number of models of tectonic setting of the Sarawak Basin have been proposed(Holloway 1982;James 1984;Tan and Lamy 1990;Hutchison 1996;Mat-Zin1996),none of them could make irrefutable conclusions about the tectonic setting of the area.On the basis of plate tectonic theory,a tectonic framework for northwest Borneo was first proposedbyJames(1984).AccordingtoJames,theSarawak Basin was developed as a result of subduction of oceanic crust of the South China Sea beneath continental crust of northwest Sarawak.Later findings supported this model (Tan and Lamy 1990;Hutchison 1996).Tectonic evolution of northwest Borneo commenced in the Late Cretaceous withinitiationofsimultaneousriftingoftheSouthChinaSea Basin.The pre-existing South China Sea oceanic crust subductedsouthwestwardbeneaththeSundashelfduringthe Paleocene to Late Eocene.The subduction front is marked by the Lupar line(Tan and Lamy 1990).This line also represents the southwest limit of the subducting oceanic crust. This subduction was most probably terminated during Paleocene time(Holloway 1982)and evolved into collision during Eocene time.This is evidenced by the compressed Rajang Group-of Eocene age-between the Schwaner Mountain Zone and the Luconia-Balingian-Miri block.The Schwaner Mountains represent a subduction-related Lowerto-UpperCretaceousvolcano-plutonicarc(Hutchison 1996).The gap between the Schwaner Mountains and the accretionary prism is considered by some to be a fore-arc basin(Moss 1998).However,a prior study(Mat-Zin 1996)had hypothesized that the Tertiary tectonic history of the Sarawak Basin is characterized by strike-slip faulting.The fore-arc basin hypothesis suffers from the absence of an exposed trench,lack of preserved volcanic rocks,and not having age data for the Luconia sediments(Mat-Zin 1996).

    The main objective of this study was to gain insight into the provenance,tectonic setting,and source area weathering of the Tertiary sandstones of southwest Sarawak.To this end,sandstone samples were collected from three different formations:the Plateau Sandstone,the Kayan Sandstone,and the Silantek Formation.

    2 Geologic background

    The study area is comprised of northwestern Borneo,southwestern Sarawak,and the Kuching Zone located at the western part of the Lupar valley(Fig.1).It covers an area of about 100 km2and is a part of the Sundaland,composed of continental crust.Haile(1974)subdivided Borneo into the West Borneo Basement,the Kuching Zone(bounded by the Lupar line),the Sibu Zone,and the Miri Zone.Borneo is believed to have formed during Mesozoic time as the result of the accretion of several micro-continental blocks that originated from the then South China and Australian Gondwanaplates(HallandNichols2002;Metcalfe2011).In Jurassic time,however,the Borneo continental block rifted and separated from the Australian plate.During the Late Cretaceous,the block drifted northward and accreted to southeast Sundaland.The opening and later spreading of the South China Sea led to the separation of several small continental plates from the South China or Indochina block,which then drifted southward by Cretaceous time(Hall and Nichols 2002;Metcalfe 2011).Paleomagnetic data show that Borneo began to rotate anti-clockwise in the Late Oligocene.The movement ended in the Middle Miocene when the block arrived at its present-day orientation(Hall 2002;Hutchison 2005).

    The Rajang group was uplifted and amalgamated along the Lupar line during the Late Eocene to Early Oligocene (Hutchison 2005).The Kuching Zone consists of an exposed basement complex,shelf deposits,molasse,and related sediments(Haile 1974).The Kerait Schist is the oldest formation outcropping as basement,and is conformably overlain by the Tuang Formation(Fig.2).The Terbat Formation unconformably overlies the Tuang Formation and underlies the Serian volcanics.The Sadong Formation unconformably overlies the Serian volcanics. This formation,in turn,is unconformably overlain by the Kedadom and Bau Formations of Upper Jurassic age,and also by the Pedawan Formation of Lower Cretaceous age (Hutchison 2005).The Pedawan Formation is unconformably overlain by the Kayan Sandstone.In the Simunjan area,the Eocene Silantek Formation is equivalent to the Kayan Sandstone,which is unconformably overlain by the Plateau Sandstone(Hutchison 2005).Previous studies established two major igneous events in the study area,described as extensional imprints.The first happened during Cretaceous time(known as the Cretaceous intrusive)and the other occurred during Miocene time(‘‘Sintag intrusives'').

    The Cretaceous rocks are predominantly acidic and are composed of granites,while intrusions in the extensional zones are hybridized gabbros.The granitoids of the Lundu area have yielded a K-Ar date of Cretaceous age (78±5 Ma)(Hutchison 2005).The Sintag intrusives in the Kuching Zone consist of hundreds of small‘‘post-basement intrusions''(Williams and Harahap 1987;Hutchison 2005). Williams and Harahap(1987)attributed this magmatic activitytodeepcrustalre-melting.Theyalsostatedthatthese intrusions commenced in a passive post-subductionalsetting.As a consequence of partial melting,the Lower Miocene diorite and Middle-Upper Miocene dacite were derived from island arc basaltic magma and subducted oceanic crust,respectively(Prouteau et al.2001).

    To conduct this study,nineteen sandstone samples were collected from the Plateau Sandstone,the Kayan Sandstone,and the Silantek Formation.The Kayan Sandstone in the Lundun-Kuching area is Upper Paleocene to Mid-Miocene in age.It is composed predominantly of massive and crossbedded sandstone and conglomerate along with thin beds of black,red,and grey mudstone(Wilford 1955).Tan(1984)described this formation as fluvial to deltaic environment deposits.The Silantek Formation in the Kuching-Simunjan area is of Upper Eocene to Oligocene age and is predominantly composed of thick-bedded sandstone interbedded with subordinate silty shale and mudstone in the lower part. On the other hand,the middle part consists of lenticular sandstone,which has interbeds of siltstone,silty shale,and mudstone.Again,the upper part of this formation is predominantlycomposedofredmicaceousmudstone,shale,red siltstone,and sandstone(Hutchison 2005).These sediments are overlain by thick-bedded massive and cross-bedded sandstone with grey-to-red mudstone(Tan 1979).The depositional environment is near-shore and estuarine at the base then becomes fluvial-lacustrine upward(Hutchison 2005).ThePlateauSandstoneoftheKuchingareaislikelyof Upper Eocene to Lower Oligocene age,and consists of thick-bedded massive and cross-bedded sandstone with grey-to-red mudstone and conglomerate(Tan 1979).Its depositional environment varies between fluvial and estuarine(Hutchison 2005).

    Fig.1 Location map of the study area(modified from Tate 2001)

    3 Methods

    Geochemical and petrographic analyses were carried out to disclose provenance and tectonic setting of the studied sandstones.Representative samples were collected from the Kuching,Lundu,and Simunjan areas(Fig.1).Eight samples were collected from the Kuching area;among them,six were from the Kayan Sandstone(St-1,St-23,St-24,St-24a,St-24b,and St-24c)and two were from the Plateau Sandstone(St-69a and St-69b).Four samples from the Kayan Sandstone Formation(St-50,St-56a,St-56b,and St-57)and seven samples from the Silantek Formation(St-15,St-35,St-126,St-126a,St-129,St-131,and St-132)were collected from the Lundun and Simunjan areas,respectively.Apart from these,we analyzed seven thin sections(n=7)of the Tertiary sandstones of southwest Sarawak with a petrographic microscope.We carried out 300 counts per thin section using the Gazzi-Dickenson point counting method(Ingersoll et al.1984).Whole rock geochemical analyses of nineteen sandstone samples (n=19)of Tertiary age were conducted to obtain their major and trace element(including REE)geochemistry. The samples were analyzed by lithium metaborate/tetraborate fusion Inductively Coupled Plasma(ICP)and ICP Mass Spectrometry(ICP-MS).The geochemical analyses wereperformedatActivationLaboratoriesLimited,Canada.Rock samples were pulverized prior to analysis. There is a possibility that up to 0.2%Fe contaminant was added during pulverization by mild steel.

    Fig.2 The stratigraphy of the study area(modified from Hutchison 2005)

    4 Results and analyses

    4.1Petrography

    Our petrographic study revealed that the Tertiary sandstones are predominantly composed of quartz grains,which were found to comprise 62%-80%of framework minerals(with an average of 74%).The quartz constituents are sub-angular to sub-rounded in shape.Both mono-and polycrystalline quartz were identified.Other noted content included lithic grains,feldspar,and mica.Lithic grains were the second most dominant component of the sandstones,making up 16%-21%of the rock volume.Identified grains were primarily of sedimentary or metasedimentary(mainly chert)origin;sparse volcanic rock fragments were also observed.Feldspar content ranged from 0.9%to 8.2%,with plagioclase being the prominent feldspar.Micaceous minerals-muscovite(up to 3.3%)and biotite(up to 1.3%)-represented about 5%of the total framework grains.Other than these,negligible amounts of carbonates were found in most of the samples with the exception of sample St-57,which was found to be rich in calcite grains and cement.

    The characteristics of the framework grains of the Tertiary sandstones,i.e.,prevalence of quartz,presence of a certain amount of sedimentary and/or meta-sedimentary lithics along with feldspar,and minor abundance of volcanic fragments(Fig.3a),put them in the sublitharenitic category.In the QFL diagram of Dickinson et al.(1983),the sublitharenite sandstones fall in the field of recycledorogenic terrain/provenance(Dickinson and Suczek 1979;Dickinson et al.1983)(Fig.3b).

    Fig.3 QFL diagram for Tertiary sandstones of SW Sarawak(provenance fields after Dickinson et al.1983)

    4.2Geochemistry

    Major and trace element composition of sediments is a good indicator of tectonic setting and provenance.Results of whole-rock geochemical analysis of the studied sandstones of the southwest Sarawak basin are presented in Table 1.

    SiO2content of sandstones of the southwest Sarawak basin was found to be high(ranging from 76%to 95%,with an average 87%).Average concentrations of other prominent oxides were 7%for Al2O3,1.2%for Fe2O3,1.4%for K2O,0.3%for TiO2,and 0.2%for Na2O. Lower concentrations were detected for CaO,MnO,MgO,and P2O5(0.04%,0.007%,0.2%,and 0.02%respectively).Harker Diagrams show variation in the major elements of sandstone relative to SiO2(Bhatia 1983;Roser and Korsch 1988).Plots of TiO2,Al2O3,F(xiàn)e2O3,K2O,Na2O,CaO,MnO,and MgO against SiO2concentration show negative linear patterns(with R2values 0.697,0.935,0.643,0.839,0.456,0.142,0.496,and 0.727,respectively)(Fig.4).Analyses of Na2O,CaO,MnO,and MgO returned very low concentrations with increasing SiO2while Al2O3,F(xiàn)e2O3,and K2O returned relatively high values.

    SiO2content is an indicator of abundance of all silicate minerals present in the sandstone with quartz obviously acting as the prominent function in this representation.The observed relative enrichment in Al2O3and K2O is related to elevated levels of mica,K-feldspar,and clay minerals. Depletion of Na2O and CaO is attributed to lower abundance of feldspar.The lower feldspar levels are probably a consequence either of weathering processes or of the source area being depleted in feldspar(Bhatia 1983;Dabard 1990;Crichton and Condie 1993).High SiO2/ Al2O3ratios and low Na2O/K2O ratios are signs of mature sandstones(Dabard 1990).The ranges of SiO2/Al2O3and Na2O/K2O values from 6.8 to 35.2 and 0.02 to 0.38,respectively,suggest that the studied sandstones represent relatively mature sediments.According to Crook(1974),K2O/Na2O ratios predict the level of quartz in sandstone (Fig.5a).Geochemically,the studied Tertiary sandstones show large variation in composition,and are classified as arkose,subarkose,litharenite,and sublitharenite(Herron 1988)(Fig.5b).Variation of major elements is probably a result of sedimentary processes(Bhatia 1983).

    Sandstones of the study area show moderate-to-little variation in concentration of trace elements.This characteristic signifies shared provenance,weathering,and tectonic setting(Bhatia 1983;Bhatia and Crook 1986;Crichton and Condie 1993).Positive correlation of Al,Cs,Ba,Th,and U with K content implies that concentrations of these elements are controlled by clay and mica contents. Moreover,Zr/Sc and Zr/Hf ratios act as good indicators to monitor zircon enrichment(Crichton and Condie 1993;McLennan et al.1993).In these samples,the high Zr/Hf (range of 35-46.with an average of 41)and Zr/Sc(range from 22 to 62)ratios are manifestations of zircon enrichment.Furthermore,positive correlation between Ba and K2O suggests association of Ba with feldspar.La/Sc ratio also implies of rock maturity,generally varies from 3 to 9(Bhatia and Crook 1986;Dabard 1990).Studied sandstones show large variation in La/Sc ratio,which ranges from 2.75 to 14.5(Table 2).V and Sc tend to be associated with mafic content.Lower V and Sc contents in the samples suggest that these sandstones were derived from V-and Scdepleted source rocks(Bhatia 1983;1985;Bhatia and Crook 1986;Dabard 1990).

    Chondrite-normalizeddiagramsillustrateREEpatternsin the studied samples(Fig.6a).Generally,total REE concentrations in these sandstones ranged from 21 to 309 ppm (Table 1).These samples exhibited light REE(LREE)enrichment,flat heavy REE(HREE)patterns,and negative Eu anomalies.The average REE concentrations of all samples were compared to the Post-Archean average Australian Shale(PAAS)and the Upper Continental Crust(UCC)concentration values(Fig.6b)(Taylor and McLennan 1985).

    Table 1 continued

    5 Discussion

    5.1Provenance and weathering

    Abundance of REEs in sedimentary rock is an indicator of the source area.REE patterns reflect the characteristics of source rocks,from which sediments are derived and accumulate in the basin.Sediments deriving from a common source do not show any noticeable fluctuation in their REE patterns.On the other hand,REEs show variable patterns in sediments that originated from heterogeneous source rocks (NanceandTaylor1976;1977;TaylorandMcLennan1985; Cullers1994;1995).Notably,felsicrocksgenerallyexhibita high LREE/HREE ratio with negative Eu anomalies,whereas mafic and/or ultramafic rocks have low LREE/ HREE ratios with no orpositive Eu anomalies.Inthe case of Eu,Eu3+behavesasanincompatibleelementinanoxidizing magma,whereas Eu2+substitutes for Ca2+in plagioclase (Taylor and McLennan 1985).In Fig.6a,b,the studied sandstones tend to have LREE enrichment and flat HREE patterns with negative Eu anomalies.Their average REE concentration shows a pattern similar to PAAS and UCC. Enrichment of LREEs and simultaneous low HREE values withnegativeEuanomaliesareindicativeofafelsicigneous source(Taylor and McLennan 1985).Additionally,Eu/Eu* values in these samples ranged from 0.65 to 0.85,with an average of 0.72.This characteristic is also suggestive of a felsicsource(NanceandTaylor1977;TaylorandMcLennan 1985;McLennan et al.1993;Cullers 1994;1995).Ratios of Eu/Eu*,(La/Lu)cn,Th/Sc,La/Sc,La/Co,and Th/Co offer clues about source including whether the source is felsic or mafic(Cullersetal.1988;Cullers1994;2000)(Table 2).All of the observed ratios indicate without any ambiguity that these Tertiary sediments of the southwest Sarawak derived from felsic source rock.

    As a consequence of their immobile characteristic,trace elements in sediments reflect source rock composition.Zr,Nb,Hf,and Y are high field strength elements,which are preferentially partitioned into melts during crystallization. This mechanism results in these elements being enriched in felsic rather than mafic sources.In contrast,Co,Sc,and V are more concentrated in mafic than in felsic source rocks (Taylor and McLennan 1985;Feng and Kerrich 1990).

    Fig.4 Harker variation diagrams for major elements in the SW Sarawak sandstones

    Fig.5 a Richness of quartz of the analyzed sandstones(after Crook 1974)and b Chemical classification of the analyzed sandstones(after Herron 1988)

    Fig.6 Chondrite-normalized rare earth element plots of the analyzed sandstones(Chondrite normalization values from Taylor and McLennan 1985)

    Table 2 Elemental ratios of the Tertiary sandstones compared with sediments derived from felsic,mafic rocks and the upper continental crust

    Roser and Korsch(1988)proposed a technique to differentiate sediment provenance based on major element concentration.There are four categories of provenance:mafic and less-intermediate igneous(P1),intermediate igneous(P2),felsic igneous(P3),and quartzose sediments of mature continental provenance(P4).The studied sandstones fall in the P4 field(Fig.7).The sediments could be derived from relatively highly weathered granitic gneissic terrain and/or pre-existing sedimentary terrain(Roser and Korsch 1988).

    Weathering that took place in the hinterland is measured as CIA.Concentrations of alkali and alkaline earth elements change during weathering with chemical alteration (Nesbitt et al.1980;Nesbitt and Young 1982).CIA is calculated using molecular proportions:

    where CaO*resides in the silicate fraction(CaO*= CaO-10/3(P2O5))(McLennan et al.1993).Low CIA values indicate a lack of weathering whereas high values indicate a highly chemically weathered source area(Rahman and Suzuki 2007;Nesbitt and Young 1982).

    In the A-CN-K diagram,values of the samples fall near the Al2O3corner,far from the line joining plagioclase and K-feldspar(Fig.8).The samples'CIA values vary from 71 to 93.The average CIA value(81)of the sandstones of the southwest Sarawak is considerably higher than the upper continental crust value(50).The CIA range of values (71-93)indicates that chemical alteration played a major role during weathering,or alternatively during sedimentary recycling(Nesbitt et al.1980;Nesbitt and Young 1982;McLennan et al.1993).The negative correlation between CIA and K2O/Al2O3suggests that K-bearing minerals belong to the clay fraction.

    Fig.7 Plot of discriminant function F1 and F2 for the analyzed sandstones(after Roser and Korsch 1988)

    TiO2tends to be enriched in strongly weathered soils due to its low solubility.However,our analysis shows that TiO2concentration decreases with increasing CIA.This suggests that these sediments originated from a TiO2depleted source-felsic source rocks.(Bauluz et al.2000).

    The Th/U ratio varies from 3.5 to 4.0 for most upper crust rocks.Enrichment of U is commonly found in anoxic sediments.During weathering and sedimentary recycling under oxidizing conditions,insoluble U4+ions are converted into soluble U6+ions.Higher Th/U values are indicative of dissolution and loss of U during sedimentation(Taylor and McLennan 1985;McLennan et al.1993).Low Th/U ratios indicatetheenrichmentofUinthesediments.Insedimentary rocks,Thdispersesasatraceelementinheavyminerals(e.g. zircon and monazite).U is not abundant in coarse-grained inorganic sedimentary rocks(e.g.quartzite and arkose);the range generally is from 0.5 to 1.5 ppm but can increase with increasingclayminerals(Mielke1979).TheTh/Uratioisan important index for monitoring kaolinite content,which increases with elevated Th/U values.The Th/U ratio in the study area ranges from 2.8 to 4.9 with an average of 3.83. These values suggest that the sediments were affected by weathering and sedimentary recycling.A Th/U versus Th plot shows a normal weathering trend(Fig.9a).

    Fig.8 CIA ternary diagram of analyzed sandstones(after Nesbitt and Young 1982)

    A Th/Sc vs Zr/Sc plot is another indicator of weathering andsedimentaryrecycling(McLennanetal.1993)(Fig.9b).In this plot the Zr/Sc ratio shows a substantial increasing trend with enrichment of zircon,whereas the increase is very low for Th/Sc.High Th/Sc and Zr/Sc ratios represent compositional variation and sediment recycling (zircon addition),respectively.This plot reflects a general trend for analyzed sandstones derived from igneous sourcerocks through intensive weathering(Rahman and Suzuki 2007;McLennan et al.1993).Enrichment of incompatible Th and Zr,over compatible Sc is an indicator of felsic provenance.

    5.2Tectonic setting

    Major and trace elements are important indicators for inferring tectonic setting as well as depositional environment of sedimentary rocks.

    Verma and Armstrong-Altrin(2013)recommend two discrimination function diagrams for tectonic discrimination of siliciclastic sediments:one for high-silica rocks[(SiO2)adj=63%to95%]andoneforlow-silica[(SiO2)adj=35%to 63%].These discrimination diagrams represent useful binary plots to differentiate among tectonic settings such as island or continental arc(Arc),continental rift(Rift),and collision(Col).According to SiO2content of the studied samples,the tectonic discrimination diagram for high-silica[(SiO2)adj=63%to 95%]has been used.Two discrimination functions(F1 and F2)are calculated based on major element concentrations(Fig.10).The results obtained from discriminant function analysis provide striking evidence of deposition in a rift basin(Fig.10).

    La-Th-Sc,Th-Sc-Zr/10,and Th-Co-Zr/10 are important ternary plots for determining tectonic setting although a La-Th-Sc plot cannot discriminate between active and passive continental margins;Th-Co-Zr/10 and Th-Sc-Zr/ 10 can differentiate these settings.These ternary plots can generally discriminate between the following tectonic settings:oceanic island arc(A),continental island arc(B),activecontinentalmargin(C),andpassivemargin (D)(Bhatia 1983;Bhatia and Crook 1986).High La/Sc ratios in the La-Th-Sc plot indicate a continental setting (Fig.11a).The Th-Co-Zr/10 and Th-Sc-Zr/10 diagrams confirm that the studied sandstones belong to a passive margin tectonic setting with high Zr/Th ratios(Fig.11b,c). All these plots reflect sediments with low Sc and Co concentrations,derived from a source depleted in those elements(Bhatia and Crook 1986).

    Another discrimination diagram was proposed by Roser andKorsch(1986),usingK2O/Na2OagainstSiO2. Increasing values of K2O/Na2O and SiO2indicate a change from ARC to ACM to PM.High K2O/Na2O and SiO2values indicate a relatively stable or passive margin tectonic environment of deposition for the analyzed Tertiary sandstones(Fig.12).

    Fig.9 a Plot of Th/U versus Th for the analyzed sandstones and b Plot of Th/Sc vs Zr/Sc for the analyzed sandstones(after McLennan et al.1993)

    Fig.10 Discriminant-function multi-dimensional diagram for highsilica clastic sediments from three tectonic settings(arc,continental rift,and collision)(after Verma and Armstrong-Altrin 2013)

    In the Late Cretaceous,southwest Sarawak was uplifted to form highlands and intermontane basins(Tan 1986). According to paleocurrent studies(Tan 1986;Hutchison 2005),Tertiary sediments of the studied area-derived from the highlands in the Kuching-bau-Serian area-were deposited in those basins.The Kayan Sandstone commenced to deposit during the Early Tertiary.It consists of massive and cross-bedded sandstones and conglomerates,which indicate a fluvial to deltaic depositional environment.The Silantek Formation and the Plateau Sandstone Formation were deposited in deltaic,fluvial,and lacustrine environments starting in the Early Eocene and continuing until the Late Oligocene or possibly Miocene.The overall prevailing Tertiary paleogeographic setting of southwest Sarawak(uplifted highlands providing sediment to fluvial,lacustrine,and deltaic depositional settings)conforms to our findings:sedimentary material from a recycled orogenic source and quartzose sediments of mature continental provenance were deposited in a passive tectonic setting,experiencing weathering and recycling processes while transported by rivers.

    Fig.12 Tectonic-setting diagram of the analyzed sandstones(after Roser and Korsch 1986)

    Fig.11 Trace element Ternary plots for tectonic setting discrimination(after Bhatia and Crook 1986)

    Petrographic study of the Kayan sandstones divulged that they are sublitharenitic in composition,containing mainly subangular to subrounded quartz grains,plagioclase feldspar,rock fragments,and small amount of carbonates in their framework.At the same time,it is evident from geochemical plots of these samples that a number of them haveverystrongsubarkosicaffinity(Fig.5b).This anomalous geochemical behavior is perhaps the result of the existence of the feldspars and rock fragments.Such ambiguity in the classification of the samples and their overall composition suggests that they were deposited in aquiescent period of slow subsidence.The subsidence was the result of mechanical creation of accommodation space due to gradual sediment loading in a rifted basin.The then prevailing river systems carried these matured sands from the uplifted hinterland area into the rifted basin;contemporaneously,the relatively immature subarkosic sandsproducts of rifting-were mixed with them.This explanation is consistent with the phenomenon of large variation in REE patterns in the spider diagrams(Fig.6a)and our plot of the Verma and Armstrong-Altrin(2013)diagram (Fig.10).

    6 Conclusions

    Provenance of the Tertiary sandstones of three typical formations of southwest Sarawak-the Kayan Sandstone,the Silantek Formation,and the Plateau Sandstone,which range in age from Paleocene to Miocene-were determined by whole rock geochemical analytical methods.Moreover,petrographic studies were conducted to corroborate the findings from the geochemical analyses.Our conclusion is that these sandstones were derived primarily from felsic continental sources and underwent significant weathering and recycling processes due to orogenic activities,and that these sediments were deposited in a slowly subsiding intracontinental rifted basin of passive tectonic setting. These findings help unravel the complex tectonic history of the southwest Sarawak Basin.

    AcknowledgmentsComments from reviewers and WANG Binbin were very helpful and valuable.The financial support from the project (PPP)PG003-2013A of the University of Malaya,Kuala Lumpur,Malaysia in carrying out this research work is gratefully acknowledged.Partial support from the project RP002C-13AFR of the University of Malaya is also gratefully acknowledged.Our thanks to M.K.Iskandar for supporting the field work.The facilities provided by the Department of Geology,University of Malaya are thankfully acknowledged.

    References

    Bauluz B,Mayayo MJ,F(xiàn)ernandez-Nieto C,Gonzalez-Lopez JM (2000)Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range(NE Spain):implications for source area weathering,sorting,provenace,and tectonic setting. Chem Geol 168:135-150

    Bhatia MR(1983)Plate tectonics and geochemical composition of sandstones.J Geol 91:611-627

    Bhatia MR(1985)Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks:provenance and tectonic control.Sed Geol 45:97-113

    Bhatia MR,Crook KAW (1986)Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basin.Contrib Miner Petrol 92:181-193

    Crichton JG,Condie KC(1993)Trace elements as source indicators in cratonic sediments:a case of study from the early Proterozoic LibbyCreekGroup,southwesternWyoming.JGeol 101:319-322

    Crook KAW (1974)Lithogenesis and geotectonics:the significance of compositional variation in flysch arenites(grawckes).Soc Econ Paleontol Min Special Publication 19:304-310

    CullersRL(1994)Thecontrolsonthemajorandtraceelementvariation ofshales,siltstones,andsandstonesofPennsylvanian-Permianage fromuplifted continental blocksinColoradotoplatformsediment in Kansas,USA.Geochim Cosmochim Acta 58:4955-4972

    Cullers RL(1995)The controls on the major-and trace-element evolution of shales,siltstones and sandstones of Ordovician to tertiary are in the Wet Mountains region,Colorado,U.S.A. Chem Geol 123:107-131

    Cullers RL(2000)The geochemistry of shales,siltstones and sandstones of Pennsylvanian-Permian age,Colorado,USA:implications for provenance and metamorphic studies.Lithos 51:181-203

    Cullers RL,Chaudhuri S,Kilbane N,Koch R(1979)Rare-earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U.S.A.Geochim Cosmochim Acta 43:1285-1301

    Cullers RL,Basu A,Suttner L(1988)Geochemical signatureof provenance in sand-size material in soils and stream sedimentsnear the Tobacco Root batholith,Montana,USA.Chem Geol 70:335-348

    Dabard MP(1990)Lower Brioverian formations(Upper Proterozoic)of the Armorican Massif(France):geodynamic evolution of source areas revealed by sandstone petrography and geochemistry.Sed Geol 69:45-58

    Dickinson WR,Suczek CA(1979)Plate tectonics and sandstone compositions.Am Assoc Pet Geol Bull 63:2164-2182

    Dickinson WR,Beard LS,Brakenridge GR,Erjavec JL,F(xiàn)erguson RC,Inman KF,Knepp RA,Lindberg FA,Ryberg PT(1983)Provenance of North American Phanerozoic sandstones in relation to tectonic setting.Geol Soc Am Bull 94:222-235

    Feng R,Kerrich R (1990)Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstones belt,Canada:implications for provenance and tectonic setting.Geochim Cosmochim Acta 54:1061-1081

    Haile NS(1974)Borneo In:Spencer AM (ed)Mesozoic-cenozoic orogenic belts:data for orogenic studies.Geological Society of London,Special Publication 4:333-347

    Hall R(2002)Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:computer-based reconstruction,model and animations.J Asian Earth Sci 20:353-431

    Hall R,Nichols G(2002)Cenozoic sedimentation and tectonics in Borneo:climatic influence on orogenesis.Geol Soc Lond,Special Publication 191:5-22

    Herron MM(1988)Geochemical classifi cation of terrigenous sands and shales from core or log data.J Sediment Petrol 58:820-829

    Holloway NH(1982)North Palawan Block,Philippines its relationship to the Asian mainland and role in the evolution of South China Sea.Am Assoc Pet Geol Bull 66:1355-1383

    Hutchison CS(1996)The‘Rajang accretionary prism'and‘Lupar Line'problem of Borneo.Geol Soc,London 106:247-261

    Hutchison CS(2005)Geology of North-West Borneo:Sarawak,Brunei and Sabah.Elsevier,Amsterdam

    Ingersoll RV,Bulard TF,F(xiàn)ord RL,Grimn JP,Pickle JP,Sares SW (1984)The effect of grain size on detrital modes:a test of the Gazzi-Dickinson Point Counting method.J Sediment Petrol 54:103-116

    James DMD(1984)The geology and hydrocarbon resources of Negara Brunei Darulsalam.Special publication,Brunei Museum and Brunei Shell Petroleum Company

    Mat-Zin IC(1996)Tertiary tectonics and sedimentation history of the Sarawak basin,east Malaysia.Ph.D.Thesis,Durham University

    McLennan SM(2001)Relation between the trace element composition of sedimentary rocks and upper continental crust.Geochem Geophys Geosyst.doi:10.1029/2000GC000109

    McLennan SM,Hemming S,McDaniel DK,Hanson GN(1993)Geochemical approaches to sedimentation,provenance and tectonics.Geol Soc Am Spec Pap 284:295-303

    Metcalfe I(2011)Tectonic framework and Phanerozoic evolution of Sundaland.Gondwana Res 19:3-21

    Mielke JE(1979)Composition of the Earth's crust and distribution of the elements.In:Siegel FR(ed)Review of research on modern problems in geochemistry,Paris.International Association for Geochemistryand Cosmochemistry,EarthScienceSeries,16:13-37

    Moss SJ(1998)Embaluh Group turbidities in Kalimantan:evolution of the remnant oceanic basin in Borneo during the Late Cretaceous and Paleocene.J Geol Soc,London 155:509-524

    Nance WB,Taylor SR(1976)Rare earth element patterns and crustal evolution-I.Australian post-Archean sedimentary rocks.Geochim Cosmochim Acta 40:1539-1551

    Nance WB,Taylor SR(1977)Rare earth element pat-terns and crustal evolution-II.Archean sedimentary rocks from Kalgoorlie,Australia.Geochimica et Cosmochimica Acta 41:225-231

    Nesbitt HW,Young GM(1982)Early Proterozoic climates and plate motions inferred from major element chemistry of lutites.Nature 299:715-717

    Nesbitt HW,Markovics G,Price RC(1980)Chemical processes affectingalkalinesandalkalineearthsduringcontinental weathering.Geochim Cosmochim Acta 44:1659-1666

    Prouteau G,Maury RC,Pubellier M,Cotten J,Bellon H(2001)Le magmatisme post-collisionnel du Nord-Ouest de Borneo,produit de la fusion d'un fragment de croute oceanique ancre dans le manteau superieur.Bull Soc Geol Fr 172:319-332

    Rahman MJJ,Suzuki S(2007)Geochemistry of sandstones from the Miocene Surma Group,Bengal Basin,Bangladesh:implications for Provenance,tectonic setting and weathering.Geochem J 14:415-428

    Roser BP,Korsch RJ(1986)Determination of tectonic setting of sandstone-mudstone suites using SiO2content and K2O/Na2O ratio.J Geol 94:635-650

    Roser BP,Korsch RJ(1988)Provenance signatures of sandstonemudstone suites determined using discriminant function analysis of major-element data.Chem Geol 67:119-139

    Tan DNK(1979)Lupar valley,west Sarawak,Malaysia.Geological Survey of Malaysia,Report 13

    Tan DNK(1984)Paleocurrents in the Tertiary sedimentary deposits in western Sarawak.Bull Geol Soc Malaysia 17:257-264

    Tan DNK(1986)Palaeogeographic development of west Sarawak. Bull Geol Soc Malaysia 19:39-49

    Tan DNK,Lamy JM (1990)Tectonic evolution of the NW Sabah continental margin since the Late Eocene.Bull Geol Soc Malaysia 27:241-260

    Tate RB(2001)Geological map of Borneo Island,CD-Rom published by the Geological Society of Malaysia,Kuala Lumpur

    Taylor SR,McLennan SM(1985)The continental crust:its composition and evolution.Blackwell,London

    Verma SP,Armstrong-Altrin SJ(2013)New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins.Chem Geol 355:117-133

    Wilford GE(1955)The geology and mineral resources of the Kuching-Lundu area,west Sarawak including the Bau Mining District.Kuching,Sarawak:Geological Survey Dept.,British Territories in Borneo,Memoir 3

    Williams PR,Harahap BH(1987)Preliminary geochemical and age data from post-subduction intrusive rocks,northwest Borneo. Aust J Earth Sci 34:405-415

    16 January 2015/Revised:27 December 2015/Accepted:14 February 2016/Published online:29 February 2016

    ? Nasim Ferdous ferdous.nasim1@gmail.com Atikul Haque Farazi reason.farazi.du@gmail.com
    1Department of Geology,University of Malaya,Kuala Lumpur 50603,Malaysia

    久久精品国产a三级三级三级| 热99re8久久精品国产| 在线观看一区二区三区激情| av电影中文网址| 日韩制服骚丝袜av| 成人免费观看视频高清| 国产日韩欧美亚洲二区| 搡老熟女国产l中国老女人| 一本—道久久a久久精品蜜桃钙片| 精品免费久久久久久久清纯 | 一个人免费在线观看的高清视频 | 国产91精品成人一区二区三区 | 免费日韩欧美在线观看| 脱女人内裤的视频| 成人手机av| 国产日韩欧美在线精品| 老司机影院成人| 夫妻午夜视频| 亚洲一区二区三区欧美精品| 老司机深夜福利视频在线观看 | 丰满饥渴人妻一区二区三| 亚洲av电影在线观看一区二区三区| 欧美日韩视频精品一区| 久久国产精品大桥未久av| 免费少妇av软件| 秋霞在线观看毛片| 久久99热这里只频精品6学生| 日本wwww免费看| 久久精品国产亚洲av高清一级| 国产精品国产av在线观看| 欧美日韩亚洲高清精品| 国产成+人综合+亚洲专区| 国产精品 欧美亚洲| 久9热在线精品视频| 最近中文字幕2019免费版| h视频一区二区三区| 一边摸一边抽搐一进一出视频| 777米奇影视久久| 电影成人av| 精品少妇黑人巨大在线播放| 成年av动漫网址| 免费在线观看视频国产中文字幕亚洲 | 菩萨蛮人人尽说江南好唐韦庄| 精品免费久久久久久久清纯 | 欧美日韩亚洲国产一区二区在线观看 | 精品国产一区二区三区四区第35| 欧美国产精品va在线观看不卡| svipshipincom国产片| 肉色欧美久久久久久久蜜桃| 午夜免费观看性视频| 亚洲精品中文字幕在线视频| 国产免费一区二区三区四区乱码| 午夜激情久久久久久久| 一区在线观看完整版| 性色av乱码一区二区三区2| 国产伦理片在线播放av一区| 99久久人妻综合| 成年人午夜在线观看视频| 久久久久久久久免费视频了| 极品人妻少妇av视频| 又大又爽又粗| 俄罗斯特黄特色一大片| 国产91精品成人一区二区三区 | 丝袜在线中文字幕| 我要看黄色一级片免费的| 中文字幕最新亚洲高清| 日韩制服骚丝袜av| 男女边摸边吃奶| kizo精华| 男人舔女人的私密视频| 亚洲专区字幕在线| 国产一区二区 视频在线| 最新在线观看一区二区三区| 欧美日韩成人在线一区二区| 大香蕉久久网| 久久国产精品影院| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区在线臀色熟女 | 不卡一级毛片| 亚洲av成人一区二区三| www.熟女人妻精品国产| 亚洲伊人久久精品综合| 最新的欧美精品一区二区| 黄色视频,在线免费观看| 亚洲,欧美精品.| 午夜影院在线不卡| 悠悠久久av| 欧美日韩av久久| 午夜91福利影院| 我的亚洲天堂| 国产成人啪精品午夜网站| 日本wwww免费看| 在线观看免费日韩欧美大片| 久久精品国产亚洲av高清一级| 欧美激情极品国产一区二区三区| 青春草视频在线免费观看| 99久久人妻综合| 亚洲精品在线美女| 国产成+人综合+亚洲专区| 国产成人av激情在线播放| av又黄又爽大尺度在线免费看| 免费观看a级毛片全部| 最近最新中文字幕大全免费视频| 欧美黄色片欧美黄色片| 久久久国产欧美日韩av| 在线观看www视频免费| 亚洲va日本ⅴa欧美va伊人久久 | 一边摸一边抽搐一进一出视频| 久久国产亚洲av麻豆专区| av天堂久久9| 老司机午夜福利在线观看视频 | 国产一卡二卡三卡精品| 欧美av亚洲av综合av国产av| 丁香六月天网| 无限看片的www在线观看| 久久久久精品国产欧美久久久 | 久久青草综合色| 欧美大码av| 国产精品欧美亚洲77777| 久久久久国产一级毛片高清牌| 99热国产这里只有精品6| 汤姆久久久久久久影院中文字幕| 满18在线观看网站| av有码第一页| 一二三四社区在线视频社区8| 久久精品国产亚洲av香蕉五月 | 日韩一卡2卡3卡4卡2021年| 波多野结衣一区麻豆| 亚洲激情五月婷婷啪啪| 高清黄色对白视频在线免费看| 国产成人精品在线电影| 中文字幕人妻丝袜一区二区| 18禁国产床啪视频网站| 人妻 亚洲 视频| 久久国产精品男人的天堂亚洲| 极品少妇高潮喷水抽搐| 三上悠亚av全集在线观看| 国产精品久久久久久精品古装| 秋霞在线观看毛片| 免费日韩欧美在线观看| 亚洲av成人一区二区三| 亚洲 欧美一区二区三区| 美女扒开内裤让男人捅视频| 国产精品 国内视频| 69av精品久久久久久 | 成在线人永久免费视频| 美女高潮到喷水免费观看| 久久av网站| 亚洲第一青青草原| 国产又色又爽无遮挡免| 国产免费av片在线观看野外av| 亚洲精品久久成人aⅴ小说| 韩国精品一区二区三区| 婷婷色av中文字幕| 午夜两性在线视频| 一级黄色大片毛片| 一二三四在线观看免费中文在| 超碰成人久久| 两性午夜刺激爽爽歪歪视频在线观看 | 50天的宝宝边吃奶边哭怎么回事| 免费人妻精品一区二区三区视频| 国产亚洲精品久久久久5区| 国产一区二区三区在线臀色熟女 | 久久久水蜜桃国产精品网| 亚洲,欧美精品.| 欧美黄色片欧美黄色片| 一本一本久久a久久精品综合妖精| 日韩欧美一区视频在线观看| 亚洲欧美色中文字幕在线| 欧美精品高潮呻吟av久久| 国产精品久久久av美女十八| 国产在线观看jvid| 国产精品麻豆人妻色哟哟久久| 日本91视频免费播放| 999久久久国产精品视频| 黄色 视频免费看| 国产成人欧美| 少妇粗大呻吟视频| 久久久久久久国产电影| 18禁观看日本| 人人妻,人人澡人人爽秒播| 亚洲国产精品一区二区三区在线| 国产有黄有色有爽视频| 性色av乱码一区二区三区2| 久久精品国产亚洲av高清一级| 最近最新中文字幕大全免费视频| 亚洲欧美一区二区三区黑人| 永久免费av网站大全| 亚洲av欧美aⅴ国产| 日本精品一区二区三区蜜桃| 日韩欧美一区二区三区在线观看 | 99国产综合亚洲精品| 国产av精品麻豆| 中文字幕人妻丝袜制服| 亚洲七黄色美女视频| 亚洲黑人精品在线| 亚洲精品日韩在线中文字幕| 1024视频免费在线观看| 这个男人来自地球电影免费观看| 免费高清在线观看视频在线观看| 欧美亚洲 丝袜 人妻 在线| 十八禁人妻一区二区| 国产精品成人在线| 免费观看a级毛片全部| 午夜老司机福利片| av片东京热男人的天堂| 老司机午夜十八禁免费视频| 国产成人欧美在线观看 | av在线app专区| 巨乳人妻的诱惑在线观看| 80岁老熟妇乱子伦牲交| 国产91精品成人一区二区三区 | 国产精品久久久av美女十八| 在线观看一区二区三区激情| 国产真人三级小视频在线观看| 久热这里只有精品99| 亚洲精品一二三| 亚洲国产日韩一区二区| 久久女婷五月综合色啪小说| 国产有黄有色有爽视频| 久久99一区二区三区| 国产精品 国内视频| 成人手机av| 精品一区二区三区四区五区乱码| 欧美黄色淫秽网站| 亚洲精品国产一区二区精华液| 多毛熟女@视频| 一区二区三区四区激情视频| 91精品伊人久久大香线蕉| 欧美国产精品va在线观看不卡| 建设人人有责人人尽责人人享有的| 亚洲 国产 在线| 日韩欧美一区视频在线观看| 亚洲中文av在线| 啪啪无遮挡十八禁网站| 国产国语露脸激情在线看| 大片电影免费在线观看免费| 看免费av毛片| 老熟妇乱子伦视频在线观看 | 中文字幕人妻丝袜一区二区| 少妇裸体淫交视频免费看高清 | 老熟妇乱子伦视频在线观看 | 一二三四社区在线视频社区8| 叶爱在线成人免费视频播放| 汤姆久久久久久久影院中文字幕| 国产麻豆69| 欧美大码av| 一本久久精品| 久久久久久免费高清国产稀缺| 天天躁狠狠躁夜夜躁狠狠躁| 黄片小视频在线播放| 视频区欧美日本亚洲| 啪啪无遮挡十八禁网站| 一进一出抽搐动态| 亚洲国产欧美在线一区| 久久99热这里只频精品6学生| 国产精品熟女久久久久浪| 精品国产超薄肉色丝袜足j| 国产一区有黄有色的免费视频| 日本精品一区二区三区蜜桃| 中文字幕人妻丝袜制服| 麻豆国产av国片精品| 午夜久久久在线观看| 亚洲av片天天在线观看| 韩国高清视频一区二区三区| 国产日韩欧美在线精品| 美女高潮到喷水免费观看| 男女边摸边吃奶| 一本色道久久久久久精品综合| 日本av手机在线免费观看| 水蜜桃什么品种好| 精品人妻1区二区| 亚洲久久久国产精品| 国产精品久久久久久人妻精品电影 | 午夜免费观看性视频| 成人亚洲精品一区在线观看| 亚洲精品中文字幕一二三四区 | 国产精品偷伦视频观看了| 日本wwww免费看| 亚洲情色 制服丝袜| 老司机在亚洲福利影院| 男女午夜视频在线观看| www.999成人在线观看| 欧美精品一区二区大全| av片东京热男人的天堂| av国产精品久久久久影院| 久久人人爽人人片av| 欧美在线黄色| 午夜福利在线免费观看网站| 欧美日韩视频精品一区| 高清在线国产一区| 色婷婷久久久亚洲欧美| 精品亚洲乱码少妇综合久久| 十八禁网站网址无遮挡| 亚洲av国产av综合av卡| 国产成人欧美在线观看 | 视频区欧美日本亚洲| 成人手机av| 丰满人妻熟妇乱又伦精品不卡| 老司机深夜福利视频在线观看 | 99精品久久久久人妻精品| 国产高清国产精品国产三级| 美女国产高潮福利片在线看| 国产又爽黄色视频| 人人妻人人澡人人爽人人夜夜| 欧美激情高清一区二区三区| 亚洲天堂av无毛| 亚洲精品国产色婷婷电影| 超碰成人久久| 亚洲精品一区蜜桃| 国产欧美亚洲国产| 久久九九热精品免费| 国产人伦9x9x在线观看| 欧美日韩av久久| 啦啦啦免费观看视频1| 国内毛片毛片毛片毛片毛片| 国产成人av教育| 日日摸夜夜添夜夜添小说| 国产亚洲一区二区精品| 另类亚洲欧美激情| 啪啪无遮挡十八禁网站| 亚洲国产欧美在线一区| 国产亚洲精品一区二区www | 菩萨蛮人人尽说江南好唐韦庄| 精品国内亚洲2022精品成人 | 精品少妇黑人巨大在线播放| 中亚洲国语对白在线视频| 亚洲综合色网址| 又黄又粗又硬又大视频| 97在线人人人人妻| 久久久国产精品麻豆| 中文字幕人妻熟女乱码| 9色porny在线观看| 国产精品免费视频内射| 丁香六月天网| 国产av精品麻豆| 精品久久久久久电影网| 少妇猛男粗大的猛烈进出视频| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人爽人人添夜夜欢视频| 亚洲一区二区三区欧美精品| 欧美中文综合在线视频| 一边摸一边抽搐一进一出视频| 波多野结衣av一区二区av| 久久中文字幕一级| 成人国产av品久久久| 熟女少妇亚洲综合色aaa.| 欧美精品啪啪一区二区三区 | 国产精品av久久久久免费| 日本vs欧美在线观看视频| 久久精品国产综合久久久| 国产在线一区二区三区精| 日韩视频一区二区在线观看| 99久久精品国产亚洲精品| 咕卡用的链子| 99国产极品粉嫩在线观看| 黑丝袜美女国产一区| 一区二区av电影网| 午夜日韩欧美国产| 久久人人97超碰香蕉20202| 国产欧美亚洲国产| 国产av又大| 国产99久久九九免费精品| 12—13女人毛片做爰片一| 日韩三级视频一区二区三区| 久久香蕉激情| 亚洲中文日韩欧美视频| tube8黄色片| 在线看a的网站| 一级片'在线观看视频| 美女国产高潮福利片在线看| 久久精品aⅴ一区二区三区四区| a级毛片在线看网站| 中文字幕最新亚洲高清| 热re99久久精品国产66热6| 亚洲久久久国产精品| 日韩一卡2卡3卡4卡2021年| 国产在视频线精品| 美女中出高潮动态图| 男女边摸边吃奶| 91老司机精品| 成年av动漫网址| 国内毛片毛片毛片毛片毛片| 婷婷丁香在线五月| av免费在线观看网站| 亚洲第一青青草原| 99香蕉大伊视频| 午夜91福利影院| 久久国产精品男人的天堂亚洲| 欧美精品人与动牲交sv欧美| 亚洲欧洲精品一区二区精品久久久| 久久久精品区二区三区| 黄色视频不卡| 国产区一区二久久| 亚洲午夜精品一区,二区,三区| 久久久欧美国产精品| 男人操女人黄网站| 美女福利国产在线| 人人妻,人人澡人人爽秒播| 亚洲av电影在线进入| 90打野战视频偷拍视频| 日韩一卡2卡3卡4卡2021年| 久久精品亚洲熟妇少妇任你| 一区二区日韩欧美中文字幕| 在线观看免费日韩欧美大片| 国精品久久久久久国模美| 极品少妇高潮喷水抽搐| 永久免费av网站大全| 久久热在线av| av线在线观看网站| 久久99一区二区三区| 青春草亚洲视频在线观看| 中文字幕制服av| 免费女性裸体啪啪无遮挡网站| 国产精品欧美亚洲77777| 999精品在线视频| 亚洲性夜色夜夜综合| 国产精品免费大片| 婷婷色av中文字幕| 久久国产精品大桥未久av| 免费久久久久久久精品成人欧美视频| 在线观看www视频免费| 一个人免费在线观看的高清视频 | av电影中文网址| 精品人妻在线不人妻| 欧美人与性动交α欧美精品济南到| 丰满少妇做爰视频| 日韩欧美一区视频在线观看| 制服诱惑二区| 国产亚洲精品一区二区www | 国产精品欧美亚洲77777| 国产一级毛片在线| 欧美日韩亚洲综合一区二区三区_| 黄片大片在线免费观看| 日日爽夜夜爽网站| 国产真人三级小视频在线观看| 嫁个100分男人电影在线观看| 在线观看免费高清a一片| 亚洲国产看品久久| 成人黄色视频免费在线看| 一本综合久久免费| 国产欧美日韩一区二区三 | 啦啦啦中文免费视频观看日本| 久久久国产欧美日韩av| 亚洲精品久久久久久婷婷小说| 男男h啪啪无遮挡| 日韩欧美一区视频在线观看| 在线观看免费午夜福利视频| 久久久久网色| 国产在线视频一区二区| 日韩中文字幕视频在线看片| 亚洲三区欧美一区| 久久国产精品大桥未久av| √禁漫天堂资源中文www| 久久久久久人人人人人| 亚洲精品中文字幕一二三四区 | 正在播放国产对白刺激| 好男人电影高清在线观看| 满18在线观看网站| 精品第一国产精品| 亚洲欧美色中文字幕在线| 亚洲天堂av无毛| 在线 av 中文字幕| 日韩三级视频一区二区三区| 久久久国产一区二区| 亚洲精品国产av蜜桃| av超薄肉色丝袜交足视频| 大片免费播放器 马上看| 国产欧美日韩一区二区三 | 午夜福利视频精品| 日韩欧美一区二区三区在线观看 | 天天躁日日躁夜夜躁夜夜| 亚洲,欧美精品.| 在线av久久热| 999精品在线视频| 欧美在线一区亚洲| 国精品久久久久久国模美| 一区二区日韩欧美中文字幕| 热99re8久久精品国产| 国产亚洲av高清不卡| 国内毛片毛片毛片毛片毛片| 天堂8中文在线网| 欧美97在线视频| 中文字幕人妻熟女乱码| 欧美精品亚洲一区二区| 国产精品自产拍在线观看55亚洲 | 国产一卡二卡三卡精品| 亚洲精品乱久久久久久| 飞空精品影院首页| 亚洲激情五月婷婷啪啪| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 一区二区三区四区激情视频| 亚洲第一av免费看| 99精品久久久久人妻精品| 手机成人av网站| 国产精品一区二区在线观看99| 精品第一国产精品| 国产精品麻豆人妻色哟哟久久| 免费观看a级毛片全部| 曰老女人黄片| 亚洲人成77777在线视频| 黄色怎么调成土黄色| 久久久精品免费免费高清| 各种免费的搞黄视频| 欧美+亚洲+日韩+国产| 欧美成狂野欧美在线观看| 美女国产高潮福利片在线看| 久久国产精品大桥未久av| xxxhd国产人妻xxx| 在线永久观看黄色视频| 亚洲第一欧美日韩一区二区三区 | 国产成人啪精品午夜网站| 99国产极品粉嫩在线观看| 波多野结衣一区麻豆| a 毛片基地| 国产亚洲精品久久久久5区| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品999| 国产成人啪精品午夜网站| 十八禁高潮呻吟视频| 一区在线观看完整版| 又紧又爽又黄一区二区| 狠狠狠狠99中文字幕| 午夜福利视频精品| 一二三四社区在线视频社区8| 免费久久久久久久精品成人欧美视频| 丝瓜视频免费看黄片| 波多野结衣一区麻豆| 亚洲欧美激情在线| 欧美精品人与动牲交sv欧美| 国产在视频线精品| 亚洲av日韩精品久久久久久密| 丰满迷人的少妇在线观看| 欧美97在线视频| 黄频高清免费视频| 人妻人人澡人人爽人人| 狠狠婷婷综合久久久久久88av| 中文字幕精品免费在线观看视频| 国产免费福利视频在线观看| 亚洲国产欧美网| 久久久久精品人妻al黑| 成人18禁高潮啪啪吃奶动态图| 久久精品aⅴ一区二区三区四区| 各种免费的搞黄视频| 人人妻,人人澡人人爽秒播| 精品熟女少妇八av免费久了| 另类精品久久| 欧美亚洲 丝袜 人妻 在线| 黄色视频在线播放观看不卡| 性色av乱码一区二区三区2| netflix在线观看网站| 美女高潮到喷水免费观看| 色视频在线一区二区三区| 18禁国产床啪视频网站| 欧美另类一区| 国产主播在线观看一区二区| 少妇的丰满在线观看| 97在线人人人人妻| 菩萨蛮人人尽说江南好唐韦庄| 亚洲全国av大片| 亚洲人成电影免费在线| 欧美 日韩 精品 国产| 成人黄色视频免费在线看| 动漫黄色视频在线观看| 久久性视频一级片| 啦啦啦啦在线视频资源| 青草久久国产| 国产精品一二三区在线看| 18在线观看网站| 国产日韩欧美视频二区| 亚洲人成电影观看| 建设人人有责人人尽责人人享有的| 男女边摸边吃奶| 99热全是精品| 黄片大片在线免费观看| 建设人人有责人人尽责人人享有的| 又大又爽又粗| 午夜两性在线视频| 久久精品亚洲av国产电影网| 建设人人有责人人尽责人人享有的| 国产成人影院久久av| 亚洲熟女毛片儿| 91国产中文字幕| 热re99久久精品国产66热6| 国产精品偷伦视频观看了| 日韩中文字幕欧美一区二区| 免费人妻精品一区二区三区视频| 日韩一区二区三区影片| 超色免费av| 妹子高潮喷水视频| 久9热在线精品视频| 狠狠精品人妻久久久久久综合| 黄色片一级片一级黄色片| 亚洲伊人色综图| 一本—道久久a久久精品蜜桃钙片| 国产成人系列免费观看| 2018国产大陆天天弄谢| 80岁老熟妇乱子伦牲交| 制服人妻中文乱码| 十八禁网站网址无遮挡| 国产1区2区3区精品| 黄色视频,在线免费观看| 欧美 亚洲 国产 日韩一| cao死你这个sao货| 亚洲欧美日韩另类电影网站| 91国产中文字幕| 亚洲国产成人一精品久久久| 国产麻豆69| 在线观看一区二区三区激情| 亚洲国产中文字幕在线视频| 亚洲视频免费观看视频| 精品国产乱子伦一区二区三区 | 青春草亚洲视频在线观看| 一二三四社区在线视频社区8|