• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A hydrochemical study of the Hammam Righa geothermal waters in north-central Algeria

    2016-08-26 07:46:01MohamedBelhaiYasuhiroFujimitsuFatimaZohraBoucharebHaouchineAbdelhamidHaouchineJunNishijima
    Acta Geochimica 2016年3期
    關(guān)鍵詞:床頭柜蚊帳盆里

    Mohamed Belhai·Yasuhiro Fujimitsu·Fatima Zohra Bouchareb-Haouchine· Abdelhamid Haouchine·Jun Nishijima

    ?

    A hydrochemical study of the Hammam Righa geothermal waters in north-central Algeria

    Mohamed Belhai1·Yasuhiro Fujimitsu2·Fatima Zohra Bouchareb-Haouchine3· Abdelhamid Haouchine3·Jun Nishijima2

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    Thisstudyfocuseson thehydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field,located in north-central Algeria.The aquifer that feeds these springs is mainly situated in the deeply fractured Jurassic limestone and dolomite of the Zaccar Mount.Measured discharge temperatures of the cold waters range from 16.0 to 26.5°C and the hot waters from 32.1 to 68.2°C.All waters exhibited a near-neutral pH of 6.0-7.6.The thermal waters had a high total dissolved solids(TDS)content of up to 2527 mg/l,while the TDS for cold waters was 659.0-852.0 mg/l.Chemical analyses suggest that two main types of water exist:hot waters in the upflow area of the Ca-Na-SO4type(Hammam Righa)and cold waters in the recharge zone of the Ca-Na-HCO3type(Zaccar Mount).Reservoir temperatures were estimated using silica geothermometers and fluid/mineral equilibria at 78,92,and 95°C for HR4,HR2,and HR1,respectively.Stable isotopic analyses of the δ18O and δD composition of the waters suggest that the thermal waters of Hammam Righa are of meteoric origin.We conclude that meteoric recharge infiltrates through the fractured dolomitic limestones of the Zaccar Mount and is conductively heated at a depth of 2.1-2.2 km.The hot waters then interact at depth with Triassic evaporites located in the hydrothermal conduit(fault),giving rise to the Ca-Na-SO4water type.As they ascend to the surface,the thermal waters mix with shallower Mg-rich groundwater,resulting in waters that plot in the immature water field in the Na-K-Mg diagram.The mixing trend between cold groundwaters from the recharge zone area(Zaccar Mount)and hot waters in the upflow area(Hammam Righa)is apparent via a chloride-enthalpy diagram that shows a mixing ratio of 22.6<R<29.2%.We summarize these results with a geothermal conceptual model of the Hammam Righa geothermal field.

    Thermal waters·North-central Algeria· Geochemistry·Geothermometry·Geothermal conceptual model·Cold groundwaters

    1 Introduction

    Because of its geologic setting in the tectonically active Alpine-Magrebide belt,the northern part of Algeria has considerable geothermal potential of the low enthalpy type,generating a heat discharge of 240 MWt(Saibi 2015). Geothermal development and exploration activities are currently increasing in line with Algeria's plan to diversify the sources of energy for electricity production,which currently is primarily derived from fossil-fuel resources (which account for 98%of production).The country's goal is to attain 40%of consumed electricity generation from renewable energy resources by 2030(Bouchareb-Haouchine 2012;Saibi 2015).

    The study area is located in the north-central part of Algeria(Fig.1),approximately 100 km southwest of the city of Algiers and at an altitude of 525 m above sea level(ASL).The thermal activity of the Hammam Righa area is characterized by artesian thermal springs,travertine deposition,sulfur gas seepage,and hydrothermal alteration zones.The thermal waters of Hammam Righa are used in some of the most famous Algerian hot spas.Referred to as‘‘Aqua Calidea''during the Roman period,they have been used for balneology and bathing since that time(Belhai et al.2013).

    Fig.1 a Study area in the north-central part of Algeria.b Locations of cold and hot springs sampled in the Hammam Righa region

    This study investigated the hydrochemical characteristics of samples from 44 hot springs and three cold springs from the study area collected in 1990,2010,and 2013.The distribution of the three main hot springs in the upflow area (HR1,HR2,and HR4)roughly parallels the northeastsouthwest fault network considered to be the main fault system of the Hammam Righa geothermal(HRG)manifestation(Bouchareb 1987;Issaadi 1992;Bouchareb-Haouchine 1993;Bouchareb-Haouchine et al.2012).The discharge temperature of hot springs in the HRG manifestation ranges from 32.5 to 68.2°C,and the springs have a mean discharge rate of 2.5 L/s.Two cold spring samples (HR5 and HR6)were collected from the Zaccar Mount,which is considered the recharge area for the HRG manifestation(southwest of the study area;Fig.1b).Another,HR3,was sampled close to the upflow area(Hammam Righa).

    Previous studies conducted at the HRG area have shown that the chemical characteristics and the location of hydrothermal discharge are strongly linked to the regional geology(Issaadi 1992;Fekraoui and Kedaid 2005;Bouchareb-Haouchine et al.2012;Belhai et al.2013).The geothermal reservoir is mainly hosted by the limestone and dolomite sequences of the Tellian zones.However,the thermal waters could also be related to adjacent magmatic intrusions of the post-thrust Miocene basins(Issaadi 1992). Stable isotopic analysis of the δ18O and δD compositions of HR1 and HR2(hot springs)as well as HR3(a cold spring)and local meteoric water were carried out to determine the origin of the thermal waters.

    This work aimed to comprehensively evaluate the geothermal potential of the HRG field for future development(electricity generation and/or heating)by using existing data(from 1990 and 2010)combined with new data(from 2013)from sampling campaigns in the HRG area.To construct a reliable geothermal conceptual model for the HRG field,we focused on water chemistry,using correlations between various chemical components to investigate the key controls on water chemistry and to highlight the heterogeneity in mineralization resulting from the complex geologic setting.

    To this end,several cationic and silica geothermometers as well as fluid/mineral equilibria were applied to assess the geothermal reservoir temperatures for the HRG manifestation.These were applied to the datasets collected in campaigns conducted by Bouchareb-Haouchine in 1990 and 2010,as well as the dataset from the new 2013 campaign.A chloride mixing model is discussed in detail;it was used to estimate the rate of mixing with cold groundwater and the effects of the conductive cooling process as waters ascend,and also to confirm the estimated reservoirtemperatureobtainedbychemicalgeothermometers.Finally,the isotopic data(δ18O and δD values)of four samples were used to determine the origins of the thermal water and to ascertain the contributions of Miocene magmatic events.

    2 Geologic setting

    The northern part of Algeria belongs to the North African margin and forms part of the Alpine-Magrebide belt that extends from Gibraltar to Sicily-Calabria(Fig.2a,inset). The Alpine-Magrebide belt is the result of collision between the African and European plates,which began in the late Permian at the beginning of the breakup of Pangea and progressed through the Cenozoic Alpine orogeny (Auboin and Durand-Delga 1971;Bouaziz et al.2002;Domzig et al.2006;Fourre′et al.2011).Two main structural domains exist in northern Algeria:the Tellian Atlas in the north and the Saharan Atlas further to the south.

    The HRG manifestation area lies in the external zones of the Tellian Atlas,or the so-called‘‘Tellian zones''(Wildi 1983),which are mainly characterized by Miocene folds and nappes thrust over the Atlasic foreland(Saharan Atlas). The HRG field is located at the western edge of the postthrust Miocene basin of Boumadfaa and is bounded by the Zaccar Massif(Mount),which consists of a relatively thick dolomitic and marine carbonate sequence of Lower Jurassic age(Fig.2a).

    The upflow area of the HRG field is characterized by the presence of N060-N075 and N135-N150 conjugated faults,which were initiated during the Helvetian stage of the upper Miocene.These major northeast-southwest structural lineaments,which border the springs,accommodated the closure of the Mediterranean Sea and the displacement of Tellian thrust-sheets southward during the late Miocene (Belhai 1996;Bouchareb-Haouchine et al.2012).

    TheexposedPaleozoicagevolcanic-sedimentary complex and metamorphic formations in the Zaccar Massif constitute the basement rock of the study area (Fig.2a,c).They are overlain by a relatively thick and deformed‘‘fractured''sequence of Jurassic dolomite and Mesozoic carbonates typical of the Tellian zones(Mattauer 1958).The deep-seated northeast-southwest trending faults and folds give rise to a limited extrusion of evaporites from the Triassic basement(Glangeaud 1932;Lepvrier and Velde 1976;Belhai 1996).These evaporites are mainly composed of gypsum and anhydrite,with interbedded clays and thin deformed dolomite layers outcropping as a discontinuous border that delineates an abnormal contact between the different sets(Fig.2a,b). To the east,the Miocene formations outcrop unconformably with a carbonate formation of Cenomanian and Senonian age,consisting of marl and folded marl-limestone up to 1000 m thick.The presence of conglomerate and sandstone accompanied by marl and limestone from the Cartenian stage of the lower Miocene indicates a period of non-deposition due to tectonic uplift and subsidence in the basin.These formations are covered by an 80 m-thick upper sequence of marl and sandstones that is Helvetian in age(upper Miocene).Faults cutting these Miocene formations give rise to a graben structure in the southwestern part of the study area(Fig.2b).Extensive hydrothermal deposits of travertine comprise the Quaternary formations.These outcrop in three main areas;thermal water rises through the largest one,which is up to 50 m thick.

    Fig.2 a Small-scale map of the main geologic domains of the Alpine-Magrebide belt(inset,modified from Belhai 1996).And a simplified geologic map of the HRG field.Geologic cross-sections:b oriented northeast-southwest from the upflow area(Hammam Righa)to the recharge zone(Zaccar Mount),indicating the stratigraphy and structure of the basin;and c lithologic cross-section oriented northwest-southeast in the Zaccar area showing the basement rock(modified from Bouchareb-Haouchine et al.2012)

    Post-collisional calc-alkaline magmatic activity of the post thrust-Miocene basins has occurred periodically since the early Miocene following the opening of the Mediterranean Sea between 11 and 13 Ma(Bellon 1976;Lepvrier and Velde 1976).These volcanic products include rocks from the calc-alkaline series(from andesite to rhyolite to trachyte and dacite)and generally erupted in areas with east-west faults.

    2.1Hydrogeology

    Hydrogeologic study has revealed the existence of several potential aquifers.The most important one is the highly fractured Jurassic limestone and dolomite of the Zaccar Massif,which extends to the upflow area and acts as a reservoir in the HRG field.These formations lie on the impermeable metamorphic complex of the Zaccar Mount. The Jurassic aquifer is primarily fed by rainwater infiltration;it has a precipitation rate of 7 Ls-1/km2and a flow rate of 200 L/s to an area of 30 km2mostly composed of limestone(INRH 1976).The rising Triassic formation is mainly composed of gypsum and anhydrite,and clays can act as a cap rock that contains heat and maintains water pressure.

    In 1968,four wells were drilled by GEMP(Groupe d'Etudes sur les Milieux Poreux),to depths ranging from 35 to 65 m.These wells cross the Quaternary travertine and Miocene formations.Water pumped from the wells attains temperatures of 69.0°C with discharge rates of 3.69 and 3.66 L/s and a transmissivity,T,of approximately 10-4m2/s. After a long period of exploitation,the current flow rate is approximately 2.5 L/s for HR1 and only 1 L/s for both HR2 and HR4.

    3 Sampling and analysis methods

    The first sampling campaign for hydrochemical analyses was performed in 1990.Over 12 months,12 samples were collected at each hot spring(HR1,HR2,and HR4).A second campaign took place in 2010 to complete the initial dataset.The first and second campaigns were conducted by Dr.Bouchareb-Haouchine.In January 2013,a third campaign was carried out for this study,including four samples from the upflow area of Hammam Righa(HR1,HR2,and HR4;hot spring samples)and one cold spring sample (HR3).Cold spring samples from the Zaccar Mount(HR5 and HR6)were also collected.Temperature,electrical conductivity(EC),and pH measurements were conducted on-site.Major ion analyses(for Na+,K+,Ca2+,Mg2+,and SiO2)were measured by atomic absorption spectrophotometry,while SO42-concentrations were determined by spectrophotometry and alkalinity was determined using standard titration techniques.Cl-was analyzed using the AgNO3titration method at the National Agency of Hydraulic Resources(ANRH-Algiers).

    For SiO2analysis,samples were diluted tenfold using deionized water to prevent SiO2precipitation in the water. SiO2concentrations were determined by atomic absorption spectrophotometry.Ionic balance provides an indication of the accuracy and reliability of the analysis and is given by the following equation(Freeze and Cherry 1979):

    Analyses with an ionic balance error exceeding 5% were excluded from the dataset.

    The δ18O and δD values of HR1,HR2,and HR3 were analyzed by mass spectrometry at the Department of Environment of Kyuden Sangyo Co.,Inc.(Japan).Isotopic values are reported using standard notation relative to the NIST/IAEA reference material V-SMOW.The analytical precision is±0.1 and±1‰for δ18O and δD,respectively.

    4 Results

    4.1Water chemistry

    Temperatures(in°C),pH values,electrical conductivity (EC,in μS/cm),and chemical analyses from the HRG field are listed in Table 1.The water samples show heterogeneity in their chemical-physical features.Both cold water(T<25°C)and hot water(T from 32.1 to 69.0°C)samples had a near-neutral pH of 6.0-7.6.Thermal waters show a higher total dissolved solids(TDS)concentration of up to 2527 mg/L,while the TDS for cold water ranges from 659.0 to 852.0 mg/L.The higher TDS value in hot water is likely due to the interaction between infiltrated meteoric water and the host rock and probably reflects a longer circulation and residence time.

    The cold and hot waters belong to two main chemical classification types,based on Piper and ternary diagrams (Fig.3a,b).Thermal water facies from the upflow area of the HRG field are of the Ca-Na-SO4(Cl)type and the Ca-Na-SO4(HCO3)type for HR1,HR2,HR4 and HR3,suggesting interaction with gypsum/anhydrite-bearing Triassic formations.Cold waters from the Zaccar Mount(HR5 and HR6)are of the Ca-Na-HCO3type.The high HCO3-content of these waters(317-366 mg/L)reflects the interaction between meteoric water and high permeability and CO2-rich karstic(fractured)limestone and dolomite aquifers,as shown in Eq.2:

    Table 1 Chemical composition (mg/L) of hot and cold spring samp

    Table 1 continued

    Chemical sources are more difficult to interpret in sedimentary environments such as the Tellian zones of the HRGmanifestation,becausethemineralogicaland chemical properties of the host aquifers are inherently more heterogeneous.The heat flux,tectonic regime,and hydrologic conditions(e.g.,infiltration depth and residence time in the reservoir)are specific to each field.In the context of this complexity,we discuss the key factors controlling the evolution of the Hammam Righa thermal waters.

    A Na+and Cl-scatter diagram shows a very good correlation with the halite dissolution line(Y=X).We argue that halite-bearing Triassic evaporites are likely the source of Na+and Cl-in thermal waters of the Hammam Righa field.However,Cl-rich hot waters in the upflow area show Cl-/∑anions>0.73,indicating a Na+/Cl-ratio of approximately 1(the stoichiometric Na+/Cl-ratio of halite dissolution;Fig.4a).

    All the thermal waters from the upflow area(HR1,HR2,and HR4)are located on the gypsum/anhydrite dissolution line(-0.06<SI anhydrite<-0.3;Table 1)and have a higher Ca/SO4ratio of approximately 1,while cold springs from the Zaccar Massif have a Ca/SO4ratio lower than 1 (Fig.4b).This suggests that the dissolution of gypsum/anhydrite minerals likely occurs in the Triassic evaporitic sequence in the local stratigraphy.According to Capaccioni et al.(2014),this process can be described as follows:

    Carbonate formations are dominant in Tellian zones such as the Zaccar Mount region.Cold springs from the recharge area(Zaccar Mount;HR5 and HR6)have a Ca2+-HCO3-composition and plot on the calcite dissolution line with Ca2+/HCO3-ratios typically near 1 (Fig.4c).In contrast,hot waters from the Hammam Righa (upflow area)display Ca2+/HCO3-ratios greater than 1,which implies another source of Ca2+besides the carbonates;this source could be sulfate dissolution and leaching of Ca2+from Triassic evaporite minerals.The water samples are consistently in equilibrium with calcite (-0.47<SI calcite<0.74;Table 1).Generally,carbonate mineral dissolution can be written as follows(Garrels and Mackenzie 1971):

    The key process controlling the chemistry of the thermal waters of the HRG field is summarized in Fig.4d,e.The Na/Cl ratio of most samples is buffered at approximately 1,typical of halite dissolution in the Triassic formation.Most of the waters from the HRG field have an HCO3/(Ca+SO4)ratio between 1.0 and 10.0(Fig.4d).This shift towards gypsum dissolution is characteristic of Tellian zones(Fourre′et al.2011).Hot waters from the upflow area have HCO3/SO4ratios between 0.1 and 1.0(Fig.4e),and higher Ca+Mg contents of approximately 20 meq/L.This suggests evaporitic(gypsum/anhydrite)influences in the upflow area,shifting to carbonate and dolomite in the recharge zone area,which has an HCO3/SO4ratio between 1.0 and 10.0.The contribution of dolomite is implicated by a high Mg content in thermal waters of up to 62 mg/L,which is unlikely with high enthalpy geothermal fluids that have low Mg contents between 0.01 and 0.1 mg/L(Nicholson 1993).Ca2+,Mg2+,and HCO3-can be derived from alteration/weathering of carbonates,as explained by the following reaction(Garrels and Mackenzie 1971):

    Fig.3 a Piper diagram.b Ternary plot(anion species),showing the widely heterogeneous chemistry of the thermal and cold waters of the HRG field

    4.2Chemical geothermometry

    Chemical geothermometers enable estimation of the temperature of the reservoir fluid.They are based on specific temperature-dependentchemicalreactionsthatexist between water and the minerals within the rock at deep thermal reservoir temperatures(Pasvanoglu and Chandrasekharam 2011).In this study,the following geothermometers were applied to estimate the HRG field reservoir temperature for HR1,HR2,and HR4 samples from 1990,2010,and 2013,as shown in Table 2 and Fig.5:(A):Na-K-Ca(Fournier and Truesdell 1973);(B)Na/K(Nieva and Nieva 1987);(C):Na/K(Fournier 1979);(D):Na/K (Truesdell 1976);(E):Na/K(Tonani 1980);(F):Na/K (Giggenbach 1988);(G):K/Mg(Giggenbach 1988);(H):quartz(Verma 2000);(I):chalcedony(Fournier 1992);(J):silica(Giggenbach 1992);(K):silica no steam loss(Fournier 1977);(L):silica(Fournier and Potter 1982);and(M):silica max steam loss(Fournier 1977).

    Temperatures estimated by the Na/K geothermometers from(B)to(F)give high and widely ranging results from 96 to 185°C for HR1,96-184°C for HR2,and 85-181°C for HR4(Table 2;Fig.5).These wide ranges of temperatures may not be reliable,because they are mostly suitable for equilibrated chloride waters(Simmons 2002;Alacali and Savas?c??n 2015).In contrast,temperatures estimated by the Na-K-Ca geothermometer(A)vary from 82 to 94°C for HR1,82-93°C for HR2,and 72-90°C for HR4.The R correction of Fournier and Potter(1979)rangedfrom50>R>5, [i.e., R=(Mg2+×100)/ (Mg2++Ca2++K+)].However,the Mg correction is negative and cannot be applied because of the high Mg content of the hot waters.These results suggest that the Na-K-Ca temperatures in the HRG field are less affected by mixing with cold waters and precipitation of calcite causing the loss of Ca(that is,calcite and anhydrite are close to equilibrium in the upflow areas;Table 1).

    Temperatures inferred by the K/Mg geothermometer (G)range from 35 to 39°C for HR1 and HR2 and from 38 to 45°C for HR4.The K/Mg geothermometer-estimatedtemperatures were much lower than the discharge temperatures due to rapid equilibration after mixing with Mgrich groundwater(Giggenbach 1988;Pasvanog?lu and Chandrasekharam 2011).Therefore,conductive cooling and mixing with cooler Mg-rich waters have a strong influence on the temperature decrease of thermal water as it flows upward to discharge at springs(Han et al.2010;Pasvanog?lu 2013).

    Fig.4 a Na+versus Cl-,b Ca2+versus SO42-,and c Ca2+versus HCO3-scatter diagrams of the Hammam Righa waters,showing dissolution of halite,gypsum,and calcite(red lines).d Na+/Cl-versus HCO3-/(Ca2++SO42-)plot summarizing the key source process controlling the chemistry of the thermal waters and e Ca2++Mg2+versus HCO3-/SO42-plot

    The ternary diagram of Na/1000-K/100-Mg1/2(Fig.5e)proposed by Giggenbach(1988)was used to estimate the reservoir temperature and to select the waters most suitable for geothermometry.The diagram helps identify thefluid maturity of waters that have attained equilibrium with the host lithology and demonstrates the effects of mixing. All thermal waters from the HRG field plotted in the immature water field,close to the Mg1/2corner.This pattern may be the result of mixing of fully equilibrated or partly equilibrated thermal waters with cooler,Mg-rich groundwater that comes from dissolution of the Jurassic dolomitic sequence of the Zaccar area and leaching of Mg into the water.However,the use of immature waters to evaluate geothermal reservoir temperatures is not robust and confers only weak reliability to cationic geothermometers(Giggenbach 1988;Tarcan 2005).

    It is well known that silica geothermometers are more sensitive to mixing processes,which have a negative effect on the reliability of those geothermometers.At temperatures less than 180°C,the solubility of silica is often controlled by chalcedony rather than quartz.Thus,in dolomite-limestone reservoirs such as the HRG field,it is important to apply quartz geothermometers cautiously (Fournier 1992).The chalcedony(I;Fournier 1992)and silica(J;Giggenbach 1992)geothermometers suggest temperatures varying between 70 and 76°C for HR1,67 and 72°C for HR2,and 46 and 50°C for HR4.These results are similar to the discharge temperatures measured on-site for each sampling point.Thus,the quartz geothermometer(H;Verma 2000)suggests similar temperatures to the Na-K-Ca geothermometer,of 94 and 87°C for HR1-13 and HR2-13,respectively.Finally,the silica no steam loss geothermometer(K;Fournier 1977)gives a similar temperature to Na-K-Ca for HR4-13,estimated at 86°C.

    Table 2 Estimated reservoir temperatures(°C)of the Hammam Righa thermal waters using different cationic and silica geothermometers

    4.3Fluid-mineral equilibria

    The mineral saturation indices at the discharge temperatures of the thermal waters of the HRG field were calculated using the computer program PHREEQC(Parkhurstand Appelo 1999)and are reported in Table 3.Results show that the thermal springs are under-saturated with respect to gypsum,anhydrite,dolomite,halite,and amorphous silica.They are oversaturated or nearly in equilibrium with respect to quartz,chalcedony,calcite,and aragonite(except for HR4-13).

    The SI CO2(g)under-saturation state suggests that CO2contributions in the thermal water are partly due to the precipitation of calcite related to the travertine deposits around HR1,HR2,and HR4.This causes a loss of Ca in the hot waters.

    The saturation state results presented in Fig.6 indicate that the thermal waters undergo a change of saturation indices with temperature.All waters are oversaturated with respect to calcite and aragonite at temperatures above 30-50°C(Fig.6b,c),quartz at temperatures below 75-100°C(Fig.6f),and chalcedony at temperatures below 60°C(see Fig.6g).

    Table 2 continued

    The fact that hot waters are undersaturated with respect to gypsum and anhydrite at temperatures lower than 150 and 90°C(see Fig.6e and a,respectively)suggests the dissolution of these minerals in thermal waters.This is further attested by the absence of sulfate deposits in the spring vent.

    Assuming a temperature-dependent chemical equilibrium between minerals and the fluid in the deep reservoir,the geothermal reservoir temperature is graphically indicated by the intersection of the mineral curve with the line SI=0.

    Fig.5 Reservoir temperatures estimated using several geothermometers for the Hammam Righa thermal waters;a HR1 cationic geothermometer;b HR2 cationic geothermometers;c HR4 cationic geothermometers;d silica geothermometers and e Na-K-Mg1/2triangular plot for thermal waters from the HRG field,combining the fast-responding K/Mg geothermometer with non-equilibrating Na/K geothermometers (Giggenbach 1988)

    For HR1-13,the anhydrite and quartz curves intersect near SI=0 at a temperature of 95°C(Fig.7a),which corresponds to the temperatures estimated by the quartzgeothermometer(H;Verma 2000).For HR2-13,the quartz and anhydrite curves intersect at the SI=0 line at 92°C (Fig.7b),which is also similar to the temperature inferred by the quartz geothermometer(H;Verma 2000).In contrast,for HR4-13 the quartz and halite curves intersect at the SI=0 equilibrium line at a temperature of 78°C (Fig.7c),similar to that inferred by the silica geothermometer(L).

    Thus,a temperature range from 78 to 95°C is the zone of overlap between the chemical geothermometers and fluid mineral equilibria.This range is considered as the most likely reservoir temperature for the HRG field.The lower temperature of HR4-13 suggests mixing with cold groundwater.

    Table 3 Results of saturation indces with respect to hydrthermal minerals at the discharge temperaturs of the thermal waters from the HRG field

    4.4Evidence of mixing

    4.4.1Chloride mixing model

    The enthalpy-chloride mixing model of Fournier(1979)is useful for characterizing the parent geothermal liquid for the HRG field thermal waters and delineating the upflow and cooling process.This can help elucidate the hydrologic complexities of various hydrothermal systems and estimate reservoir temperatures(Mutlu 1998;Guo et al.2009;Guo and Wang 2012).

    A principal trend can be inferred from Fig.8a:mixing with cold groundwater that is less enriched in Cl-causes a decrease in the enthalpy and Cl-content.This process is apparent in the HR4 samples,which are likely mixed with cooler groundwater from the Zaccar Massif(recharge zone area),as represented by HR5 and HR6.

    To simplify mixing calculations,it is assumed that the sampled groundwater is a mixture of two end-members:thermal and non-thermal waters.Chloride is used to estimate the mixing ratio because it is considered a highly mobile component and does not precipitate in chemical reactions even at high concentrations and temperatures (Han et al.2010).The equation for the mixing ratio is as follows:

    where R is the mixing ratio,expressed as the percentage of non-thermal groundwater;is the chloride content in the mixed thermal water of HR4,which was approximately 292 mg/Lis the chloride content in the thermal waters HR1 and HR2,which was approximately 355-381 mg/L;andis the chloride content in cold groundwater of HR6 from the Zaccar Massif.The estimated mixing ratio is between 22.6%and 29.2%,and the results are reported in Table 4.

    Fig.6 Changes in the saturation states of the selected minerals versus temperatures in thermal waters of the HRG field

    Fig.7 Mineral equilibrium diagrams for thermal waters of the HRG field.Discharge temperature corresponds to chalcedony-aragonite or calcite intersections at SI=0;reservoir temperatures shown by black arrows correspond to quartz-chrysotile or CO2(g)at SI=0

    Mixing ratio values based on chloride contents are much lower than those obtained by the silica-enthalpy mixing model of Bouchareb-Haouchine et al.(2012)and give a mixing ratio of 60%.The mixing proportion depends on the distance between the center of groundwater exploitation and the location near the fault zone.In the HRG field,HR4 samples are located along deep-seated northeastsouthwest Miocene faults,which can cause a higher mixing ratio.

    門口的聒噪漸漸遠(yuǎn)去。我渾身疼得厲害,抬手額上一摸,抓了一把的血。門邊洗臉架上有盆清水,我掬起幾捧,把手臉洗凈,盆里的水很快就被鮮血洇紅了。我靠在門上,覺著疲乏得很。抬眼一掃,房里擺著兩張床,白蚊帳,藍(lán)鋪蓋,干干凈凈的。床頭柜上擱著鏡子梳子么事的,還有洋擦臉油、洋煙、洋火……這該是女客的房間,東洋人把我安在這兒,是么事意思呢?我走了一天了,又累又乏,頭暈乎乎的,就靠在床頭困著了。

    5 Stable isotope geochemistry

    The isotopic signature of thermal waters can act as a tracer for the fluid origins and reservoir processes in geothermal systems(Craig et al.1956;Craig 1963;White 1986).The δ18O and δD values are reported in Table 5,and they range from-7.7 to-8.2‰ and-47 to-49‰,respectively (Fig.8b).

    The thermal waters from the HRG field fall along the Global Meteoric Water Line(GMWL;Fig.8b),the equation for which is δD=8.13×δ18O+10.8(Rozanski et al.1993).This suggests a meteoric origin for the thermal waters.

    The plot shows the absence of an oxygen shift towards positive values,which indicates that there is no interaction with the host rock and suggests that the thermal waters belong to a low-enthalpy resource.The downward shift of the δD values of the samples relative to local meteoric water reflects the high altitude of the recharge zone area (the Zaccar Massif,at 1200 m ASL).The meteoric water likely infiltrated through a deep-seated fault network and was heated during deep circulation.Recharge probably took place in the fractured Jurassic limestone and dolomite of the Zaccar Massif.The thermal waters preserved heat when rising up to the ground surface by interaction with the Triassic evaporite sequence bordering the hydrothermal conduit(fault).The negative shift in δ18O values from HR3-13 to HR1-13 and HR2-13 is likely due to interaction with CO2from carbonated rocks.

    The tritium (3H)value in the thermal waters varies between 3.3 TU for HR1,6 TU for HR4,and 15.7 TU for HR5,while the tritium value of meteoric water from northern Algeria is approximately 50 TU(Issaadi 1992). The elevated3H content in thermal waters of the HRG field is likely explained by mixing with surface waters,while the3H increase from the upflow area represented by HR1 to the recharge zone area represented by HR5 indicates theflow direction.The groundwater component present in the mixed thermal waters can be deduced using the following simple equation: where X stands for the groundwater component in mixed thermal waters given in%;Tsp represents the tritium value of HR1 and HR4;and Tgw indicates the tritium value of HR5(the cold spring from the Zaccar Massif).Mixing in the Hammam Righa thermal waters varies between 21% and 38%.

    Fig.8 a Chloride-enthalpy mixing model for northwestern Algerian thermal waters showing reservoir temperatures(parent fluid)with mixing trends.b Plot of δ18O versus δD for thermal waters showing trends and shifts from different geothermal fields(from Giggenbach 1992).The Global Meteoric Water Line(GMWL)is also shown

    Table 4 Estimation of thechloride mixing ration R(%)in HR4 mixed waters,based on the Cl content of the hot watersHR1 and HR2 and the coldwater HR6

    Table 5 The δD and δ18Ovalues,expressed in‰relative to V-SMOW,of thermal waters from the HRG field

    6 Discussion and conclusions

    The thermal waters from the HRG field are classified as two main types.The first is Ca-Na-SO4(Cl)and Ca-Na-SO4(HCO3),represented by HR1,HR2,HR4,and HR3 waters mainly located in the upflow area of the Hammam Righa,suggesting an interaction with gypsum/anhydritebearing Triassic formations.The second is cold springs located in the Zaccar Massif,represented by HR5 and HR6,indicating a Ca-Na-HCO3water type.This mineralization heterogeneity in the waters results from the complex geological features of the Tellian sector.Dissolution of gypsum/anhydrite in HR1,HR2 and HR4 exerts an important control on the chemistry of hot water.Dissolution of calcite is a typical characteristic of cold water from the Zaccar area.

    Na/K geothermometers give a wide range of results between 95 and 185°C,because of the enrichment of Na from the dissolution of halite minerals in Triassic evaporites.The K/Mg geothermometer records lower temperatures than the thermal water discharge(35-45°C)becauseof Mg leached from near-surface reactions with Jurassic dolomite and mixing with shallow groundwater.This effect is apparent from the position of the waters in the Na-K-Mg diagram,which fall close to the Mg corner in the immature water field.Na-K-Ca geothermometers without Mg correction give suitable reservoir temperatures that are similar to those estimated by the quartz geothermometer(Verma 2000).However,temperatures estimated by the silica geothermometers(Fournier and Potter 1982;Verma 2000)give the most suitable temperatures(95°C for HR1,92°C for HR2,and 78°C for HR4).The fluid mineral equilibria overlap in the same range,confirming the temperatures given by the silica geothermometers.

    Fig.9 Conceptual geothermal model for the HRG field

    AcknowledgmentsWe would like to express our sincere thankful acknowledgement for the MEXT(Ministry of Education,Culture,Sports,Science and Techn ology,Japan)Ph.D.scholarship providing support for the first author during this study.We would also like to show our sincere gratitude and acknowledgement to the G-COE of Kyushu University for funding this research.

    References

    Alacal? M,Savas?c??n MY(2015)Geothermometry and hydrothermal alteration at the Balc?ova geothermal field,Turkey.Geothermics 54:136-146

    Auboin J,Durand-Delga M(1971)Aire mediterraneenne.Encyclopidia Universalis 10:743-745

    Belhai D(1996)Evolution tectonique de la zone Ouest-algeroise (Tenes-Chenoua),Approche stratigraphique et structurale.These Doctorat d'Etat.,Univ.Sci.et Tech.,Alger

    Belhai M,Bouchareb-Haouchine FZ,F(xiàn)ujimitsu Y(2013)Geochemistry of the Hammam Righa Thermal Manifestation North-Central Part of Algeria.Symposium on Earth Sciences and Technology.Kyushu University,F(xiàn)ukuoka,Japan

    Bellon H(1976)Se′ries magmatiques ne′oge`nes et quaternaires du pourtour me′diterrane′en occidental,compare′es dans leur cadre ge′ochronome′triques.Implications ge′odynamiques,the`se d'E′tat,universite′Paris-Sud-Orsay

    Bouaziz S,Barrier E,Soussi M,Turki M,Zouari H(2002)Tectonic evolution of the northern african margin in Tunisia from paleostressdataandsedimentaryrecord.Tectonophysics 357:227-253

    Bouchareb FZ(1987)Contribution a`l'e′tude hydroge′ologique des soucesthermo-mine′ralesdeHammam-Righa.Me′moire d'inge′niorat d'e′tat,I.S.T,Univ.Sci.Tech.USTHB Alger

    Bouchareb-Haouchine FZ(1993)Apports de la ge′othermome′trie et des donne′es de forages profonds a`l'identification des re′servoirs ge′othermiques de l'Alge′rie du Nord.Application a`la re′gion du Hodna.The`se de Magister,Univ.Sci.Tech.USTHB Alger

    Bouchareb-Haouchine FZ(2012)Etude Hydrochimique des Sources Thermales de l'Alge′rie du Nord-Potentialite′s Ge′othermiques. These Doctorat en Sciences,USTHB,Algiers

    Bouchareb-Haouchine FZ,Boudoukha A,Haouchine A (2012)Hydroge′ochimie et Ge′othermome′trie:Apports a`l'identification du re′servoir thermal des sources de hammam Righa,Alge′rie. H.S.J.Hydrol Sci J 57(6):1184-1195

    Capaccioni B,Tassi F,Renzulli A,Vaselli O,Menichetti M,Inguaggiato S(2014)Geochemistry of thermal fluids in NW Honduras:new perspectives for exploitation of geothermal areas in the southern Sula graben.J Volcanol Geoth Res 280:40-52

    Craig H(1963)The isotopic geochemistry of water and carbon in geothermal area.In:Tongiori E(ed)Nuclear geology in geothermal areas.Consiglio Nazionale delle Ricerche,Laboratorio di Geologia Nucleare,Spoleto

    Craig H,Boato G,White DE(1956)Isotopic geochemistry of thermal waters.Natl Acad Sci 400:29-38

    Domzig A,Yelles AK,Le Roy C,De′verche`re J,Bouillin JP,Bracene R,Mercier de Le′pinay B,Le Roy P,Calais E,Kherroubi A,Gaullier V,Savoye B,Pauc H(2006)Searching for the Africa-Eurasia Mioce`ne boundary offshore western Algeria(MARADJA'03 cruise).Comptes Rendus Geosci 338:80-91

    Fekraoui A,Kedaid FZ(2005)Geothermal resources and uses in Algeria:a country update report proceedings world geothermal congress 2005 Antalya,Turkey,24-29 April

    Fournier RO(1977)Chemical geothermometers and mixing models for geothermal systems.Geothermics 5:41-50

    Fournier RO(1979)A revised equation for Na/K geothermometer. Geoth Res Council Trans 3:221-224

    Fournier RO(1992)Water geothermometers applied to geothermal energy.In:D'Amore,F(xiàn).(Coordinator),Application of geochemistry in geothermal reservoir development.UNITAR/ UNDP,Vial del Corso,Italy,pp.37-69

    Fournier RO,Potter RW(1979)Magnesium correction to the Na-KCachemicalgeothermometer.GeochimCosmochimActa 43:1543-1550

    Fournier RO,Potter RW (1982)A revised and expanded silica (quartz)geothermometer.Geothermal Research Council Bulletin,3-12 November

    Fournier RO,Truesdell AH(1973)An empirical Na-K-Ca geothermometerfornaturalwaters.GeochimCosmochimActa 37:1255-1275

    Fourre′E,Di Napoli R,Aiuppa A,Parello F,Gaubi E,Jean-Baptiste P,Allard P,Calabrese S,Ben Mamou A(2011)Regional variations in the chemical and helium-carbon isotope composition of geothermal fluids across Tunisia.Chem Geol 288:67-85

    Freeze RA,Cherry JA (1979)Groundwater.Prentice Hall Inc.,Englewood Cliffs

    Garrels RM,Mackenzie FT(1971)Evolution of sedimentary rocks. Norton,New York

    Giggenbach WF(1988)Geothermal solute equilibria.Derivation of Na-K-Mg-Cageoindicators.GeochimCosmochimActa 52:2749-2765

    Giggenbach WF(1992)Isotopic composition of geothermal water and steam discharges.In:D'Amore F.(coordinator)Application of geochemistry in Geothermal Reservoir development.UNITAR/ UNDP,Vial del Corso,Italy,pp.253-273

    Glangeaud L(1932)In:Cadoret Y(ed)Etude ge′ologique de la re′gion littorale de la Province d'Alger.Impr.de l'Univ.,Bordeaux

    Guo Q,Wang Y (2012)Geochemistry of hot springs in the Tengchong hydrothermal areas,Southwestern China.J Volcanol Geotherm Res 215-216:61-73

    Guo Q,Wang Y,Liu W (2009)Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet,China.J Volcanol Geotherm Res 180:9-20

    Han DM,Liang X,Jin MG,Currell MJ,Song XF,Liu CM(2010)Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems,Xinzhou basin.J Volcanol Geotherm Res 189:92-104

    INRH(Institut National des Ressources Hydraulique),(1976)Contribution a`l'estimation des potentialite′s hydriques du massif du Zaccar Chergui.Institut National des Ressources Hydriques,Note interne,rapport de mission,Alger

    Issaadi A(1992)Le Thermalisme dans son Cadre Geostructural,Apport a la connaissance de la structure profonde de l'Alge′rie et de ses Ressources Ge′othermales.These Doctorat d'Etat.,Univ. Sci.et Tech.,Alger

    Lepvrier C,Velde D(1976)A`propos des intrusions tertiaires de la marge nord-africaine entre Cherchel et Te′ne`s(Alge′rie).Bull Soc Ge′ol France 18(7):991-998

    Mattauer M(1958)Carte ge′ologique de l'Ouarsenis oriental,2e e′d. Editeur Serv.Cart.Ge′ol.Alge′rie.1/200000

    Mutlu H(1998)Chemical geothermometry and fluid-mineral equilibria for the Omer-Gecek thermal waters,Afyon area,Turkey. J Volcanol Geotherm Res 80:303-321

    Nicholson KN(1993)Geothermal fluids.Chemistry and exploration techniques.Springer,Berlin

    Nieva D,Nieva R(1987)Development in geothermal energy in Mexico,part 12-a cationic composition geothermometer for prospection of geothermal resources.Heat Recovery Syst CHP 7:243-258

    Parkhurst DL,Appelo CAJ(1999)User's guide to PHREEQC (Version 2):a computer program for speciation,batch-reaction,one-dimensional transport,and inverse geochemical calculations.U.S.Geological Survey:Earth Science Information Center,Open-File Reports Section[distributor],Water-Resources Investigations Report 99-4259

    Pasvanog?lu S(2013)Hydrogeochemistry of thermal and mineralized waters in the Diyadin(Ag?ri)area,Eastern Turkey.Appl Geochem 38:70-81

    Pasvanog?lu S,Chandrasekharam D(2011)Hydrogeochemical and isotopic study of thermal and mineralized waters from the Nevs?ehir(Kozakli)area,Central Turkey.J Volcanol Geotherm Res 202:241-250

    Rozanski K,Aragua′s-Aragua′s L,Gonfiantini R(1993)Isotopic patters in modern global precipitation.In:Swart PK et al(eds)Climate change in continental isotopic records.American Geophysical Union Monogr Ser,vol 78.American Geophysical Union,Washington,pp 1-36

    Saibi H(2015)Geothermal resources in Algeria.In:Proceedings in World Geothermal Congress 2015,Melbourne,Australia,19-24 April

    Simmons SF(2002)Geochemistry Lecture Notes,Semester I,Geotherm 601,602,603,Geothermal Energy Technology Course Geothermal Institute,University of Auckland,New Zealand

    Tarcan G(2005)Mineral saturation and scaling tendencies of waters discharged from wells(>150°C)in geothermal areas of Turkey. J Volcanol Geotherm Res 142:263-283

    Tonani F(1980)Some remarks on the application of geochemical techniques in geothermal exploration.In:Proc.Adv.Eur.Geoth. Res.,Second Symposium,Strasbourg,pp.428-443

    Truesdell AH(1976)Summary of section III.Geochemical techniques in exploration.In:Proceeding 2nd UN symposium on the development and use of geothermal resources,San Francisco,1975,1,liii-lxxix

    Verma MP(2000)Revised quartz solubility temperature dependence equation along the water-vapor saturation curve.In:Proceedings of the 2000.World Geothermal Congress,Kyushu and Tohoku,Japan,28 May-19 June,pp.1927-1932

    White AF(1986)Chemical and isotopic characteristics of fluids within the baca geothermal reservoir,Valles Caldera,New Mexico.J Geophys Res 91:1855-1866

    Wildi W (1983)La chaine tello-rifaine.Structure,stratigraphie et e′volution du Trias au Mioce`ne.Rev Geol Dyn et Geogr Phys 24:201-297

    23 August 2015/Revised:27 October 2015/Accepted:15 January 2016/Published online:27 January 2016

    ? Mohamed Belhai mkhader89@gmail.com
    1Department of Earth Resources Engineering,Graduate School of Engineering,Kyushu University,F(xiàn)ukuoka 819-0395,Japan
    2Department of Earth Resources Engineering,F(xiàn)aculty of Engineering,Kyushu University,F(xiàn)ukuoka 819-0395,Japan3Laboratoire de Ge′o-Environnement FSTGAT/USTHB,BP 32,El-Alia,16000 Algiers,Algeria

    猜你喜歡
    床頭柜蚊帳盆里
    均等:蘑菇大家分
    孩子(2021年3期)2021-03-24 10:58:50
    《蚊帳》
    散文詩(2020年14期)2020-11-12 11:29:36
    掛蚊帳
    掛蚊帳
    啟蒙(3-7歲)(2020年8期)2020-09-12 13:20:40
    床頭柜:小角色,大心機(jī)
    床頭柜: 小角色,大心機(jī)
    掛蚊帳
    啟蒙(3-7歲)(2019年6期)2019-07-20 03:24:30
    盆景樹
    貓砂,就該乖乖留在盆里!
    無需佩戴的睡眠追蹤器
    大眾健康(2014年12期)2014-01-19 03:15:54
    久久久精品欧美日韩精品| 国产又黄又爽又无遮挡在线| 性色av乱码一区二区三区2| 91字幕亚洲| 欧美乱码精品一区二区三区| 性欧美人与动物交配| 日本a在线网址| 日韩欧美三级三区| 国产一区在线观看成人免费| 国产乱人伦免费视频| 看免费av毛片| 亚洲成a人片在线一区二区| 亚洲av第一区精品v没综合| 黄片小视频在线播放| 免费看a级黄色片| 亚洲中文日韩欧美视频| 久久草成人影院| 男人的好看免费观看在线视频 | tocl精华| 91成年电影在线观看| 国产精品,欧美在线| 精华霜和精华液先用哪个| 日韩成人在线观看一区二区三区| 一区二区三区激情视频| 人妻丰满熟妇av一区二区三区| 欧美丝袜亚洲另类 | 亚洲精品中文字幕在线视频| 亚洲午夜理论影院| 精品第一国产精品| 好男人在线观看高清免费视频| 亚洲精品久久成人aⅴ小说| 老汉色∧v一级毛片| 特级一级黄色大片| 精品久久久久久久久久久久久| 国产精品美女特级片免费视频播放器 | 亚洲人成77777在线视频| av在线播放免费不卡| 12—13女人毛片做爰片一| 白带黄色成豆腐渣| 国产1区2区3区精品| 特大巨黑吊av在线直播| 国产97色在线日韩免费| 亚洲欧美日韩高清专用| 成人午夜高清在线视频| av有码第一页| 欧美在线黄色| 国产精品综合久久久久久久免费| 欧美精品亚洲一区二区| 国产亚洲精品综合一区在线观看 | 又粗又爽又猛毛片免费看| 嫩草影视91久久| 色在线成人网| 亚洲中文字幕日韩| 久久精品91蜜桃| 久久香蕉精品热| 亚洲专区国产一区二区| 777久久人妻少妇嫩草av网站| 精品不卡国产一区二区三区| 黄色成人免费大全| 超碰成人久久| 亚洲 欧美一区二区三区| 久久伊人香网站| 亚洲一区高清亚洲精品| 一级作爱视频免费观看| 欧美成人一区二区免费高清观看 | 18禁国产床啪视频网站| 国产又黄又爽又无遮挡在线| 成人三级黄色视频| 亚洲精品在线美女| 亚洲一区中文字幕在线| 国产av麻豆久久久久久久| 美女扒开内裤让男人捅视频| 亚洲色图 男人天堂 中文字幕| 黄色视频,在线免费观看| 在线免费观看的www视频| 无遮挡黄片免费观看| 国产av在哪里看| 999久久久精品免费观看国产| 亚洲国产精品合色在线| 熟妇人妻久久中文字幕3abv| 男男h啪啪无遮挡| 国产亚洲精品av在线| 国产1区2区3区精品| 亚洲av成人精品一区久久| svipshipincom国产片| 国产97色在线日韩免费| 国产麻豆成人av免费视频| 久久久精品国产亚洲av高清涩受| 久久午夜亚洲精品久久| 色精品久久人妻99蜜桃| 亚洲熟妇熟女久久| avwww免费| 五月伊人婷婷丁香| 久久国产乱子伦精品免费另类| 国产高清视频在线播放一区| 亚洲一区二区三区色噜噜| 一级黄色大片毛片| 少妇熟女aⅴ在线视频| 亚洲午夜理论影院| 免费在线观看日本一区| 国产探花在线观看一区二区| 国内精品久久久久精免费| 欧美大码av| 九色国产91popny在线| 国内久久婷婷六月综合欲色啪| 正在播放国产对白刺激| 精品久久久久久久久久久久久| 国产精品 欧美亚洲| 丰满人妻熟妇乱又伦精品不卡| 最近最新中文字幕大全电影3| 可以在线观看毛片的网站| 久久伊人香网站| 一夜夜www| 欧美黄色片欧美黄色片| 男人舔女人下体高潮全视频| 一a级毛片在线观看| 亚洲美女黄片视频| 久久人人精品亚洲av| 久久婷婷成人综合色麻豆| 身体一侧抽搐| 每晚都被弄得嗷嗷叫到高潮| 亚洲一区二区三区色噜噜| 国产高清视频在线播放一区| 午夜免费成人在线视频| 亚洲国产看品久久| 麻豆久久精品国产亚洲av| 国产99白浆流出| 精品国产超薄肉色丝袜足j| 欧美绝顶高潮抽搐喷水| 中文资源天堂在线| 久久久久久久久免费视频了| 美女扒开内裤让男人捅视频| 精品久久久久久成人av| 久久这里只有精品19| 麻豆av在线久日| 亚洲人成伊人成综合网2020| 欧美3d第一页| 校园春色视频在线观看| 伦理电影免费视频| 欧美久久黑人一区二区| 啦啦啦韩国在线观看视频| 国产一级毛片七仙女欲春2| 国产av一区二区精品久久| 岛国视频午夜一区免费看| 大型av网站在线播放| 97人妻精品一区二区三区麻豆| 国产精品av视频在线免费观看| 宅男免费午夜| 日韩 欧美 亚洲 中文字幕| 无遮挡黄片免费观看| 午夜福利18| 日韩欧美精品v在线| 少妇被粗大的猛进出69影院| 久久久久久国产a免费观看| 久久中文字幕一级| 18禁美女被吸乳视频| 两性夫妻黄色片| 99热这里只有精品一区 | 黄片小视频在线播放| 神马国产精品三级电影在线观看 | 十八禁人妻一区二区| 午夜激情福利司机影院| 九色国产91popny在线| 中文资源天堂在线| 亚洲中文字幕日韩| 国产精品久久久久久亚洲av鲁大| 国产成人系列免费观看| 国产精品亚洲一级av第二区| 国产亚洲精品综合一区在线观看 | 国产视频一区二区在线看| 757午夜福利合集在线观看| 熟女电影av网| 久久精品人妻少妇| 国产精品久久久av美女十八| 久久久久久国产a免费观看| 国产精品日韩av在线免费观看| 黄色视频不卡| 亚洲狠狠婷婷综合久久图片| 久久中文字幕人妻熟女| 国产亚洲精品久久久久5区| 精品久久久久久久末码| 国产视频内射| www.精华液| 午夜精品一区二区三区免费看| 香蕉久久夜色| 成年版毛片免费区| ponron亚洲| 免费看a级黄色片| 亚洲欧美日韩无卡精品| 成人三级黄色视频| 亚洲熟妇中文字幕五十中出| av在线天堂中文字幕| a在线观看视频网站| 午夜激情福利司机影院| 国产精品美女特级片免费视频播放器 | 国产一级毛片七仙女欲春2| 天天躁夜夜躁狠狠躁躁| 久久人人精品亚洲av| 亚洲精品久久成人aⅴ小说| 宅男免费午夜| 51午夜福利影视在线观看| 给我免费播放毛片高清在线观看| 毛片女人毛片| 非洲黑人性xxxx精品又粗又长| 成年免费大片在线观看| 欧美一级毛片孕妇| 亚洲欧洲精品一区二区精品久久久| 国内精品久久久久精免费| 黑人操中国人逼视频| 欧美不卡视频在线免费观看 | 91成年电影在线观看| 最近最新中文字幕大全免费视频| 亚洲五月天丁香| 99精品久久久久人妻精品| 很黄的视频免费| 熟女少妇亚洲综合色aaa.| 最新美女视频免费是黄的| 黄色毛片三级朝国网站| 国产午夜精品论理片| 777久久人妻少妇嫩草av网站| 精品国产亚洲在线| 国产精品影院久久| 两个人免费观看高清视频| 亚洲熟妇熟女久久| 制服丝袜大香蕉在线| 欧美人与性动交α欧美精品济南到| 欧美黄色淫秽网站| 99热这里只有是精品50| 超碰成人久久| 99久久久亚洲精品蜜臀av| 丁香欧美五月| 黄色女人牲交| 日本免费a在线| 1024视频免费在线观看| 精品一区二区三区四区五区乱码| 久久伊人香网站| 在线十欧美十亚洲十日本专区| 久久久久久人人人人人| 亚洲男人天堂网一区| av在线天堂中文字幕| 男插女下体视频免费在线播放| 久久久国产成人精品二区| 免费在线观看日本一区| 国产精品乱码一区二三区的特点| 日韩欧美国产一区二区入口| 国产精品,欧美在线| 一夜夜www| bbb黄色大片| 级片在线观看| 日韩国内少妇激情av| 每晚都被弄得嗷嗷叫到高潮| 久久精品国产亚洲av香蕉五月| 亚洲中文av在线| 青草久久国产| 精品久久久久久成人av| 99久久99久久久精品蜜桃| 三级国产精品欧美在线观看 | 女同久久另类99精品国产91| 日韩欧美国产一区二区入口| 国产精品免费一区二区三区在线| 叶爱在线成人免费视频播放| 国产精华一区二区三区| 国产精品一区二区免费欧美| 91九色精品人成在线观看| 少妇人妻一区二区三区视频| 欧美日韩精品网址| 日韩成人在线观看一区二区三区| 久久久久久久久久黄片| 久久精品国产清高在天天线| 免费高清视频大片| 国产伦人伦偷精品视频| 国产成人aa在线观看| 精品久久久久久久久久免费视频| 999精品在线视频| 欧美性猛交黑人性爽| 日韩高清综合在线| 国产v大片淫在线免费观看| 午夜精品一区二区三区免费看| 日本成人三级电影网站| 男人舔女人下体高潮全视频| 老汉色av国产亚洲站长工具| 亚洲五月天丁香| 国产单亲对白刺激| 欧美最黄视频在线播放免费| 全区人妻精品视频| 美女午夜性视频免费| 色综合站精品国产| 久久久久九九精品影院| 国产v大片淫在线免费观看| 国产精品野战在线观看| 欧美精品亚洲一区二区| 国产精品影院久久| 免费电影在线观看免费观看| 亚洲欧美一区二区三区黑人| 成人av在线播放网站| 婷婷丁香在线五月| 亚洲av中文字字幕乱码综合| 亚洲国产高清在线一区二区三| av欧美777| 免费看美女性在线毛片视频| 国产真实乱freesex| 日本在线视频免费播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲电影在线观看av| 欧美av亚洲av综合av国产av| 久久久久久久午夜电影| 久久久久九九精品影院| 中出人妻视频一区二区| 99精品在免费线老司机午夜| 欧美精品亚洲一区二区| 亚洲美女黄片视频| av有码第一页| 丝袜人妻中文字幕| 国产精品一区二区免费欧美| 国语自产精品视频在线第100页| 在线观看免费视频日本深夜| 免费av毛片视频| www.www免费av| 亚洲avbb在线观看| 91在线观看av| 18禁观看日本| 日韩欧美三级三区| 麻豆av在线久日| 免费看日本二区| 久久久久免费精品人妻一区二区| 99久久久亚洲精品蜜臀av| 免费在线观看完整版高清| 一个人观看的视频www高清免费观看 | 中文字幕最新亚洲高清| 激情在线观看视频在线高清| 男女午夜视频在线观看| 91成年电影在线观看| 久久久国产成人免费| 久久久久精品国产欧美久久久| 成人国产综合亚洲| 少妇人妻一区二区三区视频| 欧美性猛交╳xxx乱大交人| 日韩高清综合在线| svipshipincom国产片| 国产精品国产高清国产av| 日韩欧美精品v在线| av在线天堂中文字幕| 中文字幕精品亚洲无线码一区| 可以在线观看毛片的网站| 亚洲精品中文字幕在线视频| 国产精品免费一区二区三区在线| 1024视频免费在线观看| 黄色丝袜av网址大全| 一二三四在线观看免费中文在| 国产三级在线视频| 成在线人永久免费视频| 国内精品久久久久久久电影| 在线国产一区二区在线| ponron亚洲| av有码第一页| 狂野欧美白嫩少妇大欣赏| 国产激情欧美一区二区| 日韩精品青青久久久久久| a级毛片a级免费在线| 久久久久性生活片| 国产午夜精品论理片| 久久国产乱子伦精品免费另类| 亚洲精品中文字幕一二三四区| 成人亚洲精品av一区二区| 免费无遮挡裸体视频| 欧美黑人精品巨大| 亚洲精品久久国产高清桃花| 中文在线观看免费www的网站 | 极品教师在线免费播放| x7x7x7水蜜桃| netflix在线观看网站| 69av精品久久久久久| 亚洲av电影不卡..在线观看| 日本熟妇午夜| 国产精品久久久人人做人人爽| 亚洲黑人精品在线| www.熟女人妻精品国产| 精品一区二区三区视频在线观看免费| 国产黄a三级三级三级人| 亚洲人与动物交配视频| 女人爽到高潮嗷嗷叫在线视频| av欧美777| 男插女下体视频免费在线播放| 中文字幕久久专区| 大型黄色视频在线免费观看| 九色国产91popny在线| 久久久久免费精品人妻一区二区| 无遮挡黄片免费观看| 亚洲五月天丁香| 天堂影院成人在线观看| 熟女电影av网| 长腿黑丝高跟| 99热6这里只有精品| 国产精品亚洲美女久久久| av欧美777| 嫁个100分男人电影在线观看| 国产激情欧美一区二区| 久久人人精品亚洲av| 99国产综合亚洲精品| 色av中文字幕| 精品国产亚洲在线| videosex国产| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 天堂√8在线中文| 桃色一区二区三区在线观看| 成年版毛片免费区| 男人舔女人下体高潮全视频| 久久中文字幕人妻熟女| 91麻豆av在线| 一进一出抽搐gif免费好疼| 久久中文字幕一级| 国产久久久一区二区三区| 麻豆成人av在线观看| 一个人免费在线观看的高清视频| 精品日产1卡2卡| 国产一区二区三区视频了| 中文字幕熟女人妻在线| 99久久综合精品五月天人人| 亚洲电影在线观看av| 久久久久久大精品| 精品久久久久久久久久久久久| 日本黄色视频三级网站网址| 久久久国产精品麻豆| 成熟少妇高潮喷水视频| 日韩免费av在线播放| 舔av片在线| 精品欧美一区二区三区在线| 亚洲国产精品合色在线| 19禁男女啪啪无遮挡网站| 亚洲欧美精品综合久久99| 999精品在线视频| 日本a在线网址| 夜夜躁狠狠躁天天躁| 12—13女人毛片做爰片一| 欧美性猛交╳xxx乱大交人| 国产v大片淫在线免费观看| 亚洲成人免费电影在线观看| 亚洲国产欧洲综合997久久,| 免费看十八禁软件| 久久久久久久久免费视频了| 2021天堂中文幕一二区在线观| 亚洲无线在线观看| 欧美成人免费av一区二区三区| 亚洲国产高清在线一区二区三| 亚洲av日韩精品久久久久久密| 美女扒开内裤让男人捅视频| 999久久久国产精品视频| 久久亚洲真实| 亚洲av成人一区二区三| 1024香蕉在线观看| 亚洲第一欧美日韩一区二区三区| 成人国产综合亚洲| 亚洲成人精品中文字幕电影| 狠狠狠狠99中文字幕| 亚洲av成人精品一区久久| 亚洲自拍偷在线| 最近在线观看免费完整版| 成人国产综合亚洲| 久久久久久大精品| 亚洲欧洲精品一区二区精品久久久| 97碰自拍视频| 亚洲aⅴ乱码一区二区在线播放 | 伊人久久大香线蕉亚洲五| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成人国产一区在线观看| 久久久久性生活片| 身体一侧抽搐| 亚洲黑人精品在线| 麻豆一二三区av精品| 国产又色又爽无遮挡免费看| 国产熟女午夜一区二区三区| 亚洲欧美日韩东京热| 亚洲精品国产精品久久久不卡| 色尼玛亚洲综合影院| 国产男靠女视频免费网站| 国产成人影院久久av| 一本大道久久a久久精品| 国产高清视频在线观看网站| 蜜桃久久精品国产亚洲av| av中文乱码字幕在线| 香蕉国产在线看| av福利片在线观看| 最近视频中文字幕2019在线8| 日本在线视频免费播放| 国产精品久久久久久亚洲av鲁大| 免费搜索国产男女视频| 亚洲中文日韩欧美视频| 美女高潮喷水抽搐中文字幕| 国产激情久久老熟女| 成人三级黄色视频| 亚洲色图 男人天堂 中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品,欧美在线| 欧美3d第一页| 99久久久亚洲精品蜜臀av| 国产高清有码在线观看视频 | 一二三四在线观看免费中文在| 舔av片在线| 一级毛片精品| 国产精品久久久人人做人人爽| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 最近最新中文字幕大全免费视频| 国产激情偷乱视频一区二区| 国产免费av片在线观看野外av| 很黄的视频免费| 亚洲熟女毛片儿| 欧美成人性av电影在线观看| 看免费av毛片| 一进一出好大好爽视频| xxxwww97欧美| 日韩欧美 国产精品| 啪啪无遮挡十八禁网站| 天天一区二区日本电影三级| 午夜福利在线观看吧| 搡老熟女国产l中国老女人| 国产私拍福利视频在线观看| 桃色一区二区三区在线观看| 亚洲成人久久性| 嫁个100分男人电影在线观看| 亚洲一区中文字幕在线| 一个人免费在线观看电影 | 制服人妻中文乱码| www日本黄色视频网| 亚洲成a人片在线一区二区| 午夜视频精品福利| 十八禁人妻一区二区| 成人高潮视频无遮挡免费网站| 听说在线观看完整版免费高清| 国产激情偷乱视频一区二区| www.999成人在线观看| 正在播放国产对白刺激| 男女下面进入的视频免费午夜| 女人被狂操c到高潮| 女人高潮潮喷娇喘18禁视频| 国产麻豆成人av免费视频| 在线观看www视频免费| 欧美黑人巨大hd| 在线十欧美十亚洲十日本专区| 欧美zozozo另类| 一级毛片高清免费大全| 亚洲18禁久久av| 国产成人av激情在线播放| 亚洲精品色激情综合| 两个人看的免费小视频| 精品国产美女av久久久久小说| www.精华液| av欧美777| 亚洲男人的天堂狠狠| 成人三级黄色视频| 狂野欧美激情性xxxx| 精品人妻1区二区| 热99re8久久精品国产| 午夜视频精品福利| 91国产中文字幕| 一级黄色大片毛片| 一个人观看的视频www高清免费观看 | avwww免费| 99久久综合精品五月天人人| 欧美日本亚洲视频在线播放| 亚洲人成伊人成综合网2020| 一进一出抽搐gif免费好疼| 亚洲五月婷婷丁香| 久久国产精品影院| 亚洲黑人精品在线| 亚洲自偷自拍图片 自拍| 国产一区二区三区在线臀色熟女| 日日摸夜夜添夜夜添小说| 一二三四社区在线视频社区8| 欧美久久黑人一区二区| 国产精品一及| 亚洲欧洲精品一区二区精品久久久| 99久久精品热视频| 色尼玛亚洲综合影院| 男人舔女人下体高潮全视频| 国内久久婷婷六月综合欲色啪| 欧美午夜高清在线| 亚洲在线自拍视频| 九色成人免费人妻av| 麻豆一二三区av精品| 亚洲国产欧美人成| 国产av麻豆久久久久久久| 国产亚洲欧美在线一区二区| 精品国产乱子伦一区二区三区| 国产成年人精品一区二区| 精品国内亚洲2022精品成人| 久久精品综合一区二区三区| 国产伦在线观看视频一区| 岛国在线免费视频观看| 午夜激情av网站| 亚洲国产欧美一区二区综合| 欧美成人午夜精品| 毛片女人毛片| 亚洲全国av大片| 一进一出抽搐动态| 91字幕亚洲| 桃色一区二区三区在线观看| 2021天堂中文幕一二区在线观| 久久人妻福利社区极品人妻图片| 人妻丰满熟妇av一区二区三区| 中文字幕人妻丝袜一区二区| 亚洲国产欧美网| 日本a在线网址| 亚洲精品一卡2卡三卡4卡5卡| 制服诱惑二区| 婷婷精品国产亚洲av在线| 首页视频小说图片口味搜索| 亚洲成人中文字幕在线播放| 校园春色视频在线观看| 两个人免费观看高清视频| 日韩欧美国产在线观看| 99精品欧美一区二区三区四区| 国产成人av激情在线播放| АⅤ资源中文在线天堂|