• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of pH on binding of pyrene to hydrophobic fractions of dissolved organic matter(DOM)isolated from lake water

    2016-08-26 07:46:05YiMeiYingchenBaiLiyingWang
    Acta Geochimica 2016年3期

    Yi Mei·Yingchen Bai·Liying Wang

    ?

    Effect of pH on binding of pyrene to hydrophobic fractions of dissolved organic matter(DOM)isolated from lake water

    Yi Mei1·Yingchen Bai2·Liying Wang1

    ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    In order to better understand the compositional and structural complexity of dissolved organic matter (DOM)macromolecules and provide mechanistic information on the binding of hydrophobic organic contaminants(HOCs)to DOM,we fractionated large amounts of lake water into three hydrophobic DOM-fractions.The variation of the partitioning coefficients(KDOC)of pyrene at different pH levels was examined by florescence quenching titration.Results show that,relative to the more polar acidic DOM-fractions,the hydrophobic neutral fraction exhibits a higher sorption ability to pyrene.Generally,the sorption of pyrene to the three hydrophobic fractions is strongly pH-dependent.The KDOCvalues of pyrene generally increase with decreasing pH levels,which is especially obvious in the sorption of pyrene to the fulvic acid fractions,suggesting that the binding is controlled by hydrophobic interactions.The mechanisms underlying the binding of pyrene to the hydrophobic fractions were also discussed.Our data are beneficial to further understanding the binding of HOCs to DOM and how it has been affected,which may result in more accurate predictions of KDOC.

    1 Introduction

    Dissolved organic matter(DOM)is ubiquitous in the environment and has been reported to influence the fate and behavior of hydrophobic organic contaminants(HOCs)such as polycyclic aromatic hydrocarbon(PAH)(Gauthier et al.1997;Cox et al.2007;Perre et al.2014).Since DOM is a complex mixture composed of aromatic aliphatic hydrocarbon structures,it is arduous to confirm its chemical structure and reactivity.On the other hand,DOM is commonly characterized by fractionating it into secondary categories based on hydrophobic-hydrophilic characteristics with resin sorbents(Leeheer 1981).According to Leenheer's fractionation protocol,DOM can be isolated into hydrophobic fractions and hydrophilic fractions;furthermore,these two fractions can be further fractionated into so-called‘‘a(chǎn)cid'',‘‘base''and‘‘neutral''fractions.This fractionation procedure facilitates the understanding of these fractions with different physical-chemical characteristics and provides mechanistic information on the binding of HOCs to DOM (Mei et al.2009a;Maoz and Chefetz 2010).Ilani et al.(2005)studied the interaction of hydrophobic fractions fractionated from wastewater with triazine herbicide and three PAHs(phenanthrene,fluoranthene and pyrene),and stated that the content of the hydrophobic fractions is more important to the effect of the mobility and transport process of HOCs than to the total organic carbon(TOC)concentration.In our previous studies(Mei et al.2009a),we investigated the binding of three PAHs(anthracene,phenanthrene and perylene)to three hydrophobic and three hydrophilic fractions,determining the partitioning coefficients(KDOC)of the three PAHs between the DOM-fractions and water by fluorescence quenching titration.Our data revealed that the hydrophobic fractions with higher aromaticity and lowerpolarity possessed a higher binding ability than that of the hydrophilic fractions.Other investigators obtained similar observations when studying the interaction of HOCs with DOM fractions(Maoz and Chefetz 2010;Xi et al.2012). All above show the significance of the hydrophobic fractions in the sorption of HOCs.

    Since different DOM fractions possess different polarity and acid-base properties,solution chemistry such as pH may have varying effects on the sorption of HOCs to the DOM-fractions.Previous studies showed that the changes of pH lead to DOM conformation change and consequently affected its interaction with hydrophobic organic pollutants (Jones and Tiller 1999;Marschner et al.2005;Pan et al. 2008;Mei et al.2009b).However,inconsistent results were reported.With regard to the relation of pH to the KDOCvalues for HOCs,both positive and negative relationships have been observed(Schlautman and Morgan 1993;Jones and Tiller 1999;Akkanen and Kukkonen 2001;Marschner et al.2005).In our previous work(Mei et al.2009b),we studied the effects of pH and ion strength on DOM conformation by 3D fluorescence spectroscopy and fluorescence polarization technique;in this study,we further investigated the effects of pH on the interaction between pyrene and hydrophobic fractions.The objectives of this study are to(1)study the influence of pH on the interactive ability of hydrophobic fractions with pyrene;and(2)correlate the pH and adsorptive properties of the DOM-fractions.

    2 Materials and methods

    2.1Regents and chemicals

    Pyrene was purchased from Sigma-Aldrich(99.9%pure,St.Louis,USA)and used without further purification. Concentrated pyrene stock solution was obtained by dissolvingthechemicalinmethanol(HPLCgrade,Mallinckrodt,USA).All other chemicals and solvents used are better than analytical grade.Freeze-dried DOM-fractions were dissolved in Milli-Q water(18.2 MΩ cm,Millipore)as concentrated stock,and the solution pH was adjusted by using 0.1 mol/L HCl and 0.1 mol/L NaOH.

    2.2Sample collection and fractionation

    Lake water sample was collected from the Hongfeng Lake where is located in Guizhou Province,China.A total volume of 1000 L surface water was collected in August 2010,and the water samples were filtered through a pre-combusted(450°C for 5 h)Whatman GF/F glass fiber filters for further fractionation.DOM fractions were isolated, based on the literature(Leeheer 1981;Chefetz et al.1998),using XAD-8/4 resin(Supelco Bellefonte,PA,USA). Detailed fractionation procedures were reported in our previous work(Mei et al.2009a).Briefly,we adjusted the pH of the filtered original water to 2 with HCl,and it flowed through the XAD-8/XAD-4 resin columns at a rate of 4 L/h.The hydrophobic acids(HOAs),which were composed of humic acid(HA)and fulvic acid(FA),adsorbed onto XAD-8 resin were eluted with 0.1 mol/L NaOH.Then,the HOAs were further acidified to pH 1 with HCl and they settled for 24 h to precipitate HA.The suspension was recycled through the XAD-8 resin and then eluted with 0.1 mol/L NaOH.The elution is the FA fraction.Then the XAD-8 resin was air dried and Soxhletextracted with methanol.The fraction contained in the methanol solution is the hydrophobic neutral fraction (HON).All fractions were concentrated by rotary evaporation at 35°C,and then were purified with 100 Da membrane dialysis and freeze-dried to a low-ash solid form.

    2.3Dissolved organic carbon and molecular weights mea suremen ts

    The dissolved organic carbon(DOC)of the hydrophobic fractions were determined using a high temperature catalytic method with a TOC/N IIanalyzer(Elementar,Germany).The relative precision of the DOC analysis was <3%,as obtained by repeated measurement.Molecular weights were obtained using high performancesize exclusion chromatography(HPSEC,Agilent 1100,PE)with a UV detector at 254 nm and an YMC-60 column(Waters,Milford,MA).The flow rate of the mobile phase composed ofthephosphatebuffer(0.001 mol/LNa2HPO4,0.001 mol/L NaH2PO4and 0.03 mol/L NaCl)was set at 0.5 ml/min.The DOM-fractions were dissolved in the phosphate buffer with the same composition as the HPSEC mobile phase.The solutions were then filtered through a per-combusted Whatman GF/F glass fiber filter.The number(Mn),weight-averaged(Mw)molecular weights,and polydispersity(ρ)were determined based on the method proposed by Chin et al.(1994).

    2.4Absorbance and fluorescence measurements

    Absorbance was obtained using a Shimadzu UV-3000 double Beam spectrophotometer with 1 cm quartz cell to determine the molar absorptivity at 280 nm(ε280)and to correct the inner filter effects(IFE)when conducting a fluorescence quenching experiment.Fluorescence intensities were collected on a Hitachi F-4600 spectrofluorometer (Hitachi,Japan)with a cuvette magnetic stirring systemcontaining a Teflon micro stir bar.The photomultiplier voltage was set at 700 V;excitation and emission bandwidth were set at 5 and 10 nm,respectively.The florescenceintensitiesofpyrenewerecorrespondingly determined at the excitation/emission wavelengths of 271/374 nm.The KDOCvalues were determined by a fluorescence quenching titration based on the Stern-Volmer equation(Gauthier et al.1997).The fluorescence quenching of the PAHs by the DOM have proven to be static quenching mechanisms based on diffusion,temperature studies and the fluorescence efficiency experiment(Tranina et al.1990;Chen et al.1994).Five dilutions of the fractions were prepared,after adjustment,to the corresponding pH with 0.1 mol/L HCl and 0.1 mol/L NaOH;then,all samples were bubbled for 5 min with pure Argon in the dark to reach anoxic conditions.The Raman peak of distilled water was collected at 348/397 nm to check the instrument stability during the experiment.A 3-mL aliquot of each fraction of dilution was pipetted into the cuvette.Then,an absorption scan from 250 to 470 nm was conducted.The cuvette was then moved to the Hitachi F-4600 to collect the background fluorescence of the fractions,which was subtracted from the spectra of next solution.An aliquot of pyrene stock solution was spiked into the cuvette to a final concentration of 2 μg,according to its solubility and fluorescence intensity;then,the cuvette was stirred for 3 min using a Teflon micro stir bar and allowed to settle for another 2 min before the fluorescence measurement.After initial spiking,the fluorescence intensity of all samples was collected for three times at 5,7,and 9 min,and the final data was an average of the three measurements.

    All the fluorescence intensity values were corrected for primary and secondary IFE based on the following equation(Gauthier et al.1997):

    where Fcoris the corrected fluorescence intensity,F(xiàn)obsdis the observed fluorescence intensity,Aexis the absorbance at the excitation wavelength,Aemis the absorbance at the emission wavelength,and d,g,and s are the fluorescence beam width(1 cm),distance from the edge of the sample beam to the edge of the cuvette(0.3 cm),and excitation beam thickness(0.2 cm),respectively.The binding of pyrene to the fractions was described by the Stern-Volmer equation(Gauthier et al.1997):where F0and F are the fluorescence intensity of pyrene in the absence and presence of DOM-fractions,respectively,and KDOCand[DOM]are the partitioning coefficients of pyrene and the concentration of the DOM-fractions,respectively.

    3 Results and discussion

    3.1DOM-fractions characterization

    DOM is composed of a mixture of low-molecular weight compounds and chemically heterogeneous macromolecules (Leenheer and Croue′2003).Fractionation of the DOM is necessary to better understand the contribution of the individual fraction to its total sorption properties.

    Table 1 shows the results of elemental analysis of the hydrophobic fractions.The lake-derived water in this study contained 77%hydrophobic fractions(based on DOC analysis),which is consistent with the results obtained by other investigators(Polubesova et al.2007).Elemental analysis exhibited that the hydrophobic fractions possess a lower C/H ratio,suggesting their distinct aliphatic property.Relative to the HA and FA fraction,the HON fraction contains a high content of carbon and lower content of oxygen.With respect to atomic ratios,HON demonstrates a lower C/H ratio and a high C/O ratio,indicating its lower polarity and higher hydrophobicity relative to the acidic fractions(i.e.,HA and FA).Since the HA and FA fraction are characterized by a higher oxygen content and lower C/O ratio,and the carboxyl group may be the dominant polar functional group in the acidic fractions.

    3.2Partitioning coefficients of the hydrophobic fractions

    The Stern-Volmer plots for the sorption of pyrene to FA,HA and HON were curved towards the y-axis and not all plots were linear(Fig.1).Nonlinear sorption isotherms of pyrene binding to the DOM have been reported previously (Laor and Rebhun 2002;Borisover et al.2006;Polubesova et al.2007).It is well known that the binding of HOC to aquatic DOM is usually ascribed to a non-specific partitioning mechanism,and the sorption isotherm is linear in this case.Laor and Rebhun(2002)argued that the nonlinearity of pyrene isotherms resulted from the combination of non-specific(partitioning)and specific(adsorption)binding mechanisms.Since the three fractions contain both polar and non-polar functional groups,the polar interactions,such as the π-π electron donor-acceptor interaction (EDA)and H-bonding,may greatly contribute to the nonlinearity of sorption isotherms.

    Table 2 shows the logKDOCvalues of pyrene binding to the three hydrophobic fractions at pH 7.Our data are well consistent with the reported results(Wijnja et al.2004;Marschner et al.2005;Polubesova et al.2007).Increasingly,the sorption ability of HON for pyrene was higher than that of HA and FA,with logKDOCvalues of 4.61,4.49,and 4.25 for HON,HA and FA,respectively.It is wellknown that the binding of neutral PAHs molecules to DOM is governed by hydrophobic interactions,which is the combination of dipole-induced dipole interactions(i.e.,dispersion forces)and the thermodynamic gradient driving force.The magnitude of inducing a dipole moment is related to the polarizability of the molecules,which can be estimated by the sum of their bond polarizability.Therefore,an increase in the number of conjugated double bonds (-HC=CH-)will increase the molecular polarizability and thereby increase the magnitude of the dispersion forces.As a result,an increase in the aromaticity of DOM will increase the polarizability of the molecules,and accordingly increase its binding ability to the PAHs(Gauthier et al.1997;Peuravuori 2001).The atomic C/H ratios,molecular weights of DOM and UV absorbance at 280 nm (ε280),were thought to be surrogate for the aromaticity of DOM(Gauthier et al.1997;Tanaka et al.1997;Peuravuori 2001).However,our data was somewhat inconsistent with the aforementioned conclusions.Although the HON fraction possesses a lower atomic C/H ratio,its molecular weight and ε280are lower than those of the HA fraction. Besides higher aromaticity(lower C/H ratio),the higher sorption ability of HON to pyrene may result from its lower polarity.Xing et al.(1994)proposed a polarity index(PI)to represent the magnitude of DOM polarity,and defined FI as the atomic(O+N)/C ratio.Although the HA fraction possesses a higher molecular weight and ε280value,a higher content of polar compounds in HA impede the sorption more pyrene.Our data was well corroborated by the reported observations(Salloum et al.2002;Simpson et al.2003;Gunasekara et al.2003).Salloum et al.(2002)reported an increase in KDOCvalues after removing the polysaccharides of soil organic matter,and speculated that aromatic structures might be physically constrained by polarstructures.Likewise,whencarbohydrateswere selectively removed from humic acids,Simpson et al. (2003)discovered an increase in phenanthrene binding ability.After the similar observations were obtained,Gunasekara et al.(2003)proposed that the mobile sorption domains were free and would become more accessible to HOCs with the removal of rigid structures.Another possible contribution to the higher binding ability of HON may be the EDA interaction.The HON fraction was reported to be rich in methyl and carbonyl groups,which could accept electrons from electron-donor pyrene.

    Table 1 Elemental analysis and atomic ratios of the hydrophobic fractions(HA,F(xiàn)A and HON)

    Fig.1 Stern-Volmer plots for pyrene binding to the hydrophobic fractions(FA,HA and HON)

    Table 2 Log KDOCvalues of pyrene with hydrophobic fractions,molecular weight and UV at 280 nm(ε280)

    3.3Effect of pH on the binding characteristics

    Table 3 shows the KDOCvalues of pyrene binding to HA,F(xiàn)A and HON at pH 4,7,and 10.The KDOCvalues of pyrene were higher at pH 4 and lower at pH 10,suggesting the strong pH-dependent sorption property.Since the DOM-fractions contain large amounts of polar and acidic function groups,any changes in pH may affect itsconformation and sorption domains,depending on its physicochemical properties and composition.

    Table 3 Partitioning coefficients(KDOC)of pyrene binding to HA,F(xiàn)A and HON at pH 4,7 and 10

    The carboxyl groups of DOM were reported to be increasingly deprotonated above pH 4,resulting in an increase of its polarity and solubility(Carter and Suffet 1982;Marschner et al.2005).Furthermore,the conformation of DOM could be affected by the change of solution pH(Jones and Tiller 1999;Ferreira et al.2002).Humic substances are in an elongated conformation in alkaline solutions due to electrostatic repulsion,but the protonation of carboxyl groups at low pHs facilitates intra-and intermolecular interactions and leads to the formation a more condensedhydrophobicstructure.Panetal.(2008)observed an aggregation of DOM molecules via atomic force microscopy and an increase in zeta potential,with decreasing pH.They suggested that,in this case,electrostatic repulsive force decrease,and the aggregation of DOM molecules formed large hydrophobic domains in which more hydrophobic compounds were adsorbed,as if individual molecules possessed lower apparent molecular sizes due to self-curling.In our previous study(Mei et al. 2009b),we studied the effects of pH on the florescence properties and molecular conformation of two humic acids by the three-dimensional excitation-emission matrix florescence(3DEEM)and steady-state florescence polarization(FP).As pH decreased,we observed a decline in the fluorescence intensity and a blue shift in the florescence maxima.In the case of the blue shift in florescence maxima,the polarity of humic substances declined and the hydrophobic domains of the DOM functional groups were exposed in the solution(Mobed et al.1996).At the same time,decreasing florescence intensities suppressed the ionization of the functional groups.The conformational change of the humic acids was corroborated by florescence polarization:the FP decreased with decreasing pH.This indicated the decreasing of the apparent molecular size,because of the self-curling of individual molecule.In addition to enhancing the hydrophobic interaction resulted from molecular aggregation,the lower pH is beneficial to polar interactions such as H-bonding and EDA interactions. Gu et al.(2007)observed the H-bonding ability of carboxyl groups of DOM declining due to deprotonation with increasing pH.Zhu et al.(2004)stated that lower pH would induce a stronger π-π EDA interaction.Furthermore,hydrogen ions could also act as the promoters for EDA interactions via aromatic moieties or heterocyclic compounds within the DOM molecules.

    It is clear that a greater decrease in the KDOCvalues of pyrene binding to FA occurs with increasing pH(Table 3). With regard to the HON fraction,only a slight effect was observed with changing pH from 4 to 10,while the influence of changing pH on the pyrene sorption to HA was lower than that to FA and higher that to HON.The different extent of pH-dependent binding observed among the three DOM-fractions might be ascribed to their respective compositional and structural properties.Relative to the HON fraction,the FA fraction has a much higher polarity,as shown by the(O+N/C)ratio(Table 1),and is more enriched in polar groups.Accordingly,the distinct components of FA become tightly bound via intramolecular H-bonding at lower pHs,leading to more sensitive pH-dependent binding.While HON is less polar with a PI=0.6 and is composed of highly cross-linked,largesized hydrophobic domains,its conformation and variation of hydrophobicity would be less affected by the protonation-deprotonation transition of carboxylic groups.

    4 Conclusions

    Our data reveals that the sorption of pyrene to lake-derived hydrophobic fractions is strongly correlated to the aromatic domains in DOM macromolecules.Relative to the more polar acidic DOM-fractions,the hydrophobic neutral fraction(HON)exhibits a more efficient sorption ability to pyrene.Generally,the sorption of pyrene to the three hydrophobic fractions is strongly pH-dependent.The partitioning coefficients(KDOC)of pyrene generally increase with decreasing pH,which is especially obvious with the sorption of pyrene to the FA fraction,suggesting the binding is controlled by hydrophobic interactions.Among the three hydrophobic fractions,HON exhibited the highest sorption ability to pyrene,which may result from its lower polarity and stronger EDA ability.The effect of pH on the sorption of pyrene to HON is relatively limited due to its less polar groups;furthermore,HON possesses larger-sized hydrophobic domains whose conformation and hydrophobicity would not be much affected by the protonation-deprotonation transition of the carboxyl groups.As the carboxyl groups of DOM are protonated with decreasing pH(i.e.,increasing H+),the electrostatic repulsion between the DOM molecules decrease and the molecular aggregation happen;furthermore,the aggregation results in the formation of larger hydrophobic domains in which moreHOC are adsorbed,especially those with large hydrophobicity.Our data are beneficial to further understanding the binding of HOCs to DOM and how it has been affected,which may lead to a more accurate prediction of KDOC.

    AcknowledgmentsThis work was supported by the National Natural Science Foundation of China(No.41173128).

    References

    Akkanen J,Kukkonen JVK(2001)Effects of water hardness and dissolved organic material on bioavailability of selected organic chemicals.Environ Toxicol Chem 20:2303-2308

    Borisover M,Laor Y,Bukhanovsky N,Saadi I(2006)Fluorescence based evidence for adsorptive binding of pyrene to effluent dissolved organic matter.Chemosphere 65:1925-1934

    Carter CW,Suffet IH(1982)Binding of DDT to dissolved humic materials.Environ Sci Technol 16:735-740

    Chefetz B,Chen Y,Hadar Y(1998)Purification and characterization of laccase from chaetomium thermophilim and its role in humification.Appl Environ Microbiol 64:3175-3179

    Chen S,Inskeep WP,Williams SA,Callis P(1994)Fluorescence lifetime measurements of fluoranthene,1-naphthol and napropamide in the presence of dissolved humic acids.Environ Sci Technol 28:1582-1588

    Chin YP,Aiken GR,O`Loughlin E (1994)Molecular weight,Polydispersity and spectroscopic properties of aquatic humic substances.Environ Sci Technol 28:1853-1858

    Cox L,Velarde P,Cabrera A,Hermosin MC,Cornejo J(2007)Dissolved organic carbon interaction with sorption and leaching of diuron in organic-amended soils.Eur J Soil Sci 58(3):714-721

    Ferreira JA,Martin-Neto L,Vaz CMP,Regitano JB(2002)Sorption interactions between imazaquin and a humic acid extracted from a typical Brazilian Oxisol.J Environ Qual 31(5):1665-1670

    Gauthier TD,Seitz WR,Grant CL(1997)Effects of structural and compositional variations of dissolved humic materials on pyrene Kocvalues.Environ Sci Technol 21:243-248

    Gu C,Karthikeyan KG,Sibley SD,Pederson JA(2007)Complexation of the antibiotic tetracycline with humic acid.Chemosphere 66(8):1494-1501

    Gunasekara A,Simpson MJ,Xing B(2003)Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids.Environ Sci Technol 37:852-858

    Ilani T,Schulz E,Chefetz B(2005)Interactions of organic compounds with wastewater dissolved organic matter:role of hydrophobic fractions.J Environ Qual 34(2):552-562

    JonesKD,TillerCL(1999)Effectofsolutionchemistryontheextentof binding of phenanthrene by a soil humic acid:a comparison of dissolvedandclayboundhumic.EnvironSciTechnol33:580-587

    Laor Y,Rebhun M(2002)Evidence for nonlinear binding of PAHs to dissolved humic acids.Environ Sci Technol 36:955-961

    Leeheer JA(1981)Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters.Environ Sci Technol 15:578-587

    Leenheer JA,Croue′JP(2003)Characterizing aquatic dissolved organic matter.Environ Sci Technol 37(1):19A-26A

    Maoz A,Chefetz B(2010)Sorption of the pharmaceuticals carbamazepine and naproxen to dissolved organic matter:role of structural fractions.Water Res 44:981-989

    Marschner B,Winkler R,Jodemann D(2005)Factors controlling the partitioning of pyrene to dissolved organic matter extracted from different soils.Eur J Soil Sci 56:299-306

    Mei Y,Wu FC,Wang LY,Bai YC,Li W,Liao HQ(2009a)Binding characteristics of perylene,phenanthrene and anthracene to different DOM fractions from lake water.J Environ Sci 21:414-423

    Mei Y,Wang LY,Wu FC(2009b)Effects of water chemistry and concentration of dissolved organic matter on its florescence characteristics and molecular conformation.Chin J Geochem 28:413-420

    Mobed JJ,Hemmingsen SL,Autry JH(1996)Florescence characterization of IHSS humic substances:total luminescence spectra with absorbance correction.Environ Sci Technol 30:3061-3065

    Pan B,Ghosh S,Xing BS(2008)Dissolved organic matter conformation and its interaction with pyrene as affected by water chemistry and concentration.Environ Sci Technol 42:1594-1599

    Perre CD,Me′nach KL,Ibalot F,Parlanti E,Budzinski H(2014)Development of soild-phase microextraction to study dissolved organic matter-polycyclic aromatic hydrocarbon interactions in aquatic environment.Anal Chem Acta 807:51-60

    Peuravuori J(2001)Binding of pyrene on lake aquatic humic matter:the role of structural descriptors.Anal Chim Acta 429:75-89

    Polubesova T,Sherman-Nakache M,Chefetz B(2007)Binding of pyrene to hydrophobic fractions of dissolved organic matter:effects of polyvalent metal complexation.Environ Sci Technol 41(15):5389-5394

    Salloum MJ,Chefetz B,Hatcher PG(2002)Phenanthrene sorption by aliphatic-rich natural organic matter.Environ Sci Technol 36:1953-1958

    Schlautman MA,Morgan JJ(1993)Effects of aquatic chemistry on the binding of polycylic aromatic-hydrocarbons by dissolved humic materials.Environ Sci Technol 27:961-969

    Simpson MJ,Chefetz B,Hatcher PG(2003)Phenanthrene sorption to structurally modified humic acids.J Environ Qual 32:1750-1758 Tanaka S,Oba K,F(xiàn)ukushima M,Nakayasu K,Hasebe K(1997)Water solubility enhancement of pyrene in the presence of humic substances.Anal Chim Acta 337:351-357

    Tranina SJ,Novak J,Smeck NE(1990)An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids.J Environ Qual 19:151-153

    Wijnja H,Pignatello JJ,Malekani K (2004)Formation of π-π complexes between phenanthrene and model π-π acceptor humic subunits.J Environ Qual 33:265-275

    Xi BD,Geng CM,Yue Z,Wei ZM,He XS(2012)Interaction of phenanthrene with dissolved organic matter and its fractions from leachate of different landfill ages.Environ Earth Sci 67:1861-1867

    Xing B,McGill WB,Dudas MJ(1994)Cross-correlation of polarity curves to predict partition coefficients of nonionic organic contaminants.Environ Sci Technol 28:1929-1933

    Zhu QD,Hyun S,Pignatello JJ(2004)Evidence of π-π electron donor-acceptor interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter through pH effects on sorption.Environ Sci Technol 38:4361-4368

    2 December 2015/Revised:31 December 2015/Accepted:25 January 2016/Published online:10 February 2016

    ? Yi Mei meiyi@mail.gyig.ac.cn
    1State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,China
    2State Environmental Protection Key Laboratory for Lake Pollution Control,Research Center of Lake Environment,Chinese Research Academy of Environmental Sciences,Beijing 100012,China

    欧美日本中文国产一区发布| 在线天堂最新版资源| 免费高清在线观看视频在线观看| 国产男人的电影天堂91| 日韩免费高清中文字幕av| 黄网站色视频无遮挡免费观看| 午夜福利乱码中文字幕| 久久久亚洲精品成人影院| 亚洲av福利一区| 午夜福利视频精品| 久久久久久人妻| 国产探花极品一区二区| 久久精品国产自在天天线| 精品久久蜜臀av无| 最近手机中文字幕大全| 一个人免费看片子| 制服丝袜香蕉在线| 国产精品三级大全| 在线免费观看不下载黄p国产| 欧美97在线视频| 亚洲成色77777| 中文字幕人妻熟女乱码| 中文字幕av电影在线播放| 妹子高潮喷水视频| www.av在线官网国产| 欧美精品一区二区免费开放| 亚洲av电影在线观看一区二区三区| 欧美精品亚洲一区二区| 亚洲欧美成人精品一区二区| 男女边摸边吃奶| 熟女少妇亚洲综合色aaa.| av电影中文网址| 精品亚洲乱码少妇综合久久| 免费观看在线日韩| 高清av免费在线| 女性被躁到高潮视频| av在线老鸭窝| 午夜福利网站1000一区二区三区| 久久久精品94久久精品| 久久人人爽人人片av| 久久久精品免费免费高清| 成人毛片60女人毛片免费| 各种免费的搞黄视频| 一级毛片我不卡| 女人高潮潮喷娇喘18禁视频| 久久精品国产亚洲av高清一级| 最近最新中文字幕免费大全7| 国产免费一区二区三区四区乱码| 久久久久久久亚洲中文字幕| 电影成人av| 熟女少妇亚洲综合色aaa.| 亚洲精品日本国产第一区| 免费少妇av软件| 免费观看在线日韩| 中文精品一卡2卡3卡4更新| 超碰成人久久| 青春草视频在线免费观看| 亚洲av日韩在线播放| 大码成人一级视频| 97精品久久久久久久久久精品| 人妻 亚洲 视频| 制服丝袜香蕉在线| 久久99蜜桃精品久久| 国产极品天堂在线| 国产精品成人在线| 日日摸夜夜添夜夜爱| 纯流量卡能插随身wifi吗| 国产一区二区三区综合在线观看| 免费播放大片免费观看视频在线观看| 日韩免费高清中文字幕av| 免费黄频网站在线观看国产| 熟女电影av网| 成人国语在线视频| av女优亚洲男人天堂| 日韩视频在线欧美| 欧美精品一区二区大全| 国产精品 欧美亚洲| 水蜜桃什么品种好| 中文字幕人妻丝袜一区二区 | 国产视频首页在线观看| 香蕉精品网在线| 欧美激情极品国产一区二区三区| 看非洲黑人一级黄片| 久久 成人 亚洲| 欧美成人午夜免费资源| 久久精品国产亚洲av高清一级| 自拍欧美九色日韩亚洲蝌蚪91| 老司机影院成人| 一区福利在线观看| 国产精品国产三级专区第一集| 成人漫画全彩无遮挡| 性色av一级| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产欧美网| 国产乱人偷精品视频| 香蕉丝袜av| 日韩一卡2卡3卡4卡2021年| 精品国产国语对白av| 国产野战对白在线观看| 母亲3免费完整高清在线观看 | 亚洲国产毛片av蜜桃av| 1024视频免费在线观看| 黄色毛片三级朝国网站| 国产野战对白在线观看| 边亲边吃奶的免费视频| 观看美女的网站| 亚洲国产成人一精品久久久| 成人亚洲精品一区在线观看| 国产成人精品婷婷| 免费看av在线观看网站| 欧美日韩综合久久久久久| 爱豆传媒免费全集在线观看| 少妇人妻精品综合一区二区| 久久精品人人爽人人爽视色| 中文精品一卡2卡3卡4更新| 最近2019中文字幕mv第一页| 亚洲国产日韩一区二区| 国产精品人妻久久久影院| 欧美日韩av久久| 免费看不卡的av| 成人黄色视频免费在线看| 日日摸夜夜添夜夜爱| 97在线人人人人妻| 麻豆av在线久日| 国产成人av激情在线播放| 中文字幕制服av| 亚洲人成77777在线视频| 亚洲精品乱久久久久久| 日韩中文字幕欧美一区二区 | 国产午夜精品一二区理论片| 亚洲欧美成人综合另类久久久| av电影中文网址| 久久精品熟女亚洲av麻豆精品| 视频在线观看一区二区三区| 中文字幕制服av| 久久久久久久久久人人人人人人| √禁漫天堂资源中文www| 秋霞在线观看毛片| 亚洲成色77777| 在线观看三级黄色| 婷婷色av中文字幕| 免费观看av网站的网址| 一级毛片电影观看| 韩国精品一区二区三区| 亚洲av中文av极速乱| 我的亚洲天堂| 亚洲第一av免费看| 国产 一区精品| 热re99久久国产66热| 国产野战对白在线观看| 成人手机av| 午夜日韩欧美国产| 久久久欧美国产精品| 婷婷色麻豆天堂久久| 亚洲 欧美一区二区三区| 涩涩av久久男人的天堂| 国产精品成人在线| 免费日韩欧美在线观看| 亚洲精品美女久久久久99蜜臀 | 免费观看a级毛片全部| 久久精品国产综合久久久| 国产xxxxx性猛交| 丝袜人妻中文字幕| 一本久久精品| 精品人妻熟女毛片av久久网站| 色婷婷av一区二区三区视频| 亚洲五月色婷婷综合| www.av在线官网国产| 中文字幕色久视频| 欧美成人精品欧美一级黄| 精品国产露脸久久av麻豆| 色哟哟·www| 久热久热在线精品观看| 欧美激情高清一区二区三区 | 99热全是精品| 90打野战视频偷拍视频| 成人影院久久| av在线老鸭窝| 久久精品国产自在天天线| av不卡在线播放| a级片在线免费高清观看视频| 26uuu在线亚洲综合色| 免费在线观看视频国产中文字幕亚洲 | 日韩在线高清观看一区二区三区| 桃花免费在线播放| 激情视频va一区二区三区| 色94色欧美一区二区| 亚洲内射少妇av| 美女视频免费永久观看网站| 成人毛片a级毛片在线播放| 美女xxoo啪啪120秒动态图| www.自偷自拍.com| 欧美亚洲 丝袜 人妻 在线| 大片免费播放器 马上看| 在线观看免费视频网站a站| 免费观看a级毛片全部| 欧美人与性动交α欧美软件| 国产欧美亚洲国产| 91久久精品国产一区二区三区| 国产日韩欧美视频二区| 秋霞伦理黄片| 黄片小视频在线播放| 电影成人av| 免费在线观看黄色视频的| 国产精品亚洲av一区麻豆 | 久久久久网色| 久久国产精品男人的天堂亚洲| 天堂中文最新版在线下载| 国产精品秋霞免费鲁丝片| 久久国产亚洲av麻豆专区| 国产一级毛片在线| 人人妻人人爽人人添夜夜欢视频| 国产黄频视频在线观看| 在线观看国产h片| 秋霞在线观看毛片| 久久久欧美国产精品| 婷婷色麻豆天堂久久| 国产高清国产精品国产三级| 精品少妇一区二区三区视频日本电影 | 中文字幕av电影在线播放| 亚洲精品国产av蜜桃| 国产一区二区激情短视频 | 人人澡人人妻人| 丝袜在线中文字幕| 五月开心婷婷网| 少妇人妻久久综合中文| 午夜91福利影院| 在线观看免费视频网站a站| 久久精品久久久久久噜噜老黄| 亚洲欧美中文字幕日韩二区| 99精国产麻豆久久婷婷| 91在线精品国自产拍蜜月| 成年女人在线观看亚洲视频| 欧美bdsm另类| 性色av一级| 久久精品国产亚洲av高清一级| 91在线精品国自产拍蜜月| 久久精品熟女亚洲av麻豆精品| 日韩精品有码人妻一区| 妹子高潮喷水视频| 麻豆av在线久日| 国语对白做爰xxxⅹ性视频网站| 人人妻人人爽人人添夜夜欢视频| 97在线视频观看| 精品亚洲乱码少妇综合久久| 最黄视频免费看| 欧美精品亚洲一区二区| 国产免费福利视频在线观看| 色播在线永久视频| www.av在线官网国产| 夫妻午夜视频| 国产精品久久久av美女十八| 最黄视频免费看| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| 国产日韩一区二区三区精品不卡| 久久精品熟女亚洲av麻豆精品| 国产精品秋霞免费鲁丝片| 日韩中文字幕欧美一区二区 | 久久精品人人爽人人爽视色| 久久青草综合色| 秋霞伦理黄片| av免费在线看不卡| 国产在线一区二区三区精| 久久99蜜桃精品久久| 男人爽女人下面视频在线观看| 性高湖久久久久久久久免费观看| 日韩成人av中文字幕在线观看| 亚洲精品久久成人aⅴ小说| 搡女人真爽免费视频火全软件| 日韩一区二区三区影片| 电影成人av| 午夜福利影视在线免费观看| 午夜福利在线免费观看网站| 久久97久久精品| 国产成人午夜福利电影在线观看| 国产免费一区二区三区四区乱码| 亚洲精品美女久久av网站| 熟女少妇亚洲综合色aaa.| 乱人伦中国视频| 91国产中文字幕| 亚洲欧美中文字幕日韩二区| 狠狠婷婷综合久久久久久88av| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 有码 亚洲区| 国产亚洲精品第一综合不卡| 国产麻豆69| 美女视频免费永久观看网站| 街头女战士在线观看网站| av电影中文网址| 看免费成人av毛片| 啦啦啦中文免费视频观看日本| 另类亚洲欧美激情| 欧美少妇被猛烈插入视频| 日本91视频免费播放| 欧美日韩一级在线毛片| 女人被躁到高潮嗷嗷叫费观| 日本色播在线视频| 超碰97精品在线观看| 美女大奶头黄色视频| 久久精品国产综合久久久| 国产一区二区三区综合在线观看| 色视频在线一区二区三区| 亚洲人成网站在线观看播放| 日韩中文字幕视频在线看片| 久久久a久久爽久久v久久| 久久精品国产自在天天线| 精品国产超薄肉色丝袜足j| 午夜福利网站1000一区二区三区| 女性被躁到高潮视频| 精品国产一区二区三区久久久樱花| 亚洲色图综合在线观看| 亚洲精品美女久久av网站| 青春草亚洲视频在线观看| 午夜福利乱码中文字幕| 欧美中文综合在线视频| 美女午夜性视频免费| 99热网站在线观看| 国产深夜福利视频在线观看| 免费播放大片免费观看视频在线观看| 999久久久国产精品视频| 亚洲美女黄色视频免费看| 亚洲一区中文字幕在线| 寂寞人妻少妇视频99o| 咕卡用的链子| 一级毛片黄色毛片免费观看视频| 嫩草影院入口| 免费高清在线观看日韩| 久久午夜福利片| 国产一区二区激情短视频 | 狠狠婷婷综合久久久久久88av| 99久久综合免费| www.av在线官网国产| 综合色丁香网| 人人妻人人爽人人添夜夜欢视频| 国产综合精华液| 国产精品不卡视频一区二区| 久久人人爽av亚洲精品天堂| 国产毛片在线视频| 在线观看美女被高潮喷水网站| 18+在线观看网站| 有码 亚洲区| 男人添女人高潮全过程视频| 有码 亚洲区| 男人添女人高潮全过程视频| 欧美中文综合在线视频| 久久狼人影院| www.精华液| 男女无遮挡免费网站观看| xxx大片免费视频| 久久久国产欧美日韩av| 大码成人一级视频| 久久精品熟女亚洲av麻豆精品| 国产精品人妻久久久影院| 久久久a久久爽久久v久久| 亚洲av男天堂| 亚洲国产毛片av蜜桃av| 啦啦啦在线观看免费高清www| 精品亚洲乱码少妇综合久久| 欧美亚洲 丝袜 人妻 在线| videossex国产| 精品一区二区三卡| 黑丝袜美女国产一区| 97在线视频观看| 18禁观看日本| 亚洲av日韩在线播放| 亚洲精品久久午夜乱码| 在线观看一区二区三区激情| 大香蕉久久成人网| 欧美国产精品va在线观看不卡| 精品少妇黑人巨大在线播放| 精品久久蜜臀av无| 如何舔出高潮| 亚洲精品aⅴ在线观看| 亚洲色图综合在线观看| 午夜福利乱码中文字幕| 久久这里只有精品19| 久久精品久久久久久久性| 狠狠婷婷综合久久久久久88av| 综合色丁香网| 亚洲在久久综合| 久久久久久久精品精品| 日韩熟女老妇一区二区性免费视频| 91精品伊人久久大香线蕉| 亚洲中文av在线| 亚洲精品av麻豆狂野| 大香蕉久久网| 天天躁日日躁夜夜躁夜夜| 国产熟女欧美一区二区| 日本欧美国产在线视频| 人成视频在线观看免费观看| 亚洲欧美日韩另类电影网站| 亚洲美女黄色视频免费看| 国产一级毛片在线| 久久久精品国产亚洲av高清涩受| 午夜福利视频在线观看免费| 日韩av免费高清视频| 成年动漫av网址| 国产亚洲午夜精品一区二区久久| 黄片小视频在线播放| 我的亚洲天堂| 久久精品人人爽人人爽视色| 我要看黄色一级片免费的| 欧美xxⅹ黑人| 少妇 在线观看| 汤姆久久久久久久影院中文字幕| 老汉色∧v一级毛片| 中文字幕人妻熟女乱码| 男女午夜视频在线观看| 高清av免费在线| 久久毛片免费看一区二区三区| 男女国产视频网站| 捣出白浆h1v1| 99久久综合免费| 香蕉丝袜av| 老司机亚洲免费影院| 国产成人精品久久二区二区91 | 香蕉精品网在线| 亚洲欧美成人综合另类久久久| 国产日韩欧美亚洲二区| 欧美日韩亚洲国产一区二区在线观看 | 制服人妻中文乱码| 国产欧美亚洲国产| 色播在线永久视频| 肉色欧美久久久久久久蜜桃| 午夜激情av网站| 汤姆久久久久久久影院中文字幕| 18禁动态无遮挡网站| 久久这里只有精品19| 天天躁狠狠躁夜夜躁狠狠躁| 男女高潮啪啪啪动态图| 91精品三级在线观看| 久久韩国三级中文字幕| 一级毛片黄色毛片免费观看视频| 国产精品99久久99久久久不卡 | 日本av手机在线免费观看| 我的亚洲天堂| 如何舔出高潮| 桃花免费在线播放| 亚洲精品久久成人aⅴ小说| 久久久久人妻精品一区果冻| 美女高潮到喷水免费观看| 国语对白做爰xxxⅹ性视频网站| 亚洲av日韩在线播放| 在线免费观看不下载黄p国产| 久久毛片免费看一区二区三区| 美女xxoo啪啪120秒动态图| 看免费成人av毛片| 中文字幕精品免费在线观看视频| 日韩人妻精品一区2区三区| 一区二区三区激情视频| 亚洲av成人精品一二三区| 亚洲国产毛片av蜜桃av| 国产人伦9x9x在线观看 | 我要看黄色一级片免费的| 母亲3免费完整高清在线观看 | 日韩人妻精品一区2区三区| 激情视频va一区二区三区| 免费在线观看黄色视频的| 精品亚洲成国产av| 多毛熟女@视频| 99国产精品免费福利视频| 亚洲 欧美一区二区三区| 色网站视频免费| 亚洲欧美中文字幕日韩二区| 欧美日韩视频精品一区| 亚洲美女搞黄在线观看| 国产亚洲欧美精品永久| 国产伦理片在线播放av一区| 王馨瑶露胸无遮挡在线观看| 男的添女的下面高潮视频| 国产无遮挡羞羞视频在线观看| 一区二区av电影网| 欧美在线黄色| 亚洲av电影在线观看一区二区三区| 五月开心婷婷网| 99久国产av精品国产电影| 91午夜精品亚洲一区二区三区| 蜜桃国产av成人99| 少妇人妻 视频| 免费少妇av软件| 丰满迷人的少妇在线观看| 黄色一级大片看看| 五月天丁香电影| 91国产中文字幕| 亚洲国产精品国产精品| 男女边吃奶边做爰视频| 免费大片黄手机在线观看| 夜夜骑夜夜射夜夜干| 亚洲激情五月婷婷啪啪| 男人舔女人的私密视频| 久久久国产一区二区| 尾随美女入室| 精品久久久精品久久久| 亚洲一区二区三区欧美精品| 久久久久久久国产电影| 欧美日韩亚洲国产一区二区在线观看 | 嫩草影院入口| 伊人亚洲综合成人网| 香蕉精品网在线| 久久久久视频综合| 午夜福利,免费看| 欧美日韩国产mv在线观看视频| av网站免费在线观看视频| 亚洲国产欧美日韩在线播放| 大码成人一级视频| 亚洲精品美女久久久久99蜜臀 | 一区二区三区四区激情视频| 亚洲欧美精品自产自拍| 国产无遮挡羞羞视频在线观看| 国产成人免费观看mmmm| 午夜免费男女啪啪视频观看| 国产精品久久久久久av不卡| 国产精品 国内视频| 在线亚洲精品国产二区图片欧美| xxx大片免费视频| 亚洲成av片中文字幕在线观看 | 久久久国产精品麻豆| 中文乱码字字幕精品一区二区三区| 国产精品一国产av| 久久久a久久爽久久v久久| 成人18禁高潮啪啪吃奶动态图| 久久国产精品大桥未久av| 久久久久国产精品人妻一区二区| 少妇人妻 视频| 精品人妻在线不人妻| 一二三四中文在线观看免费高清| 亚洲精品aⅴ在线观看| 国产精品蜜桃在线观看| 中文精品一卡2卡3卡4更新| 精品人妻熟女毛片av久久网站| 超碰成人久久| 日本午夜av视频| 少妇精品久久久久久久| 人人妻人人添人人爽欧美一区卜| 欧美日韩一区二区视频在线观看视频在线| 性色av一级| 少妇的丰满在线观看| 人人妻人人爽人人添夜夜欢视频| 2021少妇久久久久久久久久久| 成人手机av| 一级爰片在线观看| 亚洲精品久久午夜乱码| 亚洲一码二码三码区别大吗| 亚洲国产成人一精品久久久| 国产亚洲午夜精品一区二区久久| 色94色欧美一区二区| 在现免费观看毛片| 日韩一本色道免费dvd| 韩国av在线不卡| 两性夫妻黄色片| 妹子高潮喷水视频| 观看av在线不卡| 国产成人欧美| 国产欧美日韩综合在线一区二区| 欧美成人精品欧美一级黄| 中文欧美无线码| 久久久久久人人人人人| 极品人妻少妇av视频| 亚洲精品一区蜜桃| 可以免费在线观看a视频的电影网站 | 亚洲欧美精品综合一区二区三区 | xxxhd国产人妻xxx| 国产欧美亚洲国产| 一二三四中文在线观看免费高清| 成人亚洲欧美一区二区av| 在现免费观看毛片| 1024视频免费在线观看| 亚洲成人一二三区av| 视频区图区小说| 精品亚洲成国产av| 2018国产大陆天天弄谢| 日韩在线高清观看一区二区三区| 久久99热这里只频精品6学生| 国产精品.久久久| av不卡在线播放| 18在线观看网站| 三上悠亚av全集在线观看| 26uuu在线亚洲综合色| 国产亚洲精品第一综合不卡| 欧美日韩亚洲国产一区二区在线观看 | a级片在线免费高清观看视频| 91在线精品国自产拍蜜月| 最近中文字幕2019免费版| www日本在线高清视频| 成人黄色视频免费在线看| 在线观看免费视频网站a站| av国产久精品久网站免费入址| 欧美日韩成人在线一区二区| 免费少妇av软件| 国产成人a∨麻豆精品| 久久99精品国语久久久| 国产日韩欧美在线精品| 美女福利国产在线| 这个男人来自地球电影免费观看 | 亚洲av日韩在线播放| 精品99又大又爽又粗少妇毛片| 国产亚洲最大av| 黄频高清免费视频| 欧美成人精品欧美一级黄| 激情五月婷婷亚洲| 黄频高清免费视频| 久久久久久人妻| 久久人人爽av亚洲精品天堂| 人成视频在线观看免费观看| 97在线人人人人妻| 久久99热这里只频精品6学生| 91午夜精品亚洲一区二区三区| 丝袜喷水一区| av国产精品久久久久影院| 亚洲av中文av极速乱| 日本欧美视频一区| 国产精品久久久久久av不卡| 中文欧美无线码|