徐睿妤,劉 剛,陳 雷,滕厚興,盧興國,許繼凱
(中國石油大學(xué)(華東)儲(chǔ)運(yùn)與建筑工程學(xué)院,山東 青島 266580)
?
同軸圓筒流變儀初始瞬態(tài)黏度的解析與數(shù)值研究
徐睿妤,劉剛,陳雷,滕厚興,盧興國,許繼凱
(中國石油大學(xué)(華東)儲(chǔ)運(yùn)與建筑工程學(xué)院,山東 青島 266580)
同軸圓筒流變儀在恒剪速或恒應(yīng)力測(cè)試初始過程中測(cè)試黏度遠(yuǎn)高于真實(shí)值的現(xiàn)象與流場(chǎng)非穩(wěn)態(tài)作用等因素有關(guān)。測(cè)量間隙內(nèi)的Couette流動(dòng)研究主要集中在邊界條件為恒值或某一具體時(shí)間函數(shù)下的理論推導(dǎo),而測(cè)量間隙的邊界條件實(shí)際為某一動(dòng)邊界。假設(shè)動(dòng)邊界為任意f(t),將同軸圓筒間Newtonian流體初始流變測(cè)試過程簡(jiǎn)化為無限大平板間Couette流動(dòng),采用特征函數(shù)法和Laplace變換推導(dǎo)應(yīng)力和剪速邊界下流場(chǎng)及表觀黏度精確解,同時(shí)依據(jù)不同間隙尺寸和運(yùn)動(dòng)黏度對(duì)6種邊界條件下的瞬態(tài)表觀黏度進(jìn)行數(shù)值計(jì)算。結(jié)果表明:當(dāng)υ <20 mm2·s-1時(shí),控制剪速邊界下流場(chǎng)及表觀黏度平衡時(shí)間更短;當(dāng)20 mm2·s-1<υ<20000 mm2·s-1時(shí),控制應(yīng)力邊界下流場(chǎng)及表觀黏度平衡時(shí)間更短;當(dāng)υ >20000 mm2·s-1時(shí),兩類邊界條件下的平衡時(shí)間相近。
黏度;流體動(dòng)力學(xué);數(shù)值分析;同軸圓筒流變儀;Couette流動(dòng);動(dòng)邊界函數(shù);特征函數(shù)法
DOI:10.11949/j.issn.0438-1157.20150865
旋轉(zhuǎn)流變儀作為流變測(cè)量的重要工具,其準(zhǔn)確測(cè)量將為工業(yè)及科研領(lǐng)域的物料流變性研究提供一系列可靠的基礎(chǔ)數(shù)據(jù)。然而,在流變儀轉(zhuǎn)子由靜止逐步達(dá)到設(shè)定轉(zhuǎn)速或扭矩的瞬態(tài)過程中流場(chǎng)非穩(wěn)態(tài)與儀器機(jī)械性能的綜合作用導(dǎo)致牛頓流體測(cè)試黏度遠(yuǎn)高于真實(shí)值。啟動(dòng)初始,轉(zhuǎn)子加速的機(jī)械反饋調(diào)節(jié)復(fù)雜,使得流變儀加載應(yīng)力或剪速的有效值低于設(shè)定值,實(shí)際邊界條件形式不便描述,邊界條件的動(dòng)態(tài)變化最終也體現(xiàn)為流場(chǎng)非穩(wěn)態(tài)。若待測(cè)介質(zhì)為牛頓流體,可待數(shù)據(jù)穩(wěn)定后再進(jìn)行采集;若待測(cè)介質(zhì)為非牛頓流體(如黏彈性和觸變性流體),則其流變性對(duì)加載條件與剪切歷史極為敏感,數(shù)據(jù)采集應(yīng)從測(cè)量夾具旋轉(zhuǎn)開始,初始非穩(wěn)態(tài)數(shù)據(jù)失真將直接影響研究者對(duì)物料屬性的判斷。
旋轉(zhuǎn)流變測(cè)量即建立測(cè)量間隙內(nèi)流場(chǎng)的邊界測(cè)量值與流變參數(shù)間的力學(xué)響應(yīng),測(cè)量間隙內(nèi)介質(zhì)的初始流動(dòng)過程類似于平板拖動(dòng)或旋轉(zhuǎn)體系下的Couette流動(dòng)。已有諸多學(xué)者開展了瞬態(tài)Couette流動(dòng)的理論與實(shí)驗(yàn)研究。針對(duì)平板拖動(dòng)Couette流動(dòng)(一板運(yùn)動(dòng)、一板靜止),學(xué)者們推導(dǎo)了不同運(yùn)動(dòng)邊界下的流場(chǎng)解析解。如Erdo?an等[1-4]求解了恒速邊界下的瞬態(tài)流場(chǎng),Papanastasiou等[5]求解了振蕩速度u(t)=u0cos(ωt)邊界下的瞬態(tài)流場(chǎng)。針對(duì)旋轉(zhuǎn)體系Couette流動(dòng),平行平板[6-8]、同軸圓筒體系[9]研究的邊界條件亦包括恒角速度邊界、振蕩速度邊界等[10]。Parter等[11]和Rajagopal[12]進(jìn)一步在平行平板體系下考慮了黏性不可壓縮流體以相同角速度繞不同軸旋轉(zhuǎn)的不對(duì)稱流場(chǎng)分布,Lai等[13]和Daniel[14]依據(jù)其理論開展了數(shù)值驗(yàn)證。除此之外,為增加工程適用性,一些學(xué)者考慮了加載外力、摩損、壓降等外部因素對(duì)旋轉(zhuǎn)體系的瞬態(tài)流場(chǎng)影響。Seth等[15]在平板旋轉(zhuǎn)體系中加載橫向電磁場(chǎng),求解了黏性電導(dǎo)不可壓縮流體的非穩(wěn)態(tài)流動(dòng);Daniel[14]和Sheikholeslami等[16]則分別對(duì)平行平板中上板具有摩擦損耗的恒速度邊界進(jìn)行了解析與數(shù)值求解;Danish等[17]考慮恒蒸發(fā)損耗率和恒壓降梯度,求解了受上板轉(zhuǎn)速U(t)驅(qū)動(dòng)的旋轉(zhuǎn)平板間瞬態(tài)流場(chǎng)。盡管Couette流動(dòng)的解析研究眾多,但針對(duì)旋轉(zhuǎn)流變儀邊界、幾何規(guī)格、測(cè)試結(jié)果建立流動(dòng)參數(shù)與“瞬態(tài)黏度值”的研究尚不多見。
事實(shí)上,理論分析的模型均為無限大平板或無限長(zhǎng)同軸圓筒,無限大空間尺寸導(dǎo)致流場(chǎng)最終達(dá)到均一而非穩(wěn)態(tài)。Varsakelis等[18]采用Chebyshev多項(xiàng)式法求解并分析特征問題,通過線性穩(wěn)定性分析研究單向非穩(wěn)態(tài)Couette流動(dòng)的穩(wěn)定性,證明了流動(dòng)始終非穩(wěn)態(tài),但由于流場(chǎng)變化的增長(zhǎng)率很小而導(dǎo)致辨別非穩(wěn)態(tài)十分困難。盡管如此,數(shù)值計(jì)算在一定的精度范圍內(nèi)仍可視其為穩(wěn)態(tài)值。
除了流變儀測(cè)量間隙內(nèi)流場(chǎng)本身的非穩(wěn)態(tài)外,流變儀啟動(dòng)過程中轉(zhuǎn)子系統(tǒng)的啟動(dòng)加速、機(jī)械慣性和反饋調(diào)節(jié)也會(huì)導(dǎo)致流場(chǎng)邊界條件動(dòng)態(tài)變化。Ravey等[19-21]指出,慣性空氣軸承式黏度計(jì)的剪速或扭矩均非直接加載于轉(zhuǎn)子,在電磁場(chǎng)一定時(shí)轉(zhuǎn)子有效扭矩取決于轉(zhuǎn)子瞬時(shí)角速度,轉(zhuǎn)子需經(jīng)歷靜止到設(shè)定值的加速過程,并不能瞬間達(dá)到預(yù)設(shè)值。Gleissle[22]在研究?jī)x器非穩(wěn)態(tài)機(jī)械特征時(shí)也指出,在控制剪速條件下測(cè)試黏彈性流體黏度時(shí),若忽略剪切速率加速至預(yù)設(shè)值的階段將導(dǎo)致黏度計(jì)算結(jié)果出現(xiàn)明顯錯(cuò)誤,其測(cè)試高分子硅油的表觀黏度與穩(wěn)態(tài)黏度關(guān)系得到了Hua[23]和Borg等[24]的認(rèn)可??梢姡斜匾獙?duì)旋轉(zhuǎn)流變儀內(nèi)初始瞬態(tài)過程做進(jìn)一步研究。
因此,考慮已有研究的邊界條件與旋轉(zhuǎn)流變儀實(shí)際邊界條件的差距,本研究假設(shè)控制應(yīng)力及控制剪速邊界條件為任意f(t),將同軸圓筒流變儀測(cè)量間隙內(nèi)的瞬態(tài)流動(dòng)簡(jiǎn)化為無限大平行平板間的Couette流動(dòng),忽略重力作用,進(jìn)行理論模型解析求解。同時(shí),采用兩種間隙尺寸和不同運(yùn)動(dòng)黏度對(duì)不同邊界條件下的初始表觀黏度進(jìn)行數(shù)值計(jì)算。
旋轉(zhuǎn)流變儀同軸圓筒測(cè)量系統(tǒng)的測(cè)量間隙相對(duì)于轉(zhuǎn)子長(zhǎng)度非常?。ū戎导s1%),若忽略轉(zhuǎn)子端部效應(yīng),則間隙內(nèi)的流動(dòng)可簡(jiǎn)化為兩無限長(zhǎng)同軸圓筒間的流動(dòng)。測(cè)量間隙的邊界包括動(dòng)邊界與靜邊界,動(dòng)邊界在初始過程由靜止逐步達(dá)到穩(wěn)定,流場(chǎng)也由靜止逐步發(fā)展并趨于穩(wěn)定。根據(jù)同軸圓筒內(nèi)流場(chǎng)的軸對(duì)稱性,進(jìn)一步將模型簡(jiǎn)化為流場(chǎng)沿徑向變化的一維瞬態(tài)模型,即兩無限大平板間的Couette流動(dòng),如圖1(a)和圖1(b)所示?;?jiǎn)平板間牛頓流體的NS方程,可得控制方程為
旋轉(zhuǎn)流變儀可實(shí)現(xiàn)控制應(yīng)力加載或控制剪速加載,常用加載方式為恒應(yīng)力或恒剪速加載。根據(jù)流變儀廠家空載試驗(yàn)的經(jīng)驗(yàn)值,采用恒應(yīng)力加載模式時(shí)轉(zhuǎn)子達(dá)到設(shè)定應(yīng)力需5~10 ms,采用恒剪速加載模式時(shí)轉(zhuǎn)子達(dá)到設(shè)定剪速需30~50 ms。由于與機(jī)械響應(yīng)有關(guān),施加的應(yīng)力或剪速隨時(shí)間動(dòng)態(tài)變化并趨于穩(wěn)定,因而將邊界條件設(shè)為與時(shí)間有關(guān)的動(dòng)邊界條件。
1.1控制應(yīng)力邊界加載
邊界條件:移動(dòng)邊界處σ(0,t)= μ (?u/?x)|x=0,其剪切速率隨時(shí)間變化,(?u/?x)|x=0=f(t);固定邊界處速度始終為0,u(d,t)=0。
初始條件:平板間隙內(nèi)流體初始速度全部為0,u(x,t)=0(0≤x≤d)。該問題數(shù)學(xué)描述為
求解式(2)問題時(shí),通過構(gòu)造輔助函數(shù)將具有非齊次邊界條件的齊次方程轉(zhuǎn)化為具有齊次邊界的非齊次泛定方程。u(x,t)=v(x,t)+w(x,t)為輔助函數(shù),w(x,t)=f(t)(x-d),采用特征函數(shù)法及Laplace變換求解可得速度分布,如式(3)所示
其中
圖1 實(shí)際及模型簡(jiǎn)圖、邊界函數(shù)形式Fig .1 Actual and simplified models and different boundary conditions
上述u(x,t)表達(dá)式中包含邊界剪速函數(shù)的導(dǎo)數(shù)f′(t)。若f(t)在整個(gè)初始過程內(nèi)連續(xù)可導(dǎo),則上述公式適用;若f(t)在初始過程存在不可導(dǎo)點(diǎn),如f(t)在轉(zhuǎn)子自平衡時(shí)間t0內(nèi)由0線性增加到設(shè)定值,此后保持設(shè)定值不變,t0為不可導(dǎo)點(diǎn)[如圖1(c)中邊界(Ⅲ)和(Ⅵ)],則仍需進(jìn)一步推導(dǎo)。
取t0為新的時(shí)間起點(diǎn),計(jì)算t>t0的速度分布。x=0處邊界條件為(?u/?x)|x=0=σ0/μ,初始條件為u(x,0)= u(x,t0)。同樣運(yùn)用邊界條件齊次化和固有函數(shù)法,可得t>0(t0為時(shí)間起點(diǎn))速度分布。利用t=t-t0統(tǒng)一時(shí)間起點(diǎn),得整個(gè)初始過程的速度分布,如式(4)所示
其中
式中,f′(t-ζ)始終指t≤t0時(shí)的導(dǎo)數(shù)。
測(cè)試黏度為
故理論相對(duì)黏度系數(shù)為
1.2控制剪速邊界加載
流變儀控制剪速加載通過控制轉(zhuǎn)速實(shí)現(xiàn),σ ∝n。初始啟動(dòng)過程中,轉(zhuǎn)速n由0逐漸增長(zhǎng)至設(shè)定值n0,故u(0,t)=2πrn=f(t)。設(shè)t0為轉(zhuǎn)子自平衡時(shí)間,即達(dá)到設(shè)定剪速值的時(shí)間,當(dāng)t>t0時(shí)u(0,t)=u0。
邊界條件:移動(dòng)邊界處u(0,t)=f(t);固定邊界處速度始終為0,u(d,t)=0。
初始條件:平板間隙內(nèi)流體初始速度全部為0,u(0,t)=0 (0≤x≤d)。
該問題的數(shù)學(xué)描述為
假設(shè)內(nèi)邊界上f(t)在t0處存在不可導(dǎo)點(diǎn),采用如同1.1節(jié)的處理可得該加載方式下的速度分布,如式(8)所示。
其中
理論黏度為
1.36種邊界條件下相對(duì)黏度系數(shù)
根據(jù)控制應(yīng)力和控制剪速在任意邊界條件f(t)下的Couette解析解推導(dǎo)了6種特殊邊界函數(shù)f(t)下的相對(duì)黏度系數(shù)?。控制應(yīng)力下的3種邊界:(Ⅰ)恒應(yīng)力;(Ⅱ)應(yīng)力由0線性增加;(Ⅲ)應(yīng)力由0線性增加至設(shè)定值后保持恒定。控制剪速下的3種邊界:(Ⅳ)恒速度;(Ⅴ)速度由0線性增加;(Ⅵ)速度由0線性增加至設(shè)定值后保持恒定。
邊界函數(shù)的形式如圖1(c)所示。6種邊界下的相對(duì)黏度系數(shù)見表1。?趨近于1,表明瞬態(tài)過程逐步趨于穩(wěn)態(tài),表觀黏度μf越接近牛頓流體的真實(shí)黏度μ。
表1 R6種邊界條件下的相對(duì)黏度系數(shù)?Table 1 Relative viscosity coefficient ? under six kinds of boundary conditions
根據(jù)(Ⅰ)~(Ⅵ)邊界條件下相對(duì)黏度系數(shù)的解析解編制Matlab程序,對(duì)初始瞬態(tài)過程進(jìn)行數(shù)值計(jì)算??臻g尺度采用d=0.712 mm和d=1.136 mm兩種規(guī)格;時(shí)間尺度取0~T;牛頓流體運(yùn)動(dòng)黏度選取2~200000 mm2·s-1。在計(jì)算域(0~d,0~T)內(nèi)設(shè)置時(shí)空節(jié)點(diǎn)完成區(qū)域離散。
2.1轉(zhuǎn)子自平衡時(shí)間處的“流場(chǎng)趨勢(shì)變化”
圖2 6種邊界條件下?隨t的變化Fig. 2 Variation of ? with t under six boundary conditions υ=1000 mm2·s-1,d= 0.712 mm
為了分析不同邊界條件下的瞬態(tài)黏度變化,分別模擬了6種邊界條件下(d= 0.712 mm,υ = 1000 mm2·s-1)的?=μf/μ隨時(shí)間的變化(圖2)和邊界條件(Ⅲ)下測(cè)試不同黏度標(biāo)準(zhǔn)黏度液的?τic隨時(shí)間的變化(圖3)。當(dāng)邊界條件為(Ⅲ)時(shí),參考MCR 102達(dá)到設(shè)定應(yīng)力的實(shí)際時(shí)間為5~10 ms,取t0=10 ms;當(dāng)邊界條件為(Ⅵ)時(shí),參考MCR 102達(dá)到設(shè)定剪速的實(shí)際時(shí)間為30~50 ms,取t0=50 ms。
圖3 不同運(yùn)動(dòng)黏度下?τic隨t的變化Fig.3 Variation of ?τicwith t under six boundary conditions υ=2—20000 mm2·s-1,d=0.712 mm,Ⅲ
2.2介質(zhì)真實(shí)黏度、加載邊界、測(cè)量間隙對(duì)瞬態(tài)平
衡時(shí)間的影響
采用運(yùn)動(dòng)黏度υ =2~200000 mm2·s-1和兩種間隙尺寸計(jì)算(Ⅰ)~(Ⅵ)6種邊界條件下的相對(duì)黏度平衡時(shí)間,如圖4所示。相對(duì)黏度系數(shù)的平衡時(shí)間檢出時(shí),認(rèn)為|? (t)-1|<0.1%時(shí)流場(chǎng)達(dá)到穩(wěn)態(tài),取td=t。
由圖4可知,運(yùn)動(dòng)黏度增大時(shí)不同加載邊界及測(cè)量間隙下的黏度平衡時(shí)間迅速減小,這是因?yàn)轲ざ却蟮牧黧w層間內(nèi)摩擦力增大,動(dòng)邊界的剪切傳遞效果得到強(qiáng)化,故而黏度平衡時(shí)間短。另外,不同測(cè)量間隙內(nèi)流場(chǎng)的平衡時(shí)間不同,測(cè)量間隙越小,平衡時(shí)間越短,表觀黏度將更快地接近真實(shí)值,這是因?yàn)榧羟袀鬟f速度相同時(shí)測(cè)量間隙小的系統(tǒng)內(nèi)的黏度平衡更快。在6種加載邊界中,若計(jì)算時(shí)間足夠長(zhǎng),則(Ⅰ)、(Ⅲ)、(Ⅳ)、(Ⅵ)4種邊界下的表觀黏度可達(dá)到其真實(shí)值,而(Ⅱ)、(Ⅴ)邊界下的流場(chǎng)由于邊界加載隨時(shí)間線性增加,將始終不能達(dá)到真正的穩(wěn)態(tài),僅能達(dá)到流場(chǎng)均一化,? (t)將趨近于1并大于1。因此,在控制應(yīng)力邊界和控制剪速邊界中,分段邊界下的黏度平衡過程均體現(xiàn)為恒定邊界和線性增加邊界下平衡過程的過渡。
在控制應(yīng)力邊界條件下,當(dāng)υ>200 mm2·s-1時(shí),黏度平衡時(shí)間略滯后于轉(zhuǎn)子自平衡時(shí)間(10 ms);當(dāng)υ<100 mm2·s-1時(shí),流場(chǎng)平衡過程趨近于(Ⅰ)恒應(yīng)力或(Ⅳ)恒剪速邊界下的平衡過程;當(dāng)υ>5000 mm2·s-1時(shí),流場(chǎng)平衡過程趨近于(Ⅱ)應(yīng)力線性增加或(Ⅴ)速度線性增加邊界下的平衡過程。在控制剪速邊界條件下,當(dāng)υ>20 mm2·s-1時(shí),黏度平衡時(shí)間略滯后于轉(zhuǎn)子自平衡時(shí)間(50 ms);υ<20 mm2·s-1時(shí),流場(chǎng)平衡過程趨近于(Ⅰ)恒應(yīng)力或(Ⅳ)恒剪速邊界下的平衡過程;υ>1000 mm2·s-1時(shí),流場(chǎng)平衡過程趨近于(Ⅱ)應(yīng)力線性增加或(Ⅴ)速度線性增加邊界下的平衡過程。
圖4 6種邊界下不同運(yùn)動(dòng)黏度的牛頓流體平衡時(shí)間Fig. 4 Balance time of Newton fluid with different viscosity under six kinds of boundary conditions
圖5 不同邊界下不同運(yùn)動(dòng)黏度流體的平衡時(shí)間Fig. 5 Balance time of Newton fluid with different viscosity under different boundary conditions
兩種測(cè)量間隙內(nèi)6種邊界條件下的表觀黏度平衡如圖5所示。在同一測(cè)量系統(tǒng)間隙下比較不同的6種邊界條件下的相對(duì)黏度平衡時(shí)間,可知(Ⅱ)≈(Ⅴ)>(Ⅰ)>(Ⅳ)。當(dāng)υ處于20~20000 mm2·s-1范圍內(nèi)時(shí),6種邊界條件下表觀黏度平衡時(shí)間的關(guān)系為:(Ⅱ)≈(Ⅴ)>(Ⅵ)>(Ⅲ)>(Ⅰ)>(Ⅳ)。若測(cè)試介質(zhì)黏度在該范圍內(nèi),則控制應(yīng)力邊界下或控制剪速邊界下不同運(yùn)動(dòng)黏度流體的瞬態(tài)平衡時(shí)間相差不大,均略滯后于轉(zhuǎn)子自平衡時(shí)間(10 ms或50 ms),而且在該黏度范圍內(nèi)控制應(yīng)力邊界下流體的非穩(wěn)態(tài)平衡時(shí)間更短。若υ<20 mm2·s-1,采用控制剪速邊界的平衡時(shí)間更短;若υ>20000 mm2·s-1,則兩類邊界下的平衡時(shí)間相近??梢?,表觀黏度平衡時(shí)間除了取決于啟動(dòng)本身非穩(wěn)態(tài)過程外,邊界條件形式將大大影響整個(gè)非穩(wěn)態(tài)階段的平衡時(shí)間,即轉(zhuǎn)子反饋調(diào)節(jié)達(dá)到設(shè)定應(yīng)力或設(shè)定剪速的自平衡時(shí)間越長(zhǎng),啟動(dòng)初始的平衡時(shí)間越長(zhǎng)。
(1)旋轉(zhuǎn)流變儀在測(cè)試標(biāo)準(zhǔn)黏度液黏度時(shí),初始階段黏度測(cè)試值遠(yuǎn)高于其真實(shí)值。類推至與剪切歷史密切相關(guān)的非牛頓流體,該段非穩(wěn)態(tài)剪切所采集的數(shù)據(jù)將不能準(zhǔn)確描述其流變性。
(2)旋轉(zhuǎn)Couette流動(dòng)的現(xiàn)有理論研究在邊界條件上與流變儀測(cè)量間隙的實(shí)際邊界存在差距。本研究將同軸圓筒流變儀測(cè)量間隙內(nèi)的流動(dòng)簡(jiǎn)化為由靜止邊界和運(yùn)動(dòng)邊界組成的平板Couette流動(dòng),以牛頓流體為例求解了加載任意應(yīng)力邊界或剪速邊界下的流場(chǎng)及表觀黏度解析解,適用于邊界函數(shù)不超過1個(gè)不可導(dǎo)點(diǎn)的任意情況,并求解了控制應(yīng)力邊界及控制剪速邊界的6種邊界條件下表觀黏度解析解。
(3)本研究將兩種間隙尺寸和運(yùn)動(dòng)黏度2~200000 mm2·s-1代入6種加載邊界的解析解進(jìn)行數(shù)值計(jì)算。計(jì)算結(jié)果表明:(Ⅲ)、(Ⅵ)平衡過程均體現(xiàn)為恒定值邊界向線性增加邊界的過渡,并在轉(zhuǎn)子自平衡時(shí)間t0處存在“流場(chǎng)變化趨勢(shì)”轉(zhuǎn)變;測(cè)量間隙越大,表觀黏度達(dá)到真實(shí)值的平衡時(shí)間越大;不同黏度的牛頓流體瞬態(tài)平衡時(shí)間不同,黏度越大剪切傳遞作用越強(qiáng),越接近線性邊界的平衡過程,黏度越小則越接近恒值邊界的平衡過程。運(yùn)動(dòng)黏度υ<20 mm2·s-1時(shí),控制剪速邊界下的瞬態(tài)平衡更快;運(yùn)動(dòng)黏度υ處于20~20000 mm2·s-1時(shí),控制應(yīng)力邊界下的瞬態(tài)平衡更快,平衡時(shí)間略滯后于轉(zhuǎn)子自平衡時(shí)間(10 ms);運(yùn)動(dòng)黏度υ>20000 mm2·s-1時(shí),兩類邊界條件下的平衡時(shí)間相差不大。轉(zhuǎn)子自平衡時(shí)間t0反映了流變儀機(jī)械響應(yīng)的速度,是除啟動(dòng)流場(chǎng)非穩(wěn)態(tài)外又一影響非穩(wěn)態(tài)過程的重要因素。
(4)旋轉(zhuǎn)流變儀測(cè)試系統(tǒng)復(fù)雜,可結(jié)合轉(zhuǎn)子端部效應(yīng)、測(cè)量夾具轉(zhuǎn)動(dòng)慣量等影響邊界條件的機(jī)械因素對(duì)初始非穩(wěn)態(tài)過程做進(jìn)一步探討。
符號(hào)說明
d,x——兩無限大平板間距、與運(yùn)動(dòng)板距離,m
f(t) ——運(yùn)動(dòng)邊界函數(shù)
M,M0——與時(shí)間有關(guān)的扭矩、設(shè)定扭矩值,N·m
n,n0——與時(shí)間有關(guān)的轉(zhuǎn)速、設(shè)定轉(zhuǎn)速值,r·min-1
t,t0——瞬態(tài)時(shí)間、轉(zhuǎn)子自平衡時(shí)間,s
u(x,t) ——位置x時(shí)間t時(shí)的速度,m·s-1
βn——特征值,m
γ. ——剪速,s-1
ζ ——積分參量
μ,μf——牛頓流體黏度、瞬態(tài)表觀黏度,Pa·s
σ ——應(yīng)力,Pa
υ ——運(yùn)動(dòng)黏度,m2·s-1
? ——相對(duì)黏度系數(shù)
References
[1] ERDO?AN M E. On the flows produced by sudden application of a constant pressure gradient or by impulsive motion of a boundary [J]. International Journal of Non-Linear Mechanics, 2003, 38(5):781-797. DOI: 10.1016/S0020-7462(01)00133-0.
[2] TING T W. Certain non-steady flows of second-order fluids [J]. Archive for Rational Mechanics and Analysis, 1963, 14(1): 1-26. DOI:10.1007/BF00250690.
[3] TAN W C, PAN W X, XU M Y. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates [J]. International Journal of Non-Linear Mechanics,2003, 38(5): 645-650. DOI: 10.1016/S0020- 7462(01)00121-4.
[4] 潘文瀟, 譚文長(zhǎng). 廣義 Maxwell 黏彈性流體在兩平板間的非定常流動(dòng)[J]. 力學(xué)與實(shí)踐, 2003, 25(1): 19-22. DOI: 10.3969/j.issn. 1000-0879.2003.01.006. PAN W X, TAN W C. An unsteady flow of a viscoelastic fluid with the fractional Maxwell model between two parallel plates [J]. Mechanics in Engineering, 2003, 25(1): 19-22. DOI: 10.3969/j.issn. 1000-0879.2003.01.006.
[5] PAPANASTASIOU T C, GEORGIOU G C, ALEXANDROU A N. Viscous Fluid Flow [M]. Washington, D.C.: CRC Press, 1999: 209.
[6] BOSE D, BASU U. Incompressible viscoelastic flow of a generalised Oldroyed-B fluid through porous medium between two infinite parallel plates in a rotating system [J]. International Journal of Computer Applications, 2013, 79(1): 13-20. DOI: http://dx.doi.org/10. 5120/13704-1452.
[7] 郭霄怡, 徐明瑜. 廣義 Oldroyd-B 流體的非定常 Couette 流的精確解[J]. 山東大學(xué)學(xué)報(bào)(理學(xué)版), 2009, 44(10): 60-63. GUO X Y, XU M Y. An exact solution of unsteady Couette flow of generalized Oldroyd-B fluid [J]. Journal of Shandong University(Natural Science), 2009, 44(10): 60-63.
[8] HAYAT T, SAJID M, AYUB M. A note on series solution for generalized Couette flow [J]. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(8): 1481-1487. DOI:10.1016/j.cnsns.2006.02.009.
[9] ATHAR M, FETECAU C, KAMRAN M, et al. Exact solutions for unsteady axial Couette flow of a fractional Maxwell fluid due to an accelerated shear [J]. Nonlinear Analysis: Modelling and Control,2011, 16(2): 135-151.
[10] BERNARDIN D, NOUAR C. Transient Couette flows of Oldroyd's fluids under imposed torques [J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 77(3): 201-231. DOI: 10.1016/S0377-0257(97)00130-4.
[11] PARTER S V, RAJAGOPAL K R. Remarks on the flow between two parallel rotating plates [R]. Madison: Mathematics Research Center,Wisconsin Univ., 1984.
[12] RAJAGOPAL K R. Flow of viscoelastic fluids between rotating disks[J]. Theoretical and Computational Fluid Dynamics, 1992, 3(4):185-206. DOI: 10.1007/BF00417912.
[13] LAI C Y, RAJAGOPAL K R, SZERI A Z. Asymmetric flow between parallel rotating disks [J]. Journal of Fluid Mechanics, 1984, 146:203-225. DOI: http://dx.doi.org/10.1017/S0022112084001828.
[14] DANIEL K S. Unsteady Couette flow with transpiration in a rotating system [J]. Global Journal of Science Frontier Research, 2013, 13(5):14-26.
[15] SETH G S, JANA R N, MAITI M K. Unsteady hydromagnetic Couette flow in a rotating system [J]. International Journal of Engineering Science, 1982, 20(9): 989-999. DOI: 10.1016/0020-7225(82)90034-9.
[16] SHEIKHOLESLAMI M, ABELMAN S, GANJI D D. Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation [J]. International Journal of Heat and Mass Transfer, 2014, 79: 212-222. DOI: 10.1016/j.ij heatmasstransfer. 2014.08.004.
[17] DANISH M, KUMAR S, KUMAR S. Exact analytical solutions for the Poiseuille and Couette-Poiseuille flow of third grade fluid between parallel plates[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(3): 1089-1097. DOI: 10.1016/j.cnsns. 2011.07.037.
[18] VARSAKELIS C, PAPALEXANDRIS M. Linear stability analysis of unidirectional Couette flows of inhomogeneous fluid-like bodies [J]. Proceedings of the Royal Society of London, Series A Mathematical and Physical Sciences, 2014.
[19] RAVEY J C, DOGNON M, LUCIUS M. Transient rheology in a new type of Couette apparatus [J]. Rheologica Acta, 1980, 19(1): 51-59. DOI: 10.1007/BF01523854.
[20] RAVEY J C, IKEMOTO S, STOLTZ J F. Transient rheology in a new type of couette apparatus. Application to blood [J]. Rheologica Acta,1989, 28(5): 423-434. DOI: 10.1007/BF01336810.
[21] BARAVIAN C, QUEMADA D. Correction of instrumental inertia effects in controlled stress rheometry[J]. The European Physical Journal Applied Physics, 1998, 2(2): 189-195. DOI:http://dx.doi.org/10. 1051/epjap:1998183.
[22] GLEISSLE W. Two simple time-shear rate relations combining viscosity and first normal stress coefficient in the linear and non-linear flow range [J]. Rheology, 1980, 2: 457-462. DOI:10.1007/978-1-4684-3743-0_85.
[23] HUA C C. Investigations on several empirical rules for entangled polymers based on a self-consistent full-chain reptation theory [J]. J. Chem. Phys., 2000, 112(18): 8176-8186. DOI: http://dx.doi.org/ 10.1063/1.481418.
[24] BORG T, PAAKKONEN E J. Linear viscoelastic models(Part Ⅱ):Recovery of the molecular weight distribution using viscosity data [J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 156(1): 129-138. DOI: 10.1016/j.jnnfm.2008.07.010.
Analytical and numerical studies on apparent viscosity in coaxial cylinder rotational rheometer during initial unsteady stage
XU Ruiyu, LIU Gang, CHEN Lei, TENG Houxing, LU Xingguo, XU Jikai
(College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China)
During the initial testing stage with controlled stress or controlled shear rate, apparent viscosity is much higher than its true value because of factors such as transient flow process. Most existing researches about Couette flow in the measuring gap of coaxial cylinder rotational rheometer focus on constant boundary or time-dependent boundary in special form, which may has a gap with the actual changing boundary condition within rheometer. Thus, the arbitrary moving boundary condition was taken as f(t), and the transient flow was simplified in coaxial cylinder for Couette flow into two infinite parallel plates. The exact solutions of apparent viscosity and velocity under controlled stress boundary and controlled shear rate boundary were derived through eigenfunction method and Laplace transform. Meanwhile, the numerical calculations of apparent viscosity under six boundary conditions were made according to two kinds of gap size and different viscosity (2—200000 mm2·s-1). It showed that when the viscosity of newton fluid was below 20 mm2·s-1, the equilibrium of flow and apparent viscosity under controlled shear rate boundary cost less time. When the viscosity was among 20—20000 mm2·s-1, the equilibrium under controlled stress boundary cost less time. However, the equilibrium time under two kinds of boundary was nearly the same when the viscosity was over 20000 mm2·s-1.
date: 2015-06-09.
Prof. LIU Gang, liugang@upc.edu.cn
supported by the Innovation Youth Foundation Project in China University of Petroleum (East China) (14CX02107A).
viscosity;hydrodynamics;numerical analysis;coaxial cylinder rotational rheometer;Couette;moving boundary condition;eigenfunction method
O 357.1; TE 81
A
0438—1157(2016)05—1784—07
2015-06-09收到初稿,2015-10-05收到修改稿。
聯(lián)系人:劉剛。第一作者:徐睿妤(1990—),女,碩士研究生。
中國石油大學(xué)(華東)自主創(chuàng)新青年基金項(xiàng)目(14CX02107A)。