胡振琪,付艷華,肖 武,趙云肖,余 洋
(中國礦業(yè)大學(xué)(北京)土地復(fù)墾與生態(tài)重建研究所,北京 100083)
基于文獻(xiàn)計量分析的美國采礦與復(fù)墾學(xué)會(1984—2014年)發(fā)展歷程與研究綜述
胡振琪,付艷華,肖 武,趙云肖,余 洋
(中國礦業(yè)大學(xué)(北京)土地復(fù)墾與生態(tài)重建研究所,北京 100083)
研究目的:通過對美國采礦與復(fù)墾學(xué)會31次年會論文集的統(tǒng)計分析,以求解析國際土地復(fù)墾領(lǐng)域的重點(diǎn)問題及發(fā)展趨勢。研究方法:采用VOSviewer可視化文獻(xiàn)分析軟件,劃分三個時間段對會議文獻(xiàn)的關(guān)鍵詞進(jìn)行統(tǒng)計和聚類分析。研究結(jié)果:根據(jù)聚類分析結(jié)果將關(guān)鍵詞劃分為“復(fù)墾評價、規(guī)劃與管理”、“酸性礦井水”和“土壤與植被”三個聚類,在三個時間段中,各聚類的關(guān)鍵詞在穩(wěn)定中有變化,數(shù)量逐漸增多。研究結(jié)論:土地復(fù)墾的研究對象更加豐富,復(fù)墾的內(nèi)涵與外延在不斷擴(kuò)展,研究進(jìn)一步細(xì)化。新理念、新技術(shù)、新材料不斷涌現(xiàn),生態(tài)問題成為研究的重點(diǎn),也是未來研究的趨勢。關(guān)鍵詞:土地復(fù)墾;復(fù)墾規(guī)劃;綜述;美國采礦與復(fù)墾學(xué)會;酸性礦井水;土壤;植被
美國采礦與復(fù)墾學(xué)會(American Society of Mining and Reclamation,ASMR)始建于1984年,會員來自20多個國家,通過舉辦研討會、出版論文集、雜志和網(wǎng)站等,促進(jìn)土地復(fù)墾基礎(chǔ)理論和應(yīng)用技術(shù)的發(fā)展,為全球礦物開采和復(fù)墾領(lǐng)域的專家學(xué)者、技術(shù)人員、企業(yè)、政府等提供了交流平臺,在國際土地復(fù)墾領(lǐng)域做出了突出貢獻(xiàn)。學(xué)會共7個分部:生態(tài)學(xué)、林業(yè)和野生動植物、巖土工程、尾礦、土地利用規(guī)劃設(shè)計、土壤以及水管理[1]。本文簡單介紹了該學(xué)會的發(fā)展歷程,運(yùn)用可視化文獻(xiàn)分析軟件VOSviewer,以ASMR年會收錄文獻(xiàn)為數(shù)據(jù)庫,分析土地復(fù)墾研究發(fā)展的重點(diǎn)問題,展望未來土地復(fù)墾研究的發(fā)展趨勢和重點(diǎn)關(guān)注的方向。
ASMR的前身是1968年組建的“西弗吉尼亞露天開采研究指導(dǎo)委員會”(Steering Committee for surface Mine Research in West Virginia)。發(fā)起單位包括:西弗吉尼亞自然資源局復(fù)墾處、西弗吉尼亞露天開采與復(fù)墾學(xué)會、美國林務(wù)局、土壤保護(hù)局和西弗吉尼亞大學(xué),每兩年組織一次研討會,交流研究成果,討論共同面臨的問題并尋找合作項(xiàng)目。指導(dǎo)委員會的成功,促成了1973年5月16日“阿帕拉契亞地區(qū)露天采礦與復(fù)墾委員會”(Council for Surface Mining and Reclamation in Appalachia)的成立。隨著委員會得到越來越廣泛的支持,1978年更名為“美國復(fù)墾研究委員會”(American Council for Reclamation Research),1982年再次更名為“美國露天采礦與復(fù)墾學(xué)會”(American Society for Surface Mining & Reclamation, ASSMR),2001年更名為“美國采礦與復(fù)墾學(xué)會”(American Society of Mining and Reclamation, ASMR)并沿用至今[2]。
ASMR第一次年會于1984年在肯塔基州的歐文斯伯勒召開,截至2015年共舉辦了31次。年會為全球土地復(fù)墾領(lǐng)域的研究者提供了一個良好的交流平臺,其收錄文獻(xiàn)可代表全球復(fù)墾領(lǐng)域最新的研究成果,與期刊文獻(xiàn)相比更具有時效性。
將年會文獻(xiàn)按三個時間段(1984—1993年,1994—2003年,2004—2014年)劃分,用VOSviewer軟件分別進(jìn)行聚類分析,分析文獻(xiàn)關(guān)鍵詞的重要性和相關(guān)性并以圖形表達(dá),參數(shù)設(shè)置見表1。由于缺乏早期文獻(xiàn)的信息,僅將文獻(xiàn)題目輸入文本文檔,分析研究熱點(diǎn)的變化。如能分析文獻(xiàn)摘要或全文,結(jié)果更加準(zhǔn)確。按照詞頻和相關(guān)度篩選顯示詞語,并用Thesaurus文件將不同表達(dá)方式的同義詞用統(tǒng)一方式表達(dá),如Coalbed Natural Gas, Coalbed Methane和CBNG,Minesoil和Mine Soil等。去除結(jié)果中的地名如Australia,Appalacia,時間如Year,Month,單位如Meters,Mg及其他詞匯如Many,Results。
選用標(biāo)簽圖(Label View)顯示分析結(jié)果,各時間段的分析結(jié)果見圖1—圖3(封三)。由圖可知,每個時間的分析結(jié)果都將關(guān)鍵詞分三個聚類,分別為紅色顯示的“復(fù)墾評價、規(guī)劃與管理(Evaluation, Planning and Management)”、藍(lán)色顯示的“酸性礦井水(Acid Mine Drainage)”以及綠色顯示的“土壤(Soil)和植被(Vegetation)”。圖中,關(guān)鍵詞的字體和圖斑越大說明出現(xiàn)頻率越高,關(guān)鍵詞間的距離越近說明其相關(guān)性越強(qiáng)。
表1 VOSviewer設(shè)置參數(shù)Tab.1 VOSviewer parameters
近10年的文獻(xiàn)更具有參考價值且電子資源充足,所以將2004—2014年文獻(xiàn)的題目、摘要和關(guān)鍵詞作為數(shù)據(jù)庫進(jìn)行分析,參數(shù)設(shè)置見表1,分析結(jié)果見圖4(封三)。
3.1復(fù)墾評價、規(guī)劃與管理
3.1.1監(jiān)測與評價 礦區(qū)從開采到復(fù)墾后的持續(xù)監(jiān)測與有效評價是復(fù)墾工作的重要依據(jù),為復(fù)墾規(guī)劃和管理工作提供支撐。監(jiān)測方面的研究重點(diǎn)是數(shù)據(jù)采集與分析技術(shù),評價方面的研究可分為開采對環(huán)境的影響評價,復(fù)墾效果及經(jīng)濟(jì)效益的評價。
監(jiān)測技術(shù)方面,信息技術(shù)和電子設(shè)備的發(fā)展推動了監(jiān)測技術(shù)的進(jìn)步。將遙感影像[3]、無人機(jī)[4]等應(yīng)用到監(jiān)測中,實(shí)現(xiàn)了大面積實(shí)時動態(tài)監(jiān)測,降低了成本與風(fēng)險。野外數(shù)據(jù)采集與計算機(jī)數(shù)據(jù)處理、網(wǎng)絡(luò)共享一體化技術(shù)的成熟,提高了數(shù)據(jù)的準(zhǔn)確性、完整性和安全性[5]。
評價對象主要包括水環(huán)境、土壤、植被和野生動物,其中水環(huán)境是研究重點(diǎn)。水環(huán)境的評價涉及水污染,區(qū)域水平衡以及水生物的影響。Moehle提出了臨界污染水源的測定與評價方法[6],Schmidt認(rèn)為區(qū)域水平衡不僅是數(shù)量的平衡[7],水質(zhì)的監(jiān)測對酸性水治理有關(guān)鍵作用,David探討了用水生物評價ARD對河流生態(tài)系統(tǒng)影響的方法,評價結(jié)果反映水中重金屬的變化規(guī)律[8]。土壤評價方面,農(nóng)化性質(zhì)的持續(xù)監(jiān)測和評價是重點(diǎn),此外,David提出土方平衡應(yīng)注重質(zhì)量評價,而不僅僅是數(shù)量平衡[9]。植被評價方面,包括開采前礦區(qū)的植被調(diào)查與評價,持續(xù)的植被生長記錄以及復(fù)墾效果評價,Pokorny等對現(xiàn)有的植被評價體系進(jìn)行了對比分析,探討了RipES方法的應(yīng)用[10]?!渡锒鄻有员Wo(hù)法案》的頒布促使開采及復(fù)墾活動對野生動物及其棲息地影響評價的研究增多,并于2013年會設(shè)立了專題論壇。
評價的成果與結(jié)果直接為復(fù)墾管理服務(wù)。美國發(fā)布了一些標(biāo)準(zhǔn)評價方法,如美國環(huán)境保護(hù)署水質(zhì)規(guī)范中的生物配體模型[11]和針對已有標(biāo)準(zhǔn)制定的快速評估法[12]。評價結(jié)果可作為復(fù)墾管理的依據(jù),如《露天采礦管理與復(fù)墾法》規(guī)定作物產(chǎn)量為基本農(nóng)田復(fù)墾標(biāo)準(zhǔn),但土壤生產(chǎn)力的恢復(fù)有滯后性,而土壤質(zhì)量評價結(jié)果可及時反映復(fù)墾效果并作為檢驗(yàn)依據(jù)[13]。
3.1.2規(guī)劃與設(shè)計 規(guī)劃與設(shè)計相關(guān)研究中倍受關(guān)注的是仿自然地貌生態(tài)修復(fù)法和邊采邊復(fù)的方法。前者是借助3S和計算機(jī)模擬技術(shù),仿照自然河流的形態(tài),綜合考慮自然條件、土地利用和社會需要,設(shè)計穩(wěn)定的、可自持的河流生態(tài)系統(tǒng)。該方法可提高生態(tài)系統(tǒng)的穩(wěn)定性,景觀的可觀賞性,并降低維護(hù)成本,但其推廣還需要更多政策和成本控制研究[14]。常用的方法有GeoFluvTM、Trihydro、Rosgen等。目前,研究熱點(diǎn)集中在土方平衡、巖石結(jié)構(gòu)設(shè)計、水文模型、地形設(shè)計和邊坡穩(wěn)定評價等軟件的綜合利用、方法比選與改良以及新設(shè)備和技術(shù)的應(yīng)用[15-16]等方面。
高潛水位地區(qū),井工開采造成大面積地表塌陷和積水,肥沃的土地沉入水中,土地復(fù)墾率低,且穩(wěn)沉前土地長時間荒蕪,增加復(fù)墾難度和時間。針對糧食生產(chǎn)和能源需求矛盾突出的特點(diǎn),胡振琪等提出了邊采邊復(fù)的方法,充分考慮地下開采與地面復(fù)墾措施的耦合,通過合理減輕土地?fù)p毀的開采措施和沉陷前或過程中復(fù)墾時機(jī)與方案的優(yōu)選提高復(fù)墾率[17]。
3.1.3政策與管理 研究主要集中在以下幾個方面:一是政策與標(biāo)準(zhǔn)效果的研究,包括各管理部門、地區(qū)[18- 19],各成因損毀土地,不同用途復(fù)墾土地(包括自然保護(hù)區(qū)等)的標(biāo)準(zhǔn),及其與科學(xué)研究和實(shí)踐之間的關(guān)系[20-22]。二是各復(fù)墾環(huán)節(jié)的標(biāo)準(zhǔn)研究,例如礦井水治理、復(fù)墾材料的篩選[23-24]等。三是風(fēng)險評估和管理[25]。四是技術(shù)推廣,發(fā)布技術(shù)手冊[26];發(fā)起復(fù)墾項(xiàng)目和倡議,發(fā)動各方力量,提高公眾意識,完善公眾參與[27- 28]。
3.2酸性礦井水
從圖1—圖4可以看出酸性礦井水一直是研究的重點(diǎn)。該聚類中,被動處理技術(shù)(Passive Treatment)是近10年發(fā)展最為迅速也是最重要的酸性礦井水處理技術(shù)[29],2014年年會舉辦了5場專題論壇。相關(guān)關(guān)鍵詞,如生物反應(yīng)器(Bioreactor)、人工垂直流池/濕地(Vertical Flow Wetland, VFW)等出現(xiàn)頻率較高。此外,酸性水的源頭控制和治理技術(shù)以及酸性礦井水與市政污水的聯(lián)合處理也成為學(xué)者們關(guān)注熱點(diǎn)[30-31]。一些機(jī)構(gòu)在酸性水處理的研究方面做出了突出貢獻(xiàn),例如,國際酸性防治網(wǎng)[32]及其資助下的酸性水治理技術(shù)行動[33]以及美國洲際技術(shù)管理委員會礦山廢棄物小組[34]等通過發(fā)布技術(shù)手冊,促進(jìn)了技術(shù)推廣與應(yīng)用。
3.2.1被動處理技術(shù) 自20世紀(jì)80年代,被動處理技術(shù)開始應(yīng)用于礦山酸性水治理[35],通過建立生態(tài)工程系統(tǒng),利用自然生態(tài)系統(tǒng)過程來吸附金屬、中和酸性,改善水質(zhì)[36]。被動處理系統(tǒng)(Passive Treatment System,PTS)穩(wěn)定且成本較低,得到了迅速推廣[37]。人工垂直流濕地是酸性水垂直流過各層有機(jī)和石灰介質(zhì)的生物反應(yīng)器,應(yīng)用廣泛[38]。培養(yǎng)基常采用當(dāng)?shù)氐母咝У统杀居袡C(jī)廢棄物[39-40],另外,Peltz等提出可在培養(yǎng)基中加入生物黑炭以加強(qiáng)其固碳作用[41]。
隨著首批PTS老化,自2010年,政府組織PTS支持項(xiàng)目,為系統(tǒng)維護(hù)提供支持,促進(jìn)了技術(shù)革新[42]。學(xué)者們嘗試改進(jìn)系統(tǒng)以提高材料的使用效率、延長系統(tǒng)的壽命[43-44]。效果評價和試驗(yàn)方法上,Oxenford從平面、垂直和時間維度監(jiān)測鐵元素的變化規(guī)律,為管理和維護(hù)提供依據(jù)[45]。生物多樣性評價[46]和過度處理對生態(tài)環(huán)境的負(fù)面影響也受到關(guān)注[47]。
3.2.2源頭控制與治理技術(shù) PTS占地面積大且易受季節(jié)影響,而源頭控制與治理可節(jié)省空間、控制污染源,主要是對礦區(qū)酸性廢石(Acid Mine Drainage,ARD)的治理。ARD的治理是通過播撒石灰以中和酸性,覆蓋低成本無毒的有機(jī)廢棄物建立厭氧環(huán)境防止硫化物氧化[48]。該領(lǐng)域涌現(xiàn)出一些新的技術(shù)手段,例如Gusek發(fā)明了一種可用管道輸送的泡沫狀細(xì)石灰粉pHoamTM[49]。
3.3土壤與植被
從圖4可以看出,近10年,在復(fù)墾土壤和植被的研究方面,除了復(fù)墾方法的研究之外,還出現(xiàn)了一些新的研究熱點(diǎn),例如提高復(fù)墾土壤與植被的固碳能力,恢復(fù)生態(tài)系統(tǒng)服務(wù)功能等。
3.3.1土壤重構(gòu) 近幾年,除了對復(fù)墾土壤重構(gòu)的剖面工程與培肥改良措施及其對土壤物理化學(xué)性質(zhì)影響的相關(guān)研究外,更加關(guān)注對土壤有機(jī)質(zhì)、土壤生物活性以及土壤碳庫的恢復(fù)。
土壤的剖面工程重構(gòu)方面,研究集中在不同工程措施、剖面結(jié)構(gòu)、材料和管理方式下對土壤和作物的影響[50-51]。土壤重構(gòu)技術(shù)方面,肯塔基大學(xué)發(fā)明的“土壤再造機(jī)”,可進(jìn)行高效的土壤重構(gòu),且能減少機(jī)械碾壓造成的土壤壓實(shí),提高農(nóng)作物產(chǎn)量[52]。土壤培肥改良方面,生物炭作為一種可以改良土壤物理化學(xué)性質(zhì)、提高生物活性、建立長效碳庫[53]的材料,關(guān)于其用法和用量的研究增多。尤其是在美國西部山區(qū),將森林火災(zāi)和病蟲害產(chǎn)生的生物炭作為改良劑,不僅可以改良土壤,還可以降低森林再次受災(zāi)的風(fēng)險,改善景觀生態(tài)系統(tǒng)[54]。
土壤改良對土壤生物活性的影響方面,在宏觀尺度上,F(xiàn)rouz和Wick按照美國自東向西的氣候梯度分別分析了廢棄礦區(qū)土壤生物恢復(fù)情況[55]和不同土壤類型復(fù)墾區(qū)域土壤有機(jī)質(zhì)動態(tài)變化的主要原因[56],微觀尺度上主要關(guān)注土壤改良劑和復(fù)墾方法對土壤生物及環(huán)境的影響[57]及以此為依據(jù)的土壤改良劑優(yōu)選[58]。
3.3.2植被恢復(fù) 復(fù)墾植被下土壤重構(gòu)方法、改良劑,以及配種和管理方式一直是研究重點(diǎn)[59-61]。阿巴拉契亞地區(qū)的再造林行動(Appalachian Regional Reforestation Initiative)自2005年開始推行林業(yè)的復(fù)墾方法(Forestry Reclamation Approach),實(shí)踐證明,該方法在改善土壤壓實(shí),防止水土流失,促進(jìn)林木生長方面有很好的作用,得到廣泛的應(yīng)用[62-63]。復(fù)墾物種選擇方面,Skousen等認(rèn)為柳枝稷、芒草和蘆竹等能源植物不僅經(jīng)濟(jì)價值高,環(huán)境適應(yīng)能力強(qiáng),還可以為諸多保護(hù)動物提供生境,在西弗吉尼亞地區(qū)得到廣泛應(yīng)用[64],而外來物種對本地物種的威脅和相應(yīng)控制措施的研究得到了重視[65]。在植被的管理方面,自然的恢復(fù)能力引起關(guān)注,一些研究結(jié)果表明,某些區(qū)域自然恢復(fù)效果優(yōu)于人工復(fù)墾[66]。
3.3.3土壤與植被碳庫 復(fù)墾對土壤和植被碳庫的影響越來越受到關(guān)注,在復(fù)墾方式選擇的過程中開始從節(jié)能減排和增加碳匯的角度考慮。研究集中在對不同復(fù)墾方式、方法對土壤和植被碳庫的長效影響及潛在的固碳能力[67]。在復(fù)墾材料選擇上,優(yōu)先選擇生物黑炭等有較強(qiáng)固碳能力的材料[53]。此外,當(dāng)前政策法規(guī)和技術(shù)標(biāo)準(zhǔn)對減弱礦區(qū)土地和植被變化而對碳庫影響方面的要求尚不成熟,學(xué)者們對如何完善進(jìn)行了探討[68]。
3.3.4生態(tài)系統(tǒng) 復(fù)墾過程中生態(tài)系統(tǒng)的整體功能得到重視,在復(fù)墾過程中應(yīng)充分考慮水文、地形、氣候等自然條件,在開采的生命周期中進(jìn)行科學(xué)規(guī)劃,恢復(fù)一個可自持、可持續(xù)的健康的生態(tài)系統(tǒng)[69]。為保護(hù)復(fù)墾區(qū)的生物多樣性,各類動植物[70-71]及其棲息地的保護(hù)和恢復(fù)[72]成為研究的熱點(diǎn)。
3.4油氣田復(fù)墾
ASMR自2013起增設(shè)了油氣田復(fù)墾的專題論壇。研究重點(diǎn)集中在復(fù)墾管理與標(biāo)準(zhǔn)的確定,監(jiān)測與評價和復(fù)墾技術(shù)和案例研究,為復(fù)墾技術(shù)和整體設(shè)計提供了參考。
油氣田復(fù)墾起步較晚,因此關(guān)于政策和管理的研究較多[73],致力于結(jié)合最佳管理實(shí)踐和績效管理方法,量化復(fù)墾標(biāo)準(zhǔn),發(fā)揮企業(yè)的主觀能動性,在不損害公共利益的前提下促進(jìn)技術(shù)創(chuàng)新并降低成本[74]。監(jiān)測和評價技術(shù)方面,借助Access和ArcGIS等軟件建立包括自然條件、復(fù)墾和監(jiān)測數(shù)據(jù)等在內(nèi)的綜合數(shù)據(jù)庫,為復(fù)墾工作以及標(biāo)準(zhǔn)建立提供依據(jù)[75]。在廢棄物的處理與再利用方面,Penn探討了鉆井泥漿的分類、成分、處理過程以及相關(guān)政策法規(guī)[76]。Fisher認(rèn)為廢棄物引起的鹽污染是一種重要的污染類型,可用視覺評價、地形測量、電阻率探測和采樣檢測等方法進(jìn)行評價[77]。
本文在介紹美國采礦與復(fù)墾學(xué)會的基礎(chǔ)上,基于1984—2014年該學(xué)會年會發(fā)表論文的分析,揭示了美國土地復(fù)墾研究歷史和發(fā)展趨勢,不難發(fā)現(xiàn):
(1)美國土地復(fù)墾研究對象的廣泛,注重環(huán)境保護(hù)。美國的土地復(fù)墾由開始僅對露天煤礦損毀土地的復(fù)墾,發(fā)展到各類開采形式、各類礦區(qū)、管線等生產(chǎn)建設(shè)項(xiàng)目的復(fù)墾。復(fù)墾以保護(hù)環(huán)境為主要目的,其中礦區(qū)水、土壤和植被是研究的重點(diǎn)。
(2)礦區(qū)酸性水的治理一直是美國土地復(fù)墾的研究焦點(diǎn),從主動治理技術(shù)到被動治理技術(shù)都有很深入的研究和系統(tǒng)的成果,被動治理技術(shù)被認(rèn)為是最有效的方法。
(3)礦區(qū)土壤及其重構(gòu)是復(fù)墾研究的另一重點(diǎn),從初期露天礦剝離物、“礦山土”的理化特性,到復(fù)墾土壤重構(gòu)以及各種土壤改良劑的研發(fā),在復(fù)墾歷次會議上都是研討的焦點(diǎn)。
(4)礦區(qū)植被恢復(fù)也是復(fù)墾研究的重點(diǎn)之一,其研究主要從植被種群的選擇、種苗的繁育,到針對不同立地條件的種植技術(shù)以及各種植物生長促進(jìn)技術(shù)。
(5)仿自然地貌生態(tài)修復(fù)法和邊采邊復(fù)的規(guī)劃設(shè)計方法是近10年新進(jìn)展。
(6)復(fù)墾政策與監(jiān)管也是一直受到關(guān)注的問題,從初期的復(fù)墾法規(guī)的研討到復(fù)墾成功評判標(biāo)準(zhǔn)與方法的研究,許多研究表明復(fù)墾土壤生產(chǎn)力評價、生態(tài)系統(tǒng)評價都可以作為復(fù)墾成功與否的評價標(biāo)準(zhǔn)。
(References):
[1] Bylaws of the American Society of Mining and Reclamation[EB/OL] . http: www.asmr.us/About/ByLaws/ByLaws.htm.
[2] Plass B, Skousen J, Barnhisel D. A short history of ASMR[EB/OL] . http: www.asmr.us/About/History/History.htm.
[3] Sen S, Zipper C E, Wynne R H, et al. Using Satellite Imagery to Characterize Locations, Ages and Woody Canopy Cover of Reclaimed Surface Mines In Appalachia, USA[A] . R.I. Barnhisel. Reclamation: Sciences Leading to Success. Proceedings from 28th NationalMeeting of the American Society of Mining and Reclamation[C] . Bismarck, ND, 2011: 567 - 590.
[4] Carter N L, Monette L J, Beaman D T. Using the RQ-11 Raven A and the T-HAWK for Oversight Inspections of Surface Coal Mines in West Virginia[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 56.
[5] Ward K. Field Direct, A Field Inspection Application Designed to Improve Data Integrity and Accessibility for Management Oversight [A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 393.
[6] Moehle J, Ranville J, Choate L, et al. Leachate and Enzyme Bioassay Toxicity Assessment Tests at the Tip Top Mine, A Marginally Impacted Site[A] . R.I. Barnhisel. Proceedings from 7th International Conference on Acid Rock Drainage(ICARD)[C] . Louis, OM,2006: 1314 - 1332.
[7] Schmidt T W, Milmine K L. Upper He Creek Water Balance Evaluation[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 105.
[8] David C P C. Assessment of ARD Effects on River Ecosystem Using Benthic AquaticMacroinvertebrates(Marinduque Island,Philippines)[A] . R.I. Barnhisel. Proceedings from 7th International Conference on Acid Rock Drainage(ICARD)[C] . Louis, OM,2006: 422 - 425.
[9] Buchanan B A, Musslewhite B D. Predicting Topsoil Balance from Different Levels of Soil Survey[A] . R.I. Barnhisel. Reclamation:Sciences Leading to Success. Proceedings from 28th National Meeting of the American Society of Mining and Reclamation[C] . Bismarck, ND, 2011: 78 - 88.
[10] Pokorny M L, Neuman D R, Edwards K, et al. Vegetation Inventory and Survey Methods; A Reclamation Tool[A] . R.I. Barnhisel. Reclamation Across Industries[C] . Laramie, WY, USA: Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation, 2013: 223.
[11] Smith K S, Ranville J F, Adams M K, et al. Predicting Toxic Effects of Copper on Aquatic Biota in Mineralized Areas by Using The Biotic Ligand Model[A] . R.I. Barnhisel. Proceedings from 7th International Conference on Acid Rock Drainage(ICARD)[C] . Louis,OM, 2006: 2055 - 2077.
[12] Bearden E D, Wooten J D. Using Texas Rapid Assessment Method for Pre-Mine and Post-Mine Wetland Evaluations[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 45.
[13] Dunker R E, Bullock D G, Bollero G A, et al. A System to Evaluate Prime Farmland Reclamation Success Based on Spatial Soil Properties[A] . R.I. Barnhisel. Sustainable Reclamation, Proceedings from 29th National Meeting of the American Society of Mining and Reclamation[C] . Tupelo, MS, 2012: 103 - 132.
[14] Michael P R, Superfesky M J, Uranowski L J. Challenges to Applying Geomorphic and Stream Reclamation Methodologies to Mountaintop Mining and Excess Spoil Fill Construction in Steep-Slope Topography(E.G. Central Appalachia)[A] . R.I. Barnhisel. Bridging Reclamation, Science and the Community. Proceedings from 27th National Meeting of the American Society of Mining and Reclamation[C] . Pittsburgh, PA, 2010: 610 - 634.
[15] Brown K M. Comparative Analysis of Multiple Softwares Used in Aiding Geomorphic Reclamation[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY,2013: 50.
[16] Hutson H H, Thoman B. The Llionkol Project, Practical Application of Geomorphic Mine Land Reclamation Method[A] . ExploringNew Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 70.
[17] Hu Z, Xiao W. Optimization of Concurrent Mining and Reclamation Plans for Single Coal Seam: A Case Study in Northern Anhui,China[A] . R.I. Barnhisel. Sustainable Reclamation, Proceedings from 29th National Meeting of the American Society of Mining and Reclamation[C] . Tupelo, MS, 2012: 1247 - 1254.
[18] Brenner F J. Impact of the Surface Mining Control and Reclamation Act on Species of Special Concern in Pennsylvania[A] . R.I. Barnhisel. 30 Years of SMCRA and Beyond, Proceedings from 24th National Meeting of the American Society of Mining and Reclamation, Gillette, WY, 2007: 707 - 714.
[19] Testa S M. The California State Mining and Geology Board: Regulation of Mine Reclamation in California[A] . R.I. Barnhisel. 30 Years of SMCRA and Beyond, Proceedings from 24th National Meeting of the American Society of Mining and Reclamation, Gillette, WY,2007: 646 - 657.
[20] Curran M, Staha P l. Bridging the Gaps between Policy, Practice, and Science[A] . Exploring New Frontiers in Reclamation,Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 41.
[21] Nichols O G, Grant C, Bell L C. Developing Ecological Completion Criteria to Measure the Success of Forest and Woodland Establishment on Rehabilitated Mines in Australia[A] . R.I. Barnhisel. Proceedings from 22th National Meeting of the American Society of Mining and Reclamation[C] . Breckenridge, CO, 2005: 67.
[22] Lindbeck K, Clark B. Mining Project Approvals in Western Australia[A] . R.I. Barnhisel. Bridging Reclamation, Science and the Community. Proceedings from 27th National Meeting of the American Society of Mining and Reclamation[C] . Pittsburgh, PA, 2010:570 - 580.
[23] Amezaga J M, Younger P L. Mine Water Management in European Environmental Policy: An Assessment of Recent Legislative Developments[A] . R.I. Barnhisel. Proceedings from 7th International Conference on Acid Rock Drainage(ICARD)[C] . Louis, OM,2006: 1 - 12.
[24] Daniels W L, Wick A, Carter III C, et al. Screening Criteria for Beneficial Utilization of Dredge Sediments in Virginia, USA[A] . R.I. Barnhisel. Sustainable Reclamation, Proceedings from 29th National Meeting of the American Society of Mining and Reclamation[C] . Tupelo, MS, 2012: 100.
[25] Nahir M, Aanhout M V, Reinecke S. Application of Risk Management to Abandoned Mine Sites in the Canadian North[A] . R.I. Barnhisel. Proceedings from 7th International Conference on Acid Rock Drainage(ICARD)[C] . Louis, OM, 2006: 1358 - 1370.
[26] Eggerud S D. The Appalachian Regional Reforestation Initiative, A Year Five Progress Report[A] . R.I. Barnhisel. Bridging Reclamation, Science and the Community. Proceedings from 27th National Meeting of the American Society of Mining and Reclamation [C] . Pittsburgh, PA, 2010: 1471.
[27] Taylor W. Jennings Environmental Learning Center[A] . R.I. Barnhisel. Bridging Reclamation, Science and the Community. Proceedings from 27th National Meeting of the American Society of Mining and Reclamation[C] . Pittsburgh, PA, 2010: 1464.
[28] Lindgren L, Fanello S, Carlson B, et al. Community Engagement in Reclamation[A] . R.I. Barnhisel. Bridging Reclamation, Science and the Community. Proceedings from 27th National Meeting of the American Society of Mining and Reclamation[C] . Pittsburgh, PA,2010: 1457.
[29] Mahony M, Page B J, Denholm C F, et al. Rehabilitation of Pennsylvania Passive Treatment Systems[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK,2014: 82.
[30] Hughes T A, Gray N F. Co-Treatment of Acid Mine Drainage with Municipal Wastewater Using the Activated Sludge Process: Impacts on Wastewater Treatment Performance[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 97 - 103.
[31] Peer R, Labar J, Winfrey B, et al. Passive Co-Treatment of Polymetallic Acid Mine Drainage at Cerro Rico de Potos í, Bolivia [A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 93.
[32] Kleinmann R L, Chatwin T. The Gard Guide and its General Applicability to Mine Water Issues[A] . R.I. Barnhisel. Reclamation:Sciences Leading to Success. Proceedings from 28th National Meeting of the American Society of Mining and Reclamation[C] . Bismarck, ND, 2011: 317 - 325.
[33] Block F, Parsons S C, Williams R D, et al. The Acid Drainage Technology Initiative[A] . Proceedings from 21th National Meeting of the American Society of Mining and Reclamation and The 25th West Virginia Surface Mine Drainage Task Force[C] . Morgantown,WV, 2004: 18.
[34] Eger P, Baysinger C, Cates D, et al. Biochemical Reactors for Treating Mining Influenced Water[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK,2014: 53.
[35] Behum P T, Jr., Kim K(Min). Passive Treatment of Acid Mine Drainage in the Midcontinental U.S. -Construction Problems and Possible Solutions[A] . Proceedings from 21th National Meeting of the American Society of Mining and Reclamation and The 25thWest Virginia Surface Mine Drainage Task Force[C] . Morgantown, WV, 2004: 13.
[36] Furneaux B, Nairn R W. Biodiversity Assessment of an Ecological Engineered Treatment System for Metals-Contaminated Mine Drainage[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 61.
[37] Hedin R S, Weaver T, Wolfe N, et al. Effective Passive Treatment of Coal Mine Drainage[A] . Exploring New Frontiers in Reclamation,Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 65.
[38] Labar J A, Nairn R W. Determination of Dominant Trace Metal Sequestration Processes in Two Vertical Flow Bioreactors Using Modified Tessier Extractions[A] . R.I. Barnhisel. Reclamation Across Industries. Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 170.
[39] Eger P, Jones P, Green D. Getting the Lead out(and other Trace Metals)- Solving Mine Water Problems with Peat-Based Sorption Media[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 54.
[40] Uster B, Sullivan A D O, Pope J, et al. The Use of Waste Mussel Shells to treat Acid Mine Drainage Inupward-Flow Sulfate-Reducing Bioreactors[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 118.
[41] Peltz C D, Zillich C, Brown K L. A Combination of Alumina Refining Residue(Bauxsol Acid B Extra(?))and Biochar to Reduce Metal Concentrations in Acid Mine Drainage[A] . R.I. Barnhisel. Reclamation Across Industries. Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 206.
[42] Mahony R M, Page B J, Denholm C F, et al. Rehabilitation of Pennsylvania Passive Treatment Systems[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK,2014: 82.
[43] Danehy T P, Leavitt B R, Page B J, et al. Passively-Enhanced Lime Mixing and Dissolution[A] . R.I. Barnhisel. Reclamation Across Industries. Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013:71.
[44] Landers S, Maj S, Mackey A, et al. Steel Slag Leach Bed Longevity Analysis[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 79.
[45] Oxenford L R, Nairn R W. Seasonality of Iron Removal within the Initial Oxidation Cell of a Passive Treatment System[A] . R.I. Barnhisel. Reclamation Across Industries[C] . Laramie, WY, USA: Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation, 2013: 401.
[46] Furneaux B, Nairn R W. Biodiversity Assessment of an Ecological Engineered Treatment System for Metals-Contaminated Mine Drainage[A] .Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 61.
[47] Nairn R W, Strevett K A. Off-the-Grid Aeration to Address Nuisance Constituent Production from Specific Passive Treatment System Process Units[A] . R.I. Barnhisel. Reclamation Across Industries. Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 197.
[48] Kleinmann R L. Creating Anaerobic Environments to Control Acid Generation in Pyritic Material[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK,2014: 74.
[49] Gusek J J. Land Application of Biochemical Reactor Effluent: an Innovative Method for Mitigating Acid Rock Drainage[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 63.
[50] J.Priest, J. Stovall, D.Coble, B.Oswald and H.Williams. Pine Plantations on Reclaimed Minelands: Growth Rates Versus Unmined Lands[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 98.
[51] Orndorff Z W, Daniels W L, Reiter M S, et al. Prime Farmland Crop Yields from Four Soil Reconstruction Treatments Following Mineral Sands Mining: A 9 Year Summary[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 88.
[52] Wells L G, Bodapati S. Corn Yield from and Physical Properties of Soil Reconstructed by The University of Kentucky Soil Regenerator [A] . R.I. Barnhisel. Sustainable Reclamation, Proceedings from 29th National Meeting of the American Society of Mining and Reclamation[C] . Tupelo, MS, 2012: 520 - 536.
[53] C.D. Peltz. A Comparison of Different Volumes of Biochar on Acidic Soils to Increase Plant Growth and Reduce Soil Acidity[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 205.
[54] Harley A, Mcmullen B, Williams M. Biochar for Reclamation in the Rocky Mountains: Context, Science and Policy-Can We Find a Nexus that Works?[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 91.
[55] Wick A F, Stahl P D, Daniels W L. Organic Matter Dynamics in Reclaimed Mine Soils[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013:395.
[56] Brooks J P, Adeli A, Read J J, et al. Microbial Quality of Reclaimed Mine Soils Following Time and Treatment Based Influences[A] . R.I. Barnhisel. Sustainable Reclamation, Proceedings from 29th National Meeting of the American Society of Mining and Reclamation[C] . Tupelo, MS, 2012: 50.
[57] Strom C. Compost Rates for Remediating Reclaimed Saline Soils[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 367.
[58] Vicklund L E, Schuman G E, Mortenson M C. Effects of Wyoming Big Sagebrush Seeding Rate and Grass Competition on Long-Term Density and Canopy Volume of Big Sagebrush and Wildlife Habitat[A] . R.I. Barnhisel. Reclamation: Sciences Leading to Success. Proceedings from 28th National Meeting of the American Society of Mining and Reclamation[C] . Bismarck, ND, 2011: 678 - 689.
[59] Wilson-Kokes L, Skousen J. Gray Sandstone as a Topsoil Substitute on Surface Coal Mines in Appalachia[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 122.
[60] Zipper C E, Burger J A, Evans D M, et al. Young Forest Composition and Growth on A Reclaimed Appalachian Coal Surface Mine after Nine Years[A] . R.I. Barnhisel. Sustainable Reclamation, Proceedings from 29th National Meeting of the American Society of Mining and Reclamation[C] . Tupelo, MS, 2012: 557 - 585.
[61] Franklin J, Buckley D. Tree and Ground Cover Establishment over Seven Years as Affected by Seeding and Fertilization Rates [A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 59.
[62] Victor M. Davis. Appalachian Regional Reforestation Initiative and the Forestry Reclamation Approach[A] . R.I. Barnhisel. 30 Years of SMCRA and Beyond, Proceedings from 24th National Meeting of the American Society of Mining and Reclamation, Gillette, WY,2007: 646 - 657.
[63] C.E. Zipper, J.A. Burger, C.D. Barton, and J.G. Skousen, Rebuilding Soils for Forest Restoration on Appalachian Mined Lands[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 400.
[64] Franklin J, Frouz J. Vegetation and Soil Development in Planted Pine and Naturally Regenerated Hardwood Stands 48 Years after Mining[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 60.
[65] Byrd S M, Cavender N D, Peugh C M, et al. Sustainable landscapes: Evaluating strategies for controlling autumn olive (Elaeagnusumbellata)on reclaimed surface mineland at the Wilds conservation center in Southeastern Ohio[A] . R.I. Barnhisel. Sustainable Reclamation, Proceedings from 29th National Meeting of the American Society of Mining and Reclamation[C] . Tupelo,MS, 2012: 73 - 81.
[66] Skousen J, Brown C, Mcmichael D. Establishment and Growth of Switchgrass and other Biomass Crops on Surface Mines[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 109.
[67] Craig N G, Strahm B D, Burger J A, et al. Long-Term Carbon and Nutrient Accrual in Coal Mine Topsoil Substitutes in Southwest Virginia[A] . R.I. Barnhisel. Sustainable Reclamation, Proceedings from 29th National Meeting of the American Society of Mining and Reclamation[C] . Tupelo, MS, 2012: 97.
[68] Humphries R N. Understanding the Implications of Emerging Soil Carbon Land Use Policies for Surface Mining in the United Kingdom [A] . R.I. Barnhisel. Sustainable Reclamation, Proceedings from 29th National Meeting of the American Society of Mining andReclamation[C] . Tupelo, MS, 2012: 269 - 285.
[69] Burger J A. Ecosystem Restoration: A Critical Component of Sustainable Mining and Reclamation[A] . R.I. Barnhisel. Sustainable Reclamation, Proceedings from 29th National Meeting of the American Society of Mining and Reclamation[C] . Tupelo, MS, 2012: 72.
[70] Walker C, Hubbs D, Chance S, et al. Translocation of Cumberlandian Mussels to Achieve Species Conservation[A] . R.I. Barnhisel. Bridging Reclamation, Science and the Community. Proceedings from 27th National Meeting of the American Society of Mining and Reclamation[C] . Pittsburgh, PA, 2010: 1469.
[71] Humphries R N. The Contribution of Active Surface Mines in the Conservation of Lower Plant Communities in the South Wales Coalfield, United Kingdom[A] . R.I. Barnhisel. Reclamation Across Industries[C] . Laramie, WY, USA: Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation, 2013: 104 - 123.
[72] Frouz J, Pi?l V, Tajovsky K, et al. Soil Biota Development in Post Mining Sites on Climatic Gradient from East to Mid-West of USA[A] . R.I. Barnhisel. Sustainable Reclamation, Proceedings from 29th National Meeting of the American Society of Mining and Reclamation [C] . Tupelo, MS, 2012: 212 - 225.
[73] Curran M F, Wolff B J, Stahl P D. Defining Oil and Gas Pad Reclamation Success on Wyoming BLM Lands[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 68.
[74] Minnick T J. Quantitative Monitoring in Oil and Gas Reclamation: What Can it Do For You?[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013:180.
[75] Curran M F, Wolff B J, Stahl P D. Approaching Oil and Gas Pad Reclamation Using Data Mining: A Framework for the Future[A] . R.I. Barnhisel. Reclamation Across Industries, Proceedings from the 30th National Meeting of the American Society of Mining and Reclamation[C] . Laramie, WY, 2013: 58 - 67.
[76] Penn C, Whitacker A. Land Application of Drill Cuttings[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK, 2014: 94.
[77] Fisher J B. Assessment and Remediation of Salt Contamination at Oil and Gas Well Drilling Sites[A] . Exploring New Frontiers in Reclamation, Proceedings from the 31st National Meeting of the American Society of Mining and Reclamation[C] . Oklahoma City, OK,2014: 58.
(本文責(zé)編:陳美景)
部電話:010-66562683 發(fā)行電話(傳真):010-66562692 咨詢電話:010-66251520
部電話:010-66562683
Research Progress on American Society of Mining and Reclamation (from 1984 to 2014) based on Bibliometric Mapping Study
HU Zhen-qi, FU Yan-hua, XIAO Wu, ZHAO Yun-xiao, YU Yang
(Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology,Beijing 100083, China)
The purpose of this paper is to analyze the international land reclamation research focus and trend based on the statistical analysis of 31 years’ proceedings of the Annual Meeting of the American Society of Mining and Reclamation. Divided into three periods, the key words in the proceedings have been analyzed by VOSviewer, a bibliometric mapping software. The results show: 1)the cluster analysis has divided the key words into three clusters, “l(fā)and reclamation evaluation, planning and management”, “acid mine drainage” and “soil and vegetation”; 2)the key words are stable with subtle changes, and the amount increases gradually. We conclude that the research became more specific, the research objects became more diverse, and connotation extended consistently. Besides, the innovative reclamation notions,techniques and materials sprang up. It is clearly that the ecology impact and its research methods have become and will continue to be the focus.
land reclamation; reclamation planning; review; American Society of Mining and Reclamation (ASMR); acid mine drainage; soil; vegetation
F301.2
A
1001-8158(2016)02-0086-12
10.11994/zgtdkx.20160302.153746
2015-10-13;
2015-12-09
國家自然科學(xué)基金委員會—神華集團(tuán)有限責(zé)任公司煤炭聯(lián)合基金重點(diǎn)支持項(xiàng)目(U1361203)。
胡振琪(1963-),男,安徽五河人,教授,博士生導(dǎo)師。主要研究方向?yàn)橥恋卣?、土地?fù)墾與生態(tài)重建。E-mail: huzq1963@163.com