• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revisiting the Second EOFMode of Interannual Variation in Summer Rainfallover East China

    2016-08-12 03:41:43ZhongdaLINQinSUandRiyuLU
    Advances in Atmospheric Sciences 2016年1期

    Zhongda LIN,Qin SU,and Riyu LU

    1State Key Laboratory ofNumericalModeling for Atmospheric Sciencesand Geophysical Fluid Dynamics, Institute ofAtmospheric Physics,Chinese Academy ofSciences,Beijing 100029

    2DepartmentofAtmospheric Sciences,Yunnan University,Kunming 650091

    Revisiting the Second EOFMode of Interannual Variation in Summer Rainfallover East China

    Zhongda LIN?1,Qin SU2,and Riyu LU1

    1State Key Laboratory ofNumericalModeling for Atmospheric Sciencesand Geophysical Fluid Dynamics, Institute ofAtmospheric Physics,Chinese Academy ofSciences,Beijing 100029

    2DepartmentofAtmospheric Sciences,Yunnan University,Kunming 650091

    The second EOF(EOF2)mode of interannual variation in summer rainfall over East China is characterized by inverse rainfall changesbetween South China(SC)and the Yellow River–Huaihe Rivervalleys(YH).However,understanding of the EOF2mode is still lim ited.In this study,the authors identify that the EOF2mode physically depicts the latitudinalvariation of the climatologicalsummer-mean rainy beltalong the Yangtze Rivervalley(YRRB),based on a160-station rainfalldataset in China for the period 1951–2011.The latitudinal variation of the YRRB ismostly attributed to two different rainfall patterns:one reflects the seesaw(SS)rainfall changes between the YH and SC(SS pattern),and the other features rainfall anomalies concentrated in SC only(SC pattern).Corresponding to a southward shift of the YRRB,the SS pattern,w ith above-normal rainfall in SC and below-normal rainfall in the YH,is related to a cyclonic anomaly centered over the SC–East China Sea region,w ith a northerly anomaly blow ing from the YH to SC;while the SC pattern,w ith above-normal rainfall in SC,is related to an anticyclonic anomaly over thewestern North Pacific(WNP),corresponding to an enhanced southwest monsoon over SC.The cyclonic anomaly,related to the SS pattern,is induced by a near-barotropic eastward propagating wave train along the Asian upper-tropospheric westerly jet,originating from themid–high latitudes of the North Atlantic. The anticyclonic anomaly,for the SC pattern,is related to suppressed rainfall in theWNP.

    YangtzeRiver rainy belt,EastChinasummer rainfall,seesaw pattern,South Chinapattern,western North Pacific subtropicalhigh,extratropicalwave train

    1. Introduction

    Summer rainfall in East China exhibits a strong year-toyear variability due to its typicalmonsoon climate,which leads to frequent flood and drought.Understanding the yearto-year variations of summer rainfall,therefore,is essential andmany works have been devoted to this topic(Lau etal., 2000;Wang etal.,2001;Huang etal.,2003;Lu,2004;Ding and Chan,2005;Shen etal.,2011;Su etal.,2014).

    EOFanalysis is themostcommon approach to investigate variations in summer rainfall in EastChina.Mostsuch studieshave been summarized in the recentworks of Ye and Lu (2012)and Huang etal.(2012).Their resultsshowed that the fi rstEOF(EOF1)mode of summer rainfall featuresameridional tripole pattern in EastChina,w ith increased rainfall located in themiddle–lower reaches of the Yangtze River valley and decreased rainfall to the both north and south(He and Li,1992;Zhu and Chen,1992;Shen and Lau,1995; Zou and Ni,1998;Weng etal.,1999;You etal.,2003;Zhou and Yu,2005;Chen et al.,2006;Huang et al.,2006,2007, 2012;Ye and Lu,2012).This EOF1mode isassociated w ith the“Pacific–Japan(PJ)”teleconnection proposed by Nitta (1987)or the“EastAsia–Pacific(EAP)”teleconnection,proposed by Huang and Sun(1992),and a Rossby wave train over the m idlatitudes of continental Eurasia(Huang et al., 2007).

    The second EOF(EOF2)mode is characterized by rainfall anomalies w ith opposite sign in South China(SC)and the Yellow River–Huaihe River valleys(YH)(Zhu and Chen, 1992;Shen and Lau,1995;Weng et al.,1999;You et al., 2003;Zhou and Yu,2005;Chen et al.,2006;Huang etal., 2007,2012;Ye and Lu,2012).The corresponding principal component(PC2)shows a decadal shiftaround the early 1990s,consistentw ith significantly enhanced rainfall in SC after1992(Wu etal.,2010).

    Some previous studies investigated circulation anomalies associated w ith the EOF2 mode(e.g.,Zhou and Yu,2005; Han and Zhang,2009).The negative phase of the EOF2 mode,w ith increased rainfall in the YH and decreased rain-fallin SC,isrelated toanorthwestwardextensionof thewestern North Pacific subtropical high(WNPSH)and an eastward shift of the upper jet stream(Zhou and Yu,2005). On the contrary,the positive phase of the EOF2 mode is associated w ith a southwestward extension of the WNPSH (Han and Zhang,2009).Consequently,thesubtropicalsouthwestmoisture transportin thewestof theWNPSH converges w ithm idlatitudemoisture transport over the YH in the negative phase(Zhou and Yu,2005)and over SC in the positive phase(Han and Zhang,2009).Indeed,these studies concentrated on the decadal change of the EOF2mode around the early 1990s;sim ilarcirculation anomaliesassociatedw ith the decadalchangeofsummer rainfall in SC after1992 havealso been identified(Wu etal.,2010).

    In addition to the significant decadal change around the early 1990s,the EOFmodew ith opposite rainfall changebetween the YH and SC hasalso been identified from interannualvariationsof summer rainfall in EastChina(Yeand Lu, 2012).Ye and Lu(2012)revealed that thismode accounts for 10.9%of the total variance of interannual variations of summer rainfall in EastChina during 1955–2002 and,as the EOF2mode,isdistinguishable from the EOF1mode.Unfortunately,their results did notshow any associated circulation change,so the physicalprocesses involved are stillnotclear.

    The objective of the present study is to investigate the EOF2 mode of summer rainfall in East China on interannualtimescalesand to discuss thepossibleunderlyingmechanisms.The text isorganized as follows:Section 2 introduces the data used in the study.In section 3,the fi rst two dominantmodesof interannualsummer rainfall in EastChina are obtained based on EOF analysis.In section 4,based on the variation of summer rainfall in the YH and SC,the authors identify twomain patterns in the EOF2mode:one featuresa seesaw(SS)rainfall changebetween the YH and SC,and the other w ith rainfall anomalies concentrated in SC only.The possiblemechanisms responsible for the SS and SC pattern are investigated in section 5.Finally,conclusionsand discussion are provided in section 6.

    2. Data

    In this study,the 160-station observed monthly rainfall data inmainland China during 1951–2011,provided by the National Climate Center of the China Meteorological Adm inistration,are used to obtain the fi rst two EOF leading modes in East China.A lso used are global precipitation data derived by theGlobal Precipitation Climatology Project (GPCP)(Huffman et al.,1997;Adler et al.,2003)during 1979–2010,and precipitablewater for the entire atmosphere from the National Centers for Environmental Prediction–National Center for Atmospheric Research(NCEP–NCAR) reanalysis data(Kalnay etal.,1996)during 1951–2011.The resolution is 2.5°×2.5°for both the GPCP data and the NCEP–NCAR reanalysis data.In addition,monthly NationalOceanic and Atmospheric Adm inistration ERSST(extended reconstructed sea surface temperature)data(Smith et al.,2008)are also used.

    The monthly atmospheric data are from the NCEP–NCAR reanalysisdatasets(Kalnay etal.,1996)during 1951–2011,w ith a horizontal resolution of 2.5°×2.5°at17 pressure levels.A lso used are the6-h specific hum idity,zonaland meridionalw ind at theeightpressure levels from 1000 hPa to 300 hPa,and surface pressure data from the NCEP–NCAR reanalysisdatasets(Kalnay etal.,1996)for the period 1951–2011.The6-h dataareapplied to calculatemoisture transport and its divergence.Sim ilar to Chen and Huang(2007),the columnmoisture flux QQQ is integrated vertically from 300 hPa to the surface,

    and itsdivergence D iscalculated as

    where q is specific hum idity,p is pressure,and VVV is the horizontalw ind vector including zonal(u)and meridional(v) w ind components.The constant g is gravitational acceleration and thevariable Psisatmospheric pressureatthesurface. The variables QQQ and D are fi rst calculated at 6-h temporal resolution,and then their seasonalmeansare derived.When D>0,moisture flux diverges,acting as a sink ofmoisture; when D<0,itconverges,acting asa source ofmoisture and favors rainfall.

    In this study,summer is defined as June–July–August (JJA).To obtain interannualanomalies,a9-yrGuassian fi lter is employed to remove long-term trends and decadal variationsof summer rainfalland circulation anomalies.

    3. The EOF2 mode of interannual summer rainfall in East China

    Figure 1a shows the climatology of summer-mean rainfall in East China east of 105°E and south of 45°N,which includes 108 stations as depicted by black dots.There are twomain rainy beltsw ith summer-mean rainfallexceeding 5 mm d?1:the rainy belt along the Yangtze River(YRRB), and along the southeast coast of China.A long these two belts,summer rainfall also exhibits strong interannual variation,w ith themaximum of standard deviation being larger than 2mm d?1during 1951–2011(Fig.1b).

    We perform the EOF analysis on interannual summer rainfall in East China and present the fi rst two EOFmodes in Figs.1c and d.The spatial pattern of rainfall anomalies of the EOF1mode features increased rainfall in the Yangtze Rivervalley and decreased rainfallover the southeastcoastof China(Fig.1c).Itphysically depictsa rainfalloscillation between the YRRB and the rainy beltalong the southeastcoast of China.Thismode explains 17%of the total variance.A sim ilarspatialpatternwasalso obtained in the EOF1modeof the interannual componentof summer rainfall in East China during 1955–2002 by Ye and Lu(2012).Note that the rainfallanomalies in North China areweak and positive,whichare different from those revealed by Huang etal.(2012)using total rainfalldata.This difference is probably due to the effect of opposite decadal variations of summer rainfall between North China and the Yangtze River valley around the late1970s(Huang etal.,1999;Huang etal.,2012).

    Fig.1.(a)Climatology and(b)interannualstandard deviation ofsummer rainfall for1951–2011 in East China.The fi lled circlesdepict108 stationseastof 105°E and south of 45°N.The(c)fi rstand(d)second EOFmodes of interannual summer rainfall in EastChina.(e)The normalized PCs corresponding to the fi rst(line)and second(bars)modes.Spatial patterns in(c,d)are shown as regressed anomalies against the corresponding normalized PCs.Shading indicates rainfallexceeding 5 and 2mm d?1in(a) and(b),respectively,and depicts significant rainfall anomalies at the 95%confidence level in(c,d). The contour interval is1,0.5,0.3 and 0.3mm d?1in(a–d),respectively.The two regions depicted by the rectangles in(d)are the YH(north region),which includes25 stations(open circles),and SC(south region),which includes30 stations(fi lled circles).

    The EOF2 mode features inverse rainfall changes between South China(SC)and the Yellow River–Huaihe River valleys(YH)(Fig.1d).Thismode accounts for 12%of the total interannual variance of summer rainfall in East China, which is distinguishable from the EOF1 mode(17%)and from the third EOFmode(8%)in terms of the criterion of North et al.(1982).Moreover,themaximum of interannual variance of summer rainfallexplained by the EOF2mode is more than 50%in SC(Fig.2a),and thatof total variance is more than 40%(Fig.2b).As for the YH summer rainfall, thismodeexplains themaximum ofmore than 30%of its interannual variance(Fig.2a)and 20%of total variance(Fig. 2b).The area-averaged explicable fractions of interannual variance are larger than 20%and 10%in SC and the YH,respectively,and those of total variance larger than 17%and 8%.

    To reveal the physicalmeaning of the EOF2 mode,19 positive-phase cases,corresponding to the associated principal component(PC2)being larger than 0.5,and 20 negativephase cases,w ith the corresponding PC2 being smaller than?0.5,are chosen(Table 1).Based on the 39 cases,interannual rainfall anomalies(Figs.3a and d)and total rainfall (Figs.3b and e)in summerare then composited.Rainfall increasesin SCand decreasesin theYH in thepositivephaseof the EOF2mode(Fig.3a).Accordingly,the YRRB is located to the south of the Yangtze River(Fig.3b).In the negative phase,rainfall decreases in SC and increases in the YH(Fig. 3d),and the YRRBmovesnorthward to north of the Yangtze River(Fig.3e).Meanwhile,the rainy beltalong thesoutheast of China remains in both the positive(Fig.3b)and negative (Fig.3e)phases.The result indicates that the EOF2 mode depicts ameridional shiftof the summer YRRB.Figures 3c and f show total summer rainfall(shading)and their interannualanomalies(contours)in two cases of the positive and negative phasesof the EOF2mode,respectively.The YRRB shifted southward in 1999 in the positive phase(Fig.3c)and northward in 2003 in the negative phase(Fig.3f),consistent w ith the composite results.It is also noted that the interannual rainfall anomalies in the YH are weaker than those in SC in the composite results(Figs.3aand d),which is due to theeffectofmore thanone third of casesw ith rainfallanomalies being concentratedmainly in SC only,in addition to the casesw ith inverse rainfallvariation between the YH and SC, related to the EOF2mode,identified in thenextsection.

    To further reveal the relationship between themeridional shiftof the YRRB and rainfall variations in the YH and SC, two regions(32°–38°N,107°–120°E)and(22°–30°N,107°–120°E),as depicted by the two boxes in Fig.1d,are chosen to represent the YH and SC regions,respectively.The YH box includes25 stationsand the SC box includes30 stations.

    Table 1.Years w ith a strong EOF2 mode of interannual summer rainfall in East China.The yearsw ith the PC2 value being larger (smaller)than 0.5(?0.5)are chosen for the positive(negative) phase.

    Fig.2.Fractions(%)of(a)interannualand(b)totalvariance of summer rainfallexplained by the EOF2mode.

    Fig.3.Composite resultsof(a,d)interannualsummer rainfallanomaliesand(b,e)total rainfall in East China,and(c,f)case results of total summer rainfall(shading)and interannual anomalies(contours), in the(a–c)positive and(d–f)negative phasesof the EOF2mode.Shading indicates statistical significance at the 95%confidence level in(a,d)and depicts rainfallexceeding 5mm d?1in(b,c,e,f)(scale barat the bottom).The contour interval is0.5mm d?1in(a,d)and 1mm d?1in(b,c,e,f).

    Fig.4.Normalized time seriesof the rainfall indicesof SC(SCRI)and the YH (YHRI).The SCRIis defined as interannual summer rainfall anomalies of the 30-stationmean in SC and the YHRIof the25-stationmean in the YH,asshown in Fig.1d.

    Accordingly,the YH rainfall index(YHRI)is defined as the 25-stationmean rainfalland the SC rainfall index(SCRI)as the30-stationmean rainfall.Figure4 shows timeseriesof the two rainfall indices.The correlation coefficients of the PC2 w ith the SCRIand YHRIare 0.93 and?0.57,respectively, both significantat the 99%confidence level.In addition,the YHRI is also significantly correlated with the SCRI,w ith a correlation coefficient of?0.41,suggesting the interannual variation of the SC summer rainfall is,at least partially,related to that of the YH summer rainfall.A southward shift of the YRRB is related to asignificant rainfall increase in SC and decrease in the YH.

    4. Identification of the SSand SC patterns related to the EOF2m ode

    The EOF2mode,as identified in the lastsection,which depicts ameridional shift of the YRRB,is associated with the rainfallvariations in both the YH and SC.In thissection, the EOF2-mode cases are further classified into nine differentgroupsbased on the combined distribution of thenormalized SCRIand YHRI(Fig.5).A red dot depicts a strong, positive EOF2-mode year,w ith the PC2 value being larger than 0.5,and a blue dot represents a strong,negative EOF2-mode year,w ith the PC2 valuebeing less than?0.5.The 39 strong EOF2-mode years are locatedmainly in four phases: Phase 1,w ith strong,positive rainfall anomalies in SC and strong,negative rainfallanomalies in the YH;Phase4,which is the inverseof Phase1;Phase 2,w ith strong,positive rainfallanomaliesin SCand normal rainfallin theYH;and Phase 3,which isopposite to Phase2.

    The phase distribution of the strong EOF2-mode years is summarized indetailin Table2.Therearesixand seven years in Phases1 and 4,and eightyearsinboth Phases2 and 3.The summed number of years in these four phases is 29,which accounts for approximately three quarters of the total 39 strong EOF2-mode years.Note that the differencesbetween Phases1and 2and between Phases3and 4arewhetherornot rainfall anomalies in the YH are strong.The Student’s t-test is used to obtain the statistical significance for the follow ing composite results.

    Fig.5.Phasedistribution of thestrong EOF2-modeyearsbased on the normalized YHRI and SCRI.A positive(negative) EOF2-modeyearw ith the PC2 valuebeing larger(smaller)than 0.5(?0.5),is depicted by red(blue)dots.

    Figure6 shows thecomposite interannual rainfallanomalies in the four phases.Phase 1 features an SS-like pattern, w ith increased rainfallin SC and decreased rainfallin the YH (Fig.6a).The amountsof rainfallanomalies in these two regionsarenearly equivalent.An opposite pattern is identified in Phase 4,w ith reduced rainfall in SC and enhanced rainfall in the YH(Fig.6b).Composite differences of rainfall anomalies between these two phases show significant,positive anomalies in SC and significant,negative anomalies in the YH(Fig.6c),resembling the EOF2mode(Fig.1d).To distinguish from the EOF2 mode,this pattern is,hereafter, referred to as the SS pattern.Phases 1 and 4 then depict the positiveand negative phasesof the SSpattern,respectively.

    Fig.6.Composite interannual summer rainfallanomalies in East China based on(a,b,d,e)four categories of the EOF2-mode cases in Table 2 and(c,f)their difference.The spatial pattern of rainfall anomalies is referred to as the(a–c)SSpattern and(d–f)SC pattern.Phases1 and 4(2 and 3)represent the positive and negative phases of the SS(SC)pattern,respectively.Shading represents statistically significantanomaliesat the95%confidence level in(c,f),and the contour interval is0.5mm d?1in(a, b,d,e)and 1mm d?1in(c,f).

    Table 2.Phase distribution of the strong EOF2-mode years based on the YHRIand SCRI.The yearsunderlined are in the negative phase of the EOF2modeand theother yearsare in the positive phase.

    In Phase2 rainfall isalso increased in SC(Fig.6d),similar to that in Phase 1(Fig.6a).However,there are no strong rainfallanomalies in the YH in Phase2,in contrastw ith those in Phase1.In Phase3 rainfall is reduced in SC(Fig.6e),opposite to thatin Phase2(Fig.6d).Theirdifferenceshowssignificant,positive rainfall anomalies concentrated in SC and no significantanomalies in the YH(Fig.6f).This pattern is named the SC pattern,in which Phases2 and 3 represent its positiveand negativephases,respectively.

    In the above analysis the EOF2-mode cases are then mainly classified into two patterns:the SS pattern and the SC pattern.The SS pattern reflects the fact that interannual variationsof rainfall in SC are closely related to those in the YH,while the SC pattern represents rainfall varying locally over SC.The two cases in 1999 and 2003,as shown in Figs. 3c and f,distributed in Phases1 and 4(Table2)respectively, are the SS-pattern casesw ith relatively equivalentamountsof interannual rainfallanomalies in both the YH and SC.On the otherhand,the combination of the SS-and SC-pattern cases, leadsto stronger interannual rainfallanomaliesin SC than the YH in the composite results,asshown in Figs.3aand d.

    But do both the SS and SC patterns lead to ameridional shiftof the YRRB,thesameas thatin the composite resultsin Fig.3?Figure7 shows the latitudinalvariation of the YRRB averaged between 107°E and 120°E for the SS and SC patterns,separately.The mean location of the YRRB moves from 29°N in the positive phase of the SS pattern to 33°N in the negative phase(Fig.7a),and in the SC pattern from 29°N to 31°N(Fig.7b).The SSand SC patternsboth induce ameridional shift of the YRRB,though the YRRB moves more northward in the negative phase of the SS pattern,due to thecontributionofboth thedecreased rainfallin SCand increased rainfall in theYH,compared to theSC pattern related to decreased rainfall in SC only.

    5. Underlyingmechanisms

    5.1. Local anomalies associated with the SSand SC patterns

    Fig.7.Latitudinal variation of total summer rainfall(units: mm d?1)averaged zonally between 107°E and 120°E foreach case(dotted line)and theirmean(solid line)of the(a)SS and (b)SC pattern.Red lines represent the positive phase and blue lines the negative phase.The vertical solid lines indicate the latitude of themaximum of compositemean total rainfall,the location of the summer rainy belt in EastChina,in the positive (red)and negative(blue)phases.

    Fig.8.As in Fig.6 but for the composite results of theWNPSH(contours)and interannualhorizontalw ind anomalies at850 hPa(vectors).TheWNPSH is depicted by geopotential height(units:gpm)at850 hPa,w ith the contours of 1470,1490 and 1510.Statistically significantw ind anomaliesat the 95%confidence levelare plottedw ith bold vectors in(c,f).The units forw ind are given in the top-right corner of(c).The effectof the topography ismasked by grey shading.

    To reveal the circulation anomalies responsible,Fig.8 shows the composite resultsof horizontalw ind anomaliesat 850 hPa in summer associated w ith the SS and SC patterns, separately.Clearly,the SS pattern,w ith increased rainfall in SC and decreased rainfall in the YH in the positive phase (Phase1),issignificantly associatedw ith a cyclonic anomaly over SC and the neighboring East China Sea(Fig.8a).In contrast,an anticyclonic anomaly is identified in the negative phase(Phase 4,Fig.8b).Their difference shows a significant cyclonic anomaly over the SC–East China Sea region(Fig.8c).Thecyclone-induced northerly anomaly blows from the YH to SC,whichweakens the climatologicalsouthwestsummermonsoon in EastAsia.Subsequently,theweakenedmonsoon airflow suppresses northwardmoisture transport.The latter divergesover the YH and convergesover SC (Fig.9a).Rainfall decreases in the YH and increases in SC, concurrentw ith ascendingmotion anomaliesoverSC and descendingmotion anomaliesover the YH(Fig.9b).

    For the SC pattern,the increased rainfall in SC is related to an anticyclonicanomaly over thenorthern South ChinaSea (SCS)and the Philippine Sea in the positive phase(Phase 2, Fig.8d),and the decreased rainfall in SC is associated w ith a cyclonic anomaly in the negative phase(Phase 3,Fig.8e). Theirdifference ischaracterized by a significantanticyclonic anomaly(Fig.8f),corresponding to the westward extension of thewestern North Pacific subtropicalhigh(WNPSH).Due to the southerly anomaly in the west of the anticyclonic anomaly,moremoisture is transported to SC(Fig.9c),togetherw ith ascendingmotion anomalies(Fig.9d),enhancing rainfallover SC.

    In summary,in the positive phase,the SS-pattern rainfall anomalies are induced by the cyclonic anomaly in the lower troposphere over the SC–East China Sea region,and the SC-pattern rainfall anomalies are caused by the anticyclonicanomaly over thenorthern SCSand thePhilippineSea. The physical processes responsible for the formation of the two cyclonic and anticyclonic anomalies in the lower troposphereare discussed in the follow ing subsections5.2 and 5.3, respectively.

    5.2. Extratropical impacton the SSpattern

    The lower-tropospheric cyclonic anomaly over the SC–East China Sea region,in the positive phase of the SS pattern,is connected with an extratropicalwave train originating from them id–high latitudes of the North Atlantic in the upper troposphere(Fig.10a).To reveal the characteristics of the associated Rossby wave propagation,the zonal and meridional components of a wave-activity flux for stationary Rossby waves(WWW)are employed,follow ing Takaya and Nakamura(2001),which isdefined as

    where|V|is the magnitude of the horizontal vector w ind (u,v)andψis thestream function.Variableswith an overbar represent their climatological summermean averaged during1951–2011,and variablesw ith subscriptand primenotations signify theirpartialderivativesand anomaliesassociatedw ith the SSpattern.

    Fig.9.As in Figs.6c and fbut for the composite resultsof interannualanomaliesof column(a,c)moisture transport(vectors),which is vertically integrated from 300 hPa to the surface,and its divergence (contours)and(b,d)vertical pressure velocity at500 hPa.Statistically significantmoisture transport anomaliesat the 95%confidence levelare plottedw ith bold vectors in(a,c),and theunitsaregiven at the bottom of(c).Dark and light shading indicates statistically significant anomalies at the 95%and 90%confidence levels,respectively.The contour interval is 0.5mm d?1in(a,c)and 0.01 Pa s?1in (b,d).

    The wave-activity flux at 200 hPa,related to the wave train,originates in them id–high latitudes of the North Atlantic,extends eastward into northern Europe,and then divertsover central Asia atapproximately 60°E southeastward into the Asian westerly jet(Fig.10b).Subsequently,it continues to propagate eastward into East Asia along the Asian westerly jet,causing a negative geopotential height at 200 hPa over East Asia.A similar spatial distribution of geopotentialheightat850 hPa(H850)is also revealed(Fig.10c), suggesting abarotropic natureof theextratropicalwave train. The cyclonic anomaly over the SC–EastChina Sea region in the lower troposphere is formed as thebarotropic response to thenegativeupper-troposphericgeopotentialheightoverEast Asia.

    The external forcing related to the SS pattern is also exam ined.The composite sea surface temperature(SST) anomalies show no significant signal in the tropical oceans and the North Atlantic in the concurrentsummer(figure not shown).

    5.3. Effectof theWNP heating on the SC pattern

    Theanticyclonic anomaly,responsible forenhanced rainfall over SC in the SC pattern,is associated w ith a rainfall decreaseover thenorthern SCSand the Philippine Sea,based on the composite GPCP precipitation difference of the three cases in the positive phase,and three cases in the negative phaseof the SC pattern since1979(Table2).Thedecrease in rainfallover the SCSand the Philippine Sea isalso supported by the composite results using the NCEP–NCAR reanalysis precipitable water data during 1951–2011(Fig.11b).The rainfall reduction–related descent(Fig.11c)causes an anticyclonic anomaly over the northern SCS and the Philippine Sea,through divergencenear the surfacew ith friction.Mean-while,the reduced rainfall–relatedWNPheatingsinkmay excite a Rossby wave response in thewest(Gill,1980),further enhancing the anticyclonic anomaly(Lu,2001;Lu and Lin, 2009).

    Fig.10.As in Fig.6c but for the composite results of(a)interannualanomalies of geopotentialheight and(b)associated Takaya and Nakamura flux(vectors)at200 hPa,and(c)geopotentialheightat850 hPa.Dark and lightshading indicatesstatistically significantanomaliesat the95%and 90%confidence levels in(a,c).Shading in(b)depicts the location of the climatologicalwesterly jetat200 hPa.The contour interval is 6 gpm in(a,b)and 2 gpm in(c).The effectof the topography ismasked by grey shading in(c).

    The SST related to the SC pattern warms in the Bay of Bengal,the SCS,and the Philippine Sea(Fig.11d).The reduced rainfall over the warm SST anomalies suggests that the SST anomalies are a response against the anticyclonic anomaly related to the SC pattern.Theanticyclonic anomaly may increase incom ing shortwave radiation into the underlying oceans because of cloud cover reduction related to the suppressed rainfall.Itmay also suppress the Asianmonsoon westerly in the south,reducing surfaceevaporation such that the SSTwarms.

    Fig.11.As in Fig.6f but for the composite results of interannual summer anomalies of(a)horizontal w indsat850hPa(vectors)and GPCPprecipitation(contours),(b)NCEP–NCAR reanalysisprecipitable water for the entire atmosphere,(c)vertical pressure velocity at500 hPa,and(d)SST.Dark and light shading indicatesstatistically significantanomaliesat the95%and 90%confidence levels,respectively. The contour interval is 1mm d?1in(a),0.5 kgm?2in(b),0.01 Pa s?1in(c),and 0.1°C in(d).The effectof the topography ismasked by grey shading in(a).

    It is also noted that the WNP sinking-induced Rossby wave furtherpropagatesnortheastward(Fig.11a),resembling the PJpattern(Nitta,1987)or the EAP pattern(Huang and Sun,1992).Some previous studies have revealed that the EOF1mode is also affected by the EAP pattern triggered by theWNP heating(e.g.Huang et al.,2007).To distinguish their difference,Fig.12 shows the regionsw ith significant positive H850 anomalies related to the SC pattern and the EOF1mode,separately.The significantH850 anomalies related to the SC pattern cover the SCS and Philippine Sea, while theanomalies related to the EOF1mode expand northward,further covering the SC region.The differentH850 responses to theWNPheating arepossibly due to thechange in the basic state,sincemonsoon rainfallpeaks in June over SC and in June–July over the Yangtze River valley.This requires further investigation in future work.The northward expansion of the H850 anomaliescauses thenorthward shiftof the associated southwesterly anomaly and moisture transport in thewest from SC to the Yangtze River valley.Consequently, rainfall increasesin SCassociatedw ith theSC pattern,and in the Yangtze Rivervalley associatedw ith the EOF1mode.

    6. Conclusion and discussion

    Fig.12.The regionsw ith statistically significant geopotential height at 850 hPa at the 95%confidence level related to the EOF1mode(surrounded by the red contour)and the SC pattern (blue contour).The effectof the topography ismasked by grey shading.

    In this study,the authors reveal the EOF2mode of interannual summer rainfallanomalies depictsameridional shift of the YRRB.Moreover,themeridionalshiftof the YRRB is mostly due to two differenttypesof rainfallanomaly patterns: one that reflects an SS pattern of rainfallanomalies between the YH and SC,and the otherw ith themain rainfallanomalies concentrated in SC.The fi rstpattern is referred to as the SSpattern and the latter iscalled the SC pattern.Thereare13SS-pattern yearsand 16 SC-pattern years,which account for three quarters of the total 39 strong EOF2-mode years during 1951–2011.Corresponding to a southward shift of the YRRB,rainfall increases in SC and decreases in the YH in the SSpattern,and it increases in SC only in the SC pattern.

    The SS and SC patterns are related to different circulation anomalies.The SS pattern is associated w ith a lowertropospheric cyclonic anomaly over SC and the East China Sea,w ith thenortherly anomaly blow ing from the YH to SC, weakening the climatologicalmonsoon southwesterly.The weakenedmonsoon suppressesnorthwardmoisture transport and subsequent rainfall in the north,i.e.,over the YH,and enhances rainfall in the south over SC.The SC pattern is, however,mainly related to an anticyclonic anomaly over the northern SCSand the Philippine Sea,suggesting awestward extension of theWNPSH.Theenhanced southwesterly in the west transportsmoremoisture to SC and favors rainfall.

    Moreover,two differentmechanisms responsible for the formation of the cyclonic anomaly related to the SS pattern and the anticyclonic anomaly related to the SC patterns are proposed.The SSpattern results from an extratropicalwave train originated from themid–high latitudesof the North Atlantic.Thewave train extendseastward into northern Europe, diverts over central Asia,atapproximately 60°E,southeastward into the Asian westerly jet,and then propagates eastward to finally reach East Asia and cause a near-barotropic cyclonic anomaly over SC and the East China Sea.For the SC pattern,the anticyclonic anomaly over the northern SCS and the Philippine Sea is related to the suppressed rainfall in theWNP.

    The presentstudy carefully exam ines the EOF2mode of interannual summer rainfall in East China and reveals two different rainfall patterns in the EOF2 mode,w ith nearly equivalent numbers of cases(13 SS-pattern cases and 16 SC-pattern cases).The SS pattern reflects a dipole-like pattern w ith opposite rainfall variation in the YH and SC, and the SC pattern represents amonopole-like pattern w ith rainfall anomalies concentrated in SC.The existence of the monopole-like SC pattern associated w ith the EOF2 mode may challenge the traditional view of the“dipole”mode of summer rainfall in East China(Zhu and Chen,1992;Shen and Lau,1995;You etal.,2003;Zhou and Yu,2005;Chen et al.,2006).Instead,in this study,we propose that the EOF2modemay better depict the latitudinalvariation of the summer-mean YRRB.

    We identify twomain rainfallpatternsassociatedw ith the EOF2mode:the SSand SC patterns.It is interesting to note that there is no YH pattern,in which rainfall anomalies are concentrated in the YH only.In the 39 strong EOF2-mode years,there are only five yearsw ith strong rainfall anomalies in the YH and normal rainfall in SC(Table 2),far fewer than the 13 SS-pattern years and 16 SC-pattern years.The absence of the YH pattern is likely due to themuch smaller interannual variance of summer rainfall in the YH than SC explained by the EOF2mode(Fig.2).

    The structure of the composite rainfall anomalies in the positive(Fig.6d)and negative(Fig.6e)phasesof the SC pattern slightly deviate from their composite difference in Fig. 6f,though they are basically opposite.The deficient rainfall in SC in the negative phase deviates southeastward and the sufficient rainfall in the positive phase deviates northwestward.The nonlinearity indicated by the different deviation from the range is probably due to the different zonal extension of the WNPSH(Fig.8f).Under the control of thewestward-extended WNPSH,anomalousmoisture transportby the southwesterly anomaly in the west shifts northwestward in the positive phase(figurenotshown),while that transported by the northeasterly anomaly shifts southeastward under the eastward-retreated WNPSH in the negative phase(figurenotshown).Accordingly,the rainfallanomalies movenorthwestward in thepositive phaseand southeastward in the negative phase.

    Han and Zhang(2009)investigated anomalies related to the EOF2modeof summer rainfall in EastChina.They proposed that themode,w ith increasing rainfall to the south of theYangtzeRiveroverSC and decreasing rainfall to thenorth over the YH,is induced by a southwestward extension of the WNPSH.In thisstudy,we show that thewestward extension of theWNPSH only contributes to the increased rainfall in SC.Theopposite change in summer rainfallbetween the YH and SC(the SS pattern),w ith above-normal rainfall in SC and below-normal rainfall in the YH,is related to a cyclonic anomaly over SC and the adjacentEastChina Sea,which is probably affected by the extratropicalwave train originated from them id–high latitudesof the North Atlantic.

    Acknow ledgements.The authors appreciate the editor’s and the two reviewers’comments and suggestions,which led to an improved manuscript.This research was supported by the National Natural Science Foundation of China(Grant Nos.41375086 and 41320104007).

    REFERENCES

    Adler,R.F.,and Coauthors,2003:The version-2 globalprecipitation climatology project(GPCP)monthly precipitation analysis(1979–present).J.Hydrometeor.,4,1147–1167.

    Chen,J.L.,and R.H.Huang,2007:The comparison of climatological characteristicsamong Asian and Australianmonsoon subsystems.Part II:Water vapor transportby summermonsoon.Chinese J.Atmos.Sci.,31,766–778.(in Chinese)

    Chen,W.,L.H.Kang,and D.Wang,2006:The coupling relationship between summer rainfall in China and globalsea surface temperature.Climatic and EnvironmentalResearch,11,259–269.(in Chinese)

    Ding,Y.H.,and J.C.L.Chan,2005:The East Asian summer monsoon:An overview.Meteor.Atmos.Phys.,89,117–142.

    Gill,A.E.,1980:Some simple solutions forheat-induced tropical circulation.Quart.J.Roy.Meteor.Soc.,106,447–462.

    Han,J.P.,and R.H.Zhang,2009:The dipolemodeof the summer rainfallover EastChina during 1958–2001.Adv.Atmos.Sci., 26,727–735,doi:10.1007/s00376-009-9014-6.

    He,M.,and X.Li,1992:The relationship between summer rainfall in China and tropical circulation anomaly.Quarterly Journal ofApplied Meteorology,3,181–189.(in Chinese)

    Huang,R.H.,and F.Y.Sun,1992:Impactsof the tropicalwestern Pacific on the East Asian summermonsoon.J.Meteor.Soc. Japan,70,243–256.

    Huang,R.H.,Y.H.Xu,and L.T.Zhou,1999:The inter-decadal variation of summer precipitations in China and the drought trend in North China.Plateau Meteorology,18,465–476.(in Chinese)

    Huang,R.H.,L.T.Zhou,and W.Chen,2003:The progresses of recent studies on the variabilities of the East Asianmonsoon and their causes.Adv.Atmos.Sci.,20,55—–69,doi: 10.1007/BF03342050.

    Huang,R.H.,J.L.Chen,G.Huang,and Q.L.Zhang,2006: The quasi-biennialoscillation of summermonsoon rainfall in Chinaand its cause.Chinese J.Atmos.Sci.,30,545–560.(in Chinese)

    Huang,R.H.,J.L.Chen,and G.Huang,2007:Characteristicsand variations of the East Asianmonsoon system and its impacts on climatedisasters in China.Adv.Atmos.Sci.,24,993–1023, doi:10.1007/s00376-007-0993-x.

    Huang,R.H.,J.L.Chen,L.Wang,and Z.D.Lin,2012:Characteristics,processes,and causes of the spatio-temporal variabilitiesof the EastAsianmonsoon system.Adv.Atmos.Sci., 29,910–942,doi:10.1007/s00376-012-2015-x.

    Huffman,G.J.,and Coauthors,1997:The global precipitation climatology project(GPCP)combined precipitation dataset. Bull.Amer.Meteor.Soc.,78,5–20.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–471.

    Lau,K.-M.,K.-M.Kim,and S.Yang,2000:Dynamical and boundary forcing characteristics of regional components of the Asian summermonsoon.J.Climate,13,2461–2482.

    Lu,R.Y.,2001:Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over thewarm pool.J.Meteor.Soc.Japan,79,771–783.

    Lu,R.Y.,2004:Associations among the components of the East Asian summermonsoon system in themeridional direction. J.Meteor.Soc.Japan,82,155–165.

    Lu,R.Y.,and Z.D.,Lin,2009:Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia.J. Climate,22,2058–2072.

    Nitta,T.,1987:Convective activities in the tropical western Pacific and their impact on the Northern Hem i sphere summer circulation.J.Meteor.Soc.Japan,64,373–390.

    North,G.R.,T.Bell,R.F.Cahalan,and F.J.Moeng,1982:Sampling errors in the estimation of empirical orthogonal functions.Mon.Wea.Rev.,110,699–706.

    Shen,B.Z.,Z.D.Lin,R.Y.Lu,and Y.Lian,2011:Circulation anomalies associated w ith interannual variation of early-and late-summer precipitation in NortheastChina.Science China Earth Sciences,54,1095–1104.

    Shen,S.,and K.M.Lau,1995:Biennialoscillation associatedw ith theEastAsian summermonsoonand tropicalseasurface temperatures.J.Meteor.Soc.Japan,73,105–124.

    Sm ith,T.M.,R.W.Reynolds,T.C.Peterson,and J.Law rimore, 2008:Improvements to NOAA’s historical merged land–ocean surface temperature analysis(1880–2006).J.Climate, 21,2283–2296.

    Su,Q.,R.Y.Lu,and C.F.Li,2014:Large-scale circulation anomalies associated w ith interannual variation in monthly rainfall over South China from May to August.Adv.Atmos. Sci.,31,273–282,doi:10.1007/s00376-013-3051-x.

    Takaya,K.,and H.Nakamura,2001:A formulation of a phaseindependentwave-activity flux for stationary and m igratory quasigeostrophic eddies on a zonally varying basic flow.J. Atmos.Sci.,58,608–627.

    Wang,B.,R.G.Wu,and K.M.Lau,2001:Interannualvariability of the Asian summermonsoon:Contrastsbetween the Indian and the western North Pacific-East Asian monsoons.J.Climate,14,4073–4090.

    Weng,H.Y.,K.M.Lau,and Y.K.Xue,1999:Multi-scalesummer rainfallvariability overChina and its long-term link to global sea surface temperature variability.J.Meteor.Soc.Japan,77, 845–857.

    Wu,R.G.,Z.P.Wen,S.Yang,and Y.Q.Li,2010:An interdecadal change in southern China summer rainfallaround 1992/93.J. Climate,23,2389–2403.

    Ye,H.,and R.Y.Lu,2012:Dom inantpatternsof summer rainfall anomalies in EastChina during 1951–2006.Adv.Atmos.Sci., 29,695–704,doi:10.1007/s00376-012-1153-5.

    You,Y.,Y.Zhou,X.Yang,and L.Fang,2003:Using EOFmethod to analysis the spatial distribution and temporal variation of summer rainfall in China.Journal of Sichuan Meteorology, 23,22–23.(in Chinese)

    Zhou,T.-J.,and R.-C.Yu,2005:Atmospheric water vapor transportassociated w ith typical anomalous summer rainfall patterns in China.J.Geophys.Res.,110,D08104,doi:10.1029/ 2004JD005413.

    Zhu,Q.G.,and X.G.Chen,1992:Objective division of natural rainfall regions in China.Journal ofNanjing Institute ofMeteorology,15,467–475.(in Chinese)

    Zou,L.,and Y.Q.Ni,1998:Impactof ENSO on the variability of the summermonsoon over Asia and the summer rainfall in China.Journal ofTropicalMeteorology,13,306–314.(in Chinese)

    10 January 2015;revised 5 June 2015;accepted 9 July 2015)

    :Lin,Z.D.,Q.Su,and R.Y.Lu,2016:Revisiting the Second EOFMode of Interannual Variation in Summer Rainfallover EastChina.Adv.Atmos.Sci.,33(1),121–134,

    10.1007/s00376-015-5010-1.

    ?Corresponding author:Zhongda LIN

    Email:zdlin@mail.iap.ac.cn

    午夜视频国产福利| 18禁裸乳无遮挡免费网站照片| 国产高清国产精品国产三级 | 免费黄色在线免费观看| 久久久久网色| 在线免费十八禁| 免费黄色在线免费观看| 国产精品久久久久久精品古装| 日韩一区二区三区影片| 水蜜桃什么品种好| 麻豆乱淫一区二区| 亚洲精品乱码久久久v下载方式| 99国产精品免费福利视频| 免费高清在线观看视频在线观看| 国产精品精品国产色婷婷| 成年人午夜在线观看视频| 涩涩av久久男人的天堂| 寂寞人妻少妇视频99o| 国产免费福利视频在线观看| 久久人人爽人人爽人人片va| 国产成人aa在线观看| 精品视频人人做人人爽| 日韩人妻高清精品专区| 日本猛色少妇xxxxx猛交久久| 国内精品宾馆在线| h视频一区二区三区| 高清午夜精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 免费看av在线观看网站| 欧美激情极品国产一区二区三区 | 久久精品国产a三级三级三级| 熟女av电影| 男女边摸边吃奶| 日韩大片免费观看网站| 日本欧美国产在线视频| a级一级毛片免费在线观看| 男女免费视频国产| 一级a做视频免费观看| 老司机影院成人| 国产成人精品一,二区| 全区人妻精品视频| 丰满人妻一区二区三区视频av| 嫩草影院入口| 亚洲人成网站高清观看| 国内少妇人妻偷人精品xxx网站| 777米奇影视久久| 2021少妇久久久久久久久久久| 国产日韩欧美亚洲二区| 午夜福利网站1000一区二区三区| 日韩av免费高清视频| 色婷婷久久久亚洲欧美| 80岁老熟妇乱子伦牲交| 国产精品成人在线| 国产成人免费无遮挡视频| 欧美日韩亚洲高清精品| 久久国产精品大桥未久av | 亚洲综合精品二区| av专区在线播放| 午夜福利高清视频| 免费av中文字幕在线| 国产精品99久久99久久久不卡 | 成人二区视频| 亚洲丝袜综合中文字幕| 交换朋友夫妻互换小说| 观看av在线不卡| 久久青草综合色| 欧美日韩亚洲高清精品| 夜夜看夜夜爽夜夜摸| 亚州av有码| 毛片女人毛片| 人人妻人人看人人澡| 亚洲av国产av综合av卡| 国产亚洲最大av| 国产精品一区www在线观看| 日韩欧美一区视频在线观看 | 亚洲精品国产成人久久av| 亚洲欧美一区二区三区国产| 免费看光身美女| 3wmmmm亚洲av在线观看| 天天躁日日操中文字幕| 精品一区二区三卡| 天天躁夜夜躁狠狠久久av| 男女国产视频网站| 中文字幕免费在线视频6| 女性生殖器流出的白浆| 久久人人爽人人爽人人片va| 啦啦啦啦在线视频资源| 免费av不卡在线播放| 亚洲伊人久久精品综合| 欧美精品亚洲一区二区| 麻豆成人av视频| av国产免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 熟妇人妻不卡中文字幕| 永久免费av网站大全| 97在线视频观看| 国产精品一二三区在线看| 久久av网站| 3wmmmm亚洲av在线观看| 亚洲av免费高清在线观看| 精品一区二区三卡| 国产 一区精品| 欧美zozozo另类| 精品亚洲乱码少妇综合久久| 国产乱人视频| 高清不卡的av网站| 精品一区二区三卡| 免费观看a级毛片全部| 亚洲欧美日韩卡通动漫| 丝瓜视频免费看黄片| 欧美区成人在线视频| av又黄又爽大尺度在线免费看| 在线免费十八禁| 免费看不卡的av| 少妇人妻一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| 久久国产精品男人的天堂亚洲 | 久久久久久人妻| 大陆偷拍与自拍| 亚州av有码| 最近2019中文字幕mv第一页| 伦理电影大哥的女人| 亚洲av男天堂| 色婷婷久久久亚洲欧美| 一个人看视频在线观看www免费| 最黄视频免费看| 一级毛片我不卡| 大又大粗又爽又黄少妇毛片口| 亚洲精品日韩在线中文字幕| 国产av国产精品国产| 国产乱人偷精品视频| 亚洲第一区二区三区不卡| 国产精品三级大全| 久久99热6这里只有精品| 内射极品少妇av片p| 搡女人真爽免费视频火全软件| 亚洲欧美清纯卡通| 欧美老熟妇乱子伦牲交| 男女下面进入的视频免费午夜| 日韩免费高清中文字幕av| 精品视频人人做人人爽| 国产精品福利在线免费观看| 精品久久久精品久久久| 在线播放无遮挡| 看非洲黑人一级黄片| 国语对白做爰xxxⅹ性视频网站| 久久精品熟女亚洲av麻豆精品| 久久99精品国语久久久| 国产免费一区二区三区四区乱码| 又黄又爽又刺激的免费视频.| 交换朋友夫妻互换小说| 免费大片18禁| 国产日韩欧美在线精品| 日本午夜av视频| 欧美成人一区二区免费高清观看| 联通29元200g的流量卡| 久久久久精品久久久久真实原创| 欧美xxxx黑人xx丫x性爽| 日韩视频在线欧美| av免费观看日本| 成人无遮挡网站| h视频一区二区三区| 亚洲欧美日韩无卡精品| 六月丁香七月| 精品一区二区三卡| 国产精品偷伦视频观看了| 91精品国产国语对白视频| 一个人免费看片子| 哪个播放器可以免费观看大片| 亚洲综合精品二区| 国产精品99久久久久久久久| 777米奇影视久久| 建设人人有责人人尽责人人享有的 | 人妻制服诱惑在线中文字幕| 美女国产视频在线观看| 亚洲成人一二三区av| 熟女电影av网| 天美传媒精品一区二区| 一级毛片aaaaaa免费看小| 亚洲精品日韩av片在线观看| 国产精品嫩草影院av在线观看| 亚洲精华国产精华液的使用体验| 国产精品一及| 婷婷色av中文字幕| 成人毛片a级毛片在线播放| 久久人人爽av亚洲精品天堂 | 一级毛片电影观看| 久久精品国产亚洲av天美| 夫妻性生交免费视频一级片| 亚洲精品日韩av片在线观看| 在线观看美女被高潮喷水网站| 日韩 亚洲 欧美在线| 日韩欧美一区视频在线观看 | 成人18禁高潮啪啪吃奶动态图 | 黄色欧美视频在线观看| 亚洲欧美日韩东京热| 久久精品人妻少妇| 久久精品国产自在天天线| 一区二区三区免费毛片| 国产成人精品一,二区| 精品国产露脸久久av麻豆| 在线观看三级黄色| 亚洲精品日本国产第一区| 国产成人a区在线观看| 十八禁网站网址无遮挡 | 美女脱内裤让男人舔精品视频| av播播在线观看一区| 成人国产av品久久久| 简卡轻食公司| 人人妻人人爽人人添夜夜欢视频 | 精品久久久久久电影网| 免费在线观看成人毛片| 在线天堂最新版资源| 国产视频首页在线观看| 国产 一区 欧美 日韩| 日日啪夜夜撸| 大香蕉97超碰在线| 久久久久国产网址| 色哟哟·www| 嘟嘟电影网在线观看| 全区人妻精品视频| 久久久久人妻精品一区果冻| 免费少妇av软件| 亚洲欧美日韩无卡精品| 男人爽女人下面视频在线观看| 国产伦在线观看视频一区| 色婷婷av一区二区三区视频| 极品教师在线视频| 亚洲精品久久久久久婷婷小说| 欧美成人一区二区免费高清观看| 十八禁网站网址无遮挡 | 精品人妻熟女av久视频| 国产男女超爽视频在线观看| 99九九线精品视频在线观看视频| 欧美一级a爱片免费观看看| 欧美日韩精品成人综合77777| 国产片特级美女逼逼视频| 亚洲最大成人中文| 九色成人免费人妻av| 九九爱精品视频在线观看| 这个男人来自地球电影免费观看 | 国产成人免费无遮挡视频| 国产精品麻豆人妻色哟哟久久| 美女脱内裤让男人舔精品视频| 男女国产视频网站| 免费看av在线观看网站| 欧美最新免费一区二区三区| 天堂8中文在线网| 99热这里只有是精品50| 精品久久久久久电影网| 中文字幕免费在线视频6| 亚洲精品视频女| 性色avwww在线观看| 国产伦在线观看视频一区| 自拍欧美九色日韩亚洲蝌蚪91 | 看免费成人av毛片| 舔av片在线| 日本欧美视频一区| 久久久成人免费电影| 性色av一级| av在线蜜桃| 国产精品久久久久久av不卡| 久久久久国产网址| 午夜免费鲁丝| 日日摸夜夜添夜夜添av毛片| 男女边吃奶边做爰视频| 在线观看人妻少妇| 亚洲av.av天堂| 成人二区视频| 国产精品福利在线免费观看| 少妇熟女欧美另类| 日韩人妻高清精品专区| 国产片特级美女逼逼视频| 最黄视频免费看| 一二三四中文在线观看免费高清| 亚洲在久久综合| 亚洲国产欧美在线一区| 久久久a久久爽久久v久久| 最黄视频免费看| 一级黄片播放器| av女优亚洲男人天堂| 大香蕉久久网| 久久青草综合色| 欧美高清成人免费视频www| 一本色道久久久久久精品综合| 国产v大片淫在线免费观看| 亚洲精品自拍成人| 熟女人妻精品中文字幕| 熟女电影av网| 一区二区三区乱码不卡18| 国产在线免费精品| 久久6这里有精品| 亚洲精品一二三| 啦啦啦在线观看免费高清www| 国产精品久久久久久精品古装| 亚洲精品aⅴ在线观看| 插阴视频在线观看视频| 夫妻性生交免费视频一级片| 18禁在线无遮挡免费观看视频| 国产成人freesex在线| 国产视频首页在线观看| 午夜免费男女啪啪视频观看| 97在线视频观看| 日本欧美视频一区| 久久久久久久久大av| 免费看av在线观看网站| 91aial.com中文字幕在线观看| 国产美女午夜福利| 中文字幕av成人在线电影| 2021少妇久久久久久久久久久| 波野结衣二区三区在线| 六月丁香七月| 久久久久久久久久人人人人人人| 国产精品久久久久久av不卡| 亚洲av二区三区四区| 国产av国产精品国产| 国产成人一区二区在线| 青春草亚洲视频在线观看| 青春草视频在线免费观看| 成人国产av品久久久| 一级二级三级毛片免费看| 一级黄片播放器| 亚洲av中文字字幕乱码综合| 男女啪啪激烈高潮av片| 一级片'在线观看视频| 日本欧美国产在线视频| 日韩电影二区| 肉色欧美久久久久久久蜜桃| 日韩强制内射视频| 九九爱精品视频在线观看| 国产精品国产三级专区第一集| 成年人午夜在线观看视频| 精品熟女少妇av免费看| 国内精品宾馆在线| 高清黄色对白视频在线免费看 | 乱码一卡2卡4卡精品| 九九久久精品国产亚洲av麻豆| 久久久久久久大尺度免费视频| 一区二区三区精品91| 在线免费观看不下载黄p国产| 我的老师免费观看完整版| 一区二区三区乱码不卡18| av福利片在线观看| 国语对白做爰xxxⅹ性视频网站| .国产精品久久| 国产精品久久久久久av不卡| 99精国产麻豆久久婷婷| 国产亚洲精品久久久com| 九九在线视频观看精品| 日韩免费高清中文字幕av| 精品国产露脸久久av麻豆| 一级毛片我不卡| 欧美日韩综合久久久久久| 欧美日本视频| 久久人人爽人人爽人人片va| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 又黄又爽又刺激的免费视频.| 中国三级夫妇交换| 极品少妇高潮喷水抽搐| 国产一区亚洲一区在线观看| 美女中出高潮动态图| 一级片'在线观看视频| 成人综合一区亚洲| 免费av中文字幕在线| 午夜视频国产福利| 欧美性感艳星| 麻豆成人av视频| 综合色丁香网| 女性生殖器流出的白浆| 一区二区三区免费毛片| 久久人妻熟女aⅴ| 国产精品久久久久成人av| av.在线天堂| 日韩免费高清中文字幕av| 亚洲电影在线观看av| 国产在视频线精品| 国产女主播在线喷水免费视频网站| 国产老妇伦熟女老妇高清| 国产精品国产av在线观看| 精品少妇久久久久久888优播| 免费久久久久久久精品成人欧美视频 | 大片免费播放器 马上看| 国产成人freesex在线| 噜噜噜噜噜久久久久久91| 亚洲av成人精品一区久久| www.色视频.com| 欧美成人午夜免费资源| 欧美日韩精品成人综合77777| 麻豆精品久久久久久蜜桃| 久久久亚洲精品成人影院| 99久久精品国产国产毛片| 久久久久久久久久人人人人人人| 超碰av人人做人人爽久久| 男女无遮挡免费网站观看| 日本vs欧美在线观看视频 | 成年免费大片在线观看| 这个男人来自地球电影免费观看 | 日本与韩国留学比较| 亚洲国产最新在线播放| 麻豆成人av视频| 丰满乱子伦码专区| 99久久精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲国产色片| 欧美xxⅹ黑人| 插阴视频在线观看视频| 亚洲经典国产精华液单| 国产成人免费无遮挡视频| 午夜免费男女啪啪视频观看| 99热网站在线观看| 乱系列少妇在线播放| 久久国产精品大桥未久av | 国产精品欧美亚洲77777| 精品人妻一区二区三区麻豆| 亚洲精品aⅴ在线观看| 亚洲综合精品二区| 亚洲国产日韩一区二区| 亚洲精品国产色婷婷电影| 国产精品久久久久久精品古装| 天天躁夜夜躁狠狠久久av| 婷婷色综合www| 大陆偷拍与自拍| 一二三四中文在线观看免费高清| 日韩成人伦理影院| 亚洲av福利一区| 97精品久久久久久久久久精品| 国产精品久久久久久久电影| 国产综合精华液| 久热这里只有精品99| 在线观看一区二区三区| 韩国高清视频一区二区三区| 永久免费av网站大全| 性色avwww在线观看| 久久久久国产网址| 人人妻人人添人人爽欧美一区卜 | 精品人妻视频免费看| 在线 av 中文字幕| av福利片在线观看| 久久6这里有精品| 亚洲久久久国产精品| 丰满乱子伦码专区| 久久国产精品男人的天堂亚洲 | 大香蕉97超碰在线| 欧美xxⅹ黑人| 亚洲精品国产av成人精品| 一个人看的www免费观看视频| 久久 成人 亚洲| 五月开心婷婷网| 亚洲欧美清纯卡通| 国产黄色免费在线视频| 在线亚洲精品国产二区图片欧美 | 男女下面进入的视频免费午夜| 亚洲自偷自拍三级| 午夜免费观看性视频| 国产综合精华液| 人人妻人人澡人人爽人人夜夜| 国产亚洲精品久久久com| 日韩av在线免费看完整版不卡| 色视频www国产| 成人国产麻豆网| 国产日韩欧美在线精品| 成人漫画全彩无遮挡| 性高湖久久久久久久久免费观看| 中文字幕精品免费在线观看视频 | 亚洲精品乱码久久久v下载方式| 国产欧美另类精品又又久久亚洲欧美| 亚洲精华国产精华液的使用体验| 午夜福利视频精品| 我的老师免费观看完整版| 三级国产精品片| 精品国产三级普通话版| 亚洲三级黄色毛片| 久久人人爽av亚洲精品天堂 | 狂野欧美激情性bbbbbb| 美女主播在线视频| 国产成人精品一,二区| 国产高清国产精品国产三级 | 久久久久精品性色| 免费观看a级毛片全部| 精品亚洲成国产av| 国产高清国产精品国产三级 | 亚洲欧美中文字幕日韩二区| 国产精品福利在线免费观看| 精品亚洲成a人片在线观看 | 一个人看的www免费观看视频| 女性被躁到高潮视频| 免费人妻精品一区二区三区视频| 老熟女久久久| a级毛片免费高清观看在线播放| 亚洲国产日韩一区二区| 在现免费观看毛片| 国产精品成人在线| 老师上课跳d突然被开到最大视频| 国国产精品蜜臀av免费| 性高湖久久久久久久久免费观看| 国产精品久久久久久精品电影小说 | 大香蕉97超碰在线| 亚洲欧美精品专区久久| 国产 一区 欧美 日韩| 狂野欧美激情性xxxx在线观看| 国产精品.久久久| 国产淫片久久久久久久久| 少妇人妻一区二区三区视频| 亚洲人成网站高清观看| 欧美日韩视频高清一区二区三区二| 国产精品一区二区在线观看99| 人妻少妇偷人精品九色| 在线观看一区二区三区| h视频一区二区三区| 亚洲色图综合在线观看| 免费观看av网站的网址| 超碰97精品在线观看| 99久久中文字幕三级久久日本| 国产午夜精品一二区理论片| 大片免费播放器 马上看| 精品人妻偷拍中文字幕| 高清毛片免费看| 有码 亚洲区| 成人黄色视频免费在线看| 乱码一卡2卡4卡精品| 舔av片在线| 美女脱内裤让男人舔精品视频| 少妇熟女欧美另类| 日日撸夜夜添| 91狼人影院| 亚洲精品国产av成人精品| 免费人妻精品一区二区三区视频| 老女人水多毛片| 国产精品女同一区二区软件| av.在线天堂| 免费看av在线观看网站| 在线观看三级黄色| 黄色配什么色好看| 精品人妻熟女av久视频| 成人黄色视频免费在线看| 黄色欧美视频在线观看| 18禁在线播放成人免费| 高清午夜精品一区二区三区| 妹子高潮喷水视频| 亚洲国产欧美在线一区| 国产欧美亚洲国产| 国产精品99久久99久久久不卡 | 亚洲精品日韩av片在线观看| 乱码一卡2卡4卡精品| 18禁在线播放成人免费| 久久人妻熟女aⅴ| 国产精品伦人一区二区| 国产亚洲欧美精品永久| 精品酒店卫生间| 欧美精品亚洲一区二区| 精品一区二区免费观看| kizo精华| 一本久久精品| 欧美日韩视频精品一区| 精品视频人人做人人爽| 男男h啪啪无遮挡| 男女啪啪激烈高潮av片| 极品少妇高潮喷水抽搐| 麻豆国产97在线/欧美| 人人妻人人澡人人爽人人夜夜| 一级黄片播放器| 中国三级夫妇交换| 国产在线视频一区二区| 欧美精品亚洲一区二区| 亚洲av男天堂| 一个人看视频在线观看www免费| 国产老妇伦熟女老妇高清| 久久精品久久久久久噜噜老黄| 80岁老熟妇乱子伦牲交| 18禁裸乳无遮挡免费网站照片| 日本av免费视频播放| 欧美97在线视频| 在线观看免费高清a一片| 亚洲一区二区三区欧美精品| 国产亚洲av片在线观看秒播厂| 日韩成人av中文字幕在线观看| 身体一侧抽搐| 美女视频免费永久观看网站| 麻豆国产97在线/欧美| 国产男女超爽视频在线观看| 啦啦啦啦在线视频资源| 国产国拍精品亚洲av在线观看| 久久久久久久久久久免费av| 日韩一区二区三区影片| 亚洲国产欧美在线一区| 亚洲色图av天堂| 国产中年淑女户外野战色| 各种免费的搞黄视频| 九草在线视频观看| 99热6这里只有精品| 十分钟在线观看高清视频www | 夜夜看夜夜爽夜夜摸| 女的被弄到高潮叫床怎么办| 国产精品三级大全| 九九在线视频观看精品| 国产v大片淫在线免费观看| 一级毛片电影观看| 亚洲电影在线观看av| 午夜精品国产一区二区电影| 舔av片在线| 亚洲av日韩在线播放| 久久精品国产亚洲av天美| 超碰av人人做人人爽久久| 成人毛片a级毛片在线播放| 精品人妻一区二区三区麻豆| 久久99热这里只频精品6学生| 男女边摸边吃奶| 在线观看一区二区三区激情| 少妇猛男粗大的猛烈进出视频| 免费人妻精品一区二区三区视频| 亚洲三级黄色毛片| 亚洲国产最新在线播放| av国产免费在线观看| 蜜桃在线观看..|