• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Verification and Correction of Cloud Base and Top Height Retrievals from Ka–band Cloud Radar in Boseong,Korea

    2016-08-12 03:41:36SuBinOHYeonHeeKIMKiHoonKIMChunHoCHOandEunhaLIM
    Advances in Atmospheric Sciences 2016年1期
    關(guān)鍵詞:黑痣嘴唇河口

    Su-Bin OH,Yeon-Hee KIM,Ki-Hoon KIM,Chun-Ho CHO,and Eunha LIM

    1NumericalData Application Division,National Institute ofMeteorological Sciences,KMA,Republic ofKorea

    2Applied Meteorology Research Division,National Institute ofMeteorologicalSciences,KMA,Republic ofKorea

    3Observation Research Division,National Institute ofMeteorological Sciences,KMA,Republic ofKorea

    4National Institute ofMeteorological Sciences,KMA,Republic ofKorea

    Verification and Correction of Cloud Base and Top Height Retrievals from Ka–band Cloud Radar in Boseong,Korea

    Su-Bin OH?1,Yeon-Hee KIM2,Ki-Hoon KIM3,Chun-Ho CHO4,and Eunha LIM3

    1NumericalData Application Division,National Institute ofMeteorological Sciences,KMA,Republic ofKorea

    2Applied Meteorology Research Division,National Institute ofMeteorologicalSciences,KMA,Republic ofKorea

    3Observation Research Division,National Institute ofMeteorological Sciences,KMA,Republic ofKorea

    4National Institute ofMeteorological Sciences,KMA,Republic ofKorea

    In this study,cloud base height(CBH)and cloud top height(CTH)observed by the Ka-band(33.44GHz)cloud radar at the Boseong National Center for Intensive Observation of SevereWeather during fall2013(September–November)were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51)and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased w ith rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer, and COMSwere sim ilar.Thin and low-density cloudswere observedmore effectively by the cloud radar compared w ith the ceilometerand COMS.In casesof rainfallorm issing cloud radar data,the ceilometerand COMSdatawere proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low cloudsoccurredmost frequently.

    cloud radar,ceilometer,satellite retrieval,cloud baseheight,cloud top height,cloud type

    1. Introduction

    Clouds are important in influencing the energy balance, weather,and climate because they absorb and reflect radiantenergy from the Sun and Earth’s surface.By identifying the mechanisms of cloud formation and development,and obtaining information onmeteorological phenomena in advance,theability to predicthigh-impactweathereventscould be improved significantly.Understanding them icrophysical processes of cloudshas particular importance for the prediction of the development of precipitation and the estimation of its amount.For these purposes,quantitative and detailed observations of clouds are necessary,but the spatial characteristicsof clouds imposemany constraintson obtaining such data.

    Many studies have observed clouds using diverse equipment.In the case of satellites and ceilometers,the upper and lower boundaries of clouds are detected,which makes it difficult to identify their internal characteristics and to collect three-dimensional cloud data(Zhong et al.,2011). The method of obtaining measurements of meteorological parameters and cloud-particle shapes by direct sampling of cloudsusing aircraftprovides reliabledataon them icrophysical processes and thermodynam ic structure of clouds,but it is costly and only provides instantaneous data(Aydin and Singh,2004;Yum et al.,2004).Therefore,the observation of cloudsusing a radar system ismoreeffective in obtaining three-dimensionaland continuous data on atmospheric particles.Generally,rainfall radars are designed specifically for observationsof precipitation particlesand thus,they are limited formeasuring cloud particles thatare relatively smaller (Sakuraietal.,2012).

    To detect smaller hydrometeors,cloud radars may be used.Since these radarsuseshorterwavelengths than precipitation radars,they are referred to as short-wavelengthmillimeterwave radar.Rayleigh scattering occurswhen the particle size is significantly smaller than the wavelength and scattering strength is proportional to the biquadrate of the wave.As a result,cloud radars have high sensitivities for cloud size hydrometeors(Moran et al.,1998,Kollias et al., 2007a).They typically havehigh spatial resolution due to thenarrow beam w idth and smallsidelobes.

    Previous studiesusing cloud radar data include analyses of themechanismsof cloud formation and developmentprior to the development of precipitation phenomena(Kobayashi et al.,2011;Sakurai et al.,2012),and cloud climatology based on long-term data(Kolliasetal.,2007b).Furthermore, research has been conducted to improve numerical model predictions by verifying and improving cloud radar data or through parameterization and data assimilation(Mace etal., 1998;Hogan and Illingworth,2000;Ahlgrimm and Forbes, 2014).Moreover,other studies have considered them icrophysical characteristics of clouds such as the liquid water content and size distribution of rain droplets(O’Connor et al.,2005;Zhong et al.,2012)and the classification of ice crystal forms in clouds(Aydin and Singh,2004).Such studiesusing cloud radarhavebeen conductedw idely throughout theworld and a network hasbeen formed through the Atmospheric RadiationMeasurement(ARM)program(Stokesand Schwartz,1994).In the ARMprogram,non-precipitationand weakly precipitating clouds have been observed since 1996 using a vertically pointing Ka-band millimeter-wave cloud radar(Moran etal.,1998)and aW-band ARMcloud radar (W idener and Mead,2004).Xietal.(2010)obtained cloud fraction data using m illimeter-wave cloud radar(MMCR), lightdetection and ranging(LiDAR)and ceilometerdataobserved at the North Slope of Alaska ARMsite for 10 years from 1998 to 2008 and observed their influence on radiative forcing.In Europe,the Cloudnetprogram hasutilized observations by ground-based remote sensing instruments(cloud radar,ceilometer,andmicrowave radiometer)to study clouds forabout15 years(Illingworth etal.,2007).

    The National Institute ofMeteorological Sciencesof Korea installed a Ka-band cloud radar system at the National Center for Intensive Observation of SevereWeather(NCIO) at Boseong in April 2013.It is expected thatanalysis of the m icrophysical characteristics of clouds based on the cloud radardataw illpromoteunderstanding of cloud processesand improvenumericalmodelpredictions.However,before such research can be performed,verification and quality controlof the cloud radar datamustbe completed.

    The resultsof comparative analysesof reflectivity,liquid water content,and cloud height,obtained in previousstudies from cloud radar and other instruments(e.g.,satellites,Li-DAR,andm icro rain radar),have shown thathighly diverse and good quality datacanbeobtained by linkingand combiningmultiple sources(Syrettetal.,1995;Hollarsetal.,2004; O’Connoretal.,2005;Kneifeletal.,2011).

    In particular,cloud base height(CBH)and cloud top height(CTH)are importantparameters in the formation and development processes of clouds,and it is therefore necessary to compare these data to check whether cloud radars are effective in detecting cloud boundaries.Clothiaux et al. (2000)objectively determined thehydrometeorheightdistribution using active remote sensing at the Cloud and Radiation Testbed ARMsite in Oklahomaand at the TropicalWest Pacific site in Darw in,Australia.Cloud boundaries were determined from the returned radar signal using the cloud mask algorithm by Clothiaux et al.(1995).A LiDAR and ceilometerwereutilized to detectoptically thin cloudsand to aid w ith clutter removal.To evaluate the accuracy of ARMMMCR and GMS-5 satellite data over Manus Island,Hollars etal.(2004)compared the cloud top heights calculated from each piece of equipmentaccording to the typeof cloud and precipitation.Oh etal.(2014)performed a comparative analysis of CTHs observed by cloud radar and sensors onboard theCommunication,Ocean,and MeteorologicalSatellite(COMS).They established thatcloud radarwasuseful in detecting the CTH in the absence of precipitation.However, during periods of rainfall,the CTHs obtained by the cloud radar tended to be lower than reality and thus,the expectationwasthatthe radar-derived CTHscould becorrected using COMS data.However,because thatstudy focused solely on the upper boundary of the cloud and analyzed only one case, itwasdetermined thatadditionalanalyseswere required.

    Thisstudywasconducted to verify and correctCBHsand CTHs obtained by the cloud radar at Boseong NCIO in the fall(September–November)of 2013.For comparative verification,CBHsand CTHsobserved by aceilometerand COMS were used,and the effectivenessof the cloud radar datawas exam ined by consideration of theoccurrenceofprecipitation, rainfall rate,and cloud thicknessand density.Based on these results,amethod for thecorrectionof radar-derived CBH and CTH is proposed and,additionally,the characteristicsof the occurrence of cloud typesexam ined.

    2. Data andmethod

    2.1. Ka-band cloud radar

    The Ka-band cloud radar used in this study is installed at the Boseong NCIO and operated by the National Institute of Meteorological Sciences of Korea.Boseong NCIO is located on the southern coast of Korea(34.76°N,127.21°E), and equipped w ith a variety ofmeteorological observational instruments(ceilometers,optical raingauge,micro rain radar, particle size velocity disdrometer,global navigation satellite system,and w ind profi ler)in addition to the cloud radar. The cloud radar transm its33.44GHz pulses in the Ka-band, and it is used for observations of precipitable clouds,nonprecipitable clouds,and low precipitation.By transm itting horizontalwaves and receiving both horizontal and vertical waves,the cloud radar produces reflectivity,radial velocity, spectrum w idth,linear depolarization ratio,and signal-tonoise ratio data.It isdesigned to observe cloudsof up to 15-km in heightw ith a resolution of 15m.Additionaldetailsof its characteristicsare provided in Table 1.

    Cloudswere defined using the co-polar vertical reflectivity obtained by the cloud radar from September to November 2013(Fig.1a).Overall,6.27%of the cloud radar datawere m issing(12.64%in September,2.96%in October,and 3.33% in November)because of a variety of reasons including the suspension of observations(from 7 to 8 October 2013)because of strong w inds.To elim inate ground clutter,noise, and non-cloud echoes,clouds were defined as echoes w ithreflectivity values of greater than?30 dB Z and thicknesses of greater than 1.5 km.The reflectivity threshold of?30 dB Z has been reported previously as them inimum value of radar reflectivity for cirrus clouds(Brown et al.,1995),and the thickness threshold of 1.5 km was determ ined based on the average thickness of cirrus clouds observed by LiDAR (Fuller etal.,1988;Kentand Schaffner,1988).In addition, to removenon-meteorologicalecho,like thatgenerated by insects,which appearsw ith reflectivity values lower than?30 dB Z and atheightsof lessthan2 km,thehydrometeorboundaries were determ ined using the threshold of reflectivity of?30 dB Z and a signal to noise ratio(SNR)of5 dB.A lthough not shown in this paper,when these thresholdswere set to a reflectivity lower than?30 dB Z and an SNR lower than 5 dB,itwashard to detect theboundariesaccurately due to the influence of the noise generated on the ground:and when it was set to values greater than the thresholds,the top height wasestimated lower and the base heightgreater.The CBHs and CTHs were defined as the lowest and highest altitudes of the clouds,respectively(Fig.1b).Multi-layer cloudswere considered as single entities and cloud thicknesseswere defined as the differencebetween the CBH and CTH.

    Table 1.Characteristicsof the Ka-band cloud radar at the Boseong NCIO.________________________________________________

    2.2. Ceilometerand COMS

    For comparative analysis,clouds were defined using a ceilometer and COMS from September to November 2013. The CBHswere observed using a Vaisala CL51 ceilometer, which uses LiDAR technology to transm itpulsed waves vertically and receive backscattered signals reflected by cloud drops.Thisceilometerhasa rangeof13 km witha10-m resolution for cloud detection.TheCTHswereobtained using the COMSmeteorologicaldata processing system,which simultaneously employs single-channel and radiation-ratiomethods(METRI/KMA,2009).The single-channelmethod calculates the cloud top temperature by converting the brightness temperature of COMS to cloud top pressure.When thismethod is employed,the cloud top pressures of semitransparent clouds are calculated to be higher than their actual values.Therefore,this is corrected using the radiationratiomethod.The radiation-ratiomethod involves applying thebrightness temperaturesof thewatervapor(6.75μm)and infrared-1 channels toobtain thecloud top pressure.The temporal resolution of the CTHs observed by COMS is 15m in and the spatial resolution is4 km.In thisstudy,the dataat00 m inwereextracted and usedandwereanalyzed using thegrid data(34.76°N,127.21°E)nearest to Boseong Center.The results of these twomethodswere compared to select the optimum cloud top pressure,from which CTHswere calculated using thehypsometric equation.

    In thisstudy,targets forwhich CBHsand CTHswereobserved by both the ceilometer and COMS were defined as clouds.Furthermore,cases for which the cloud radar data contained missing values were excluded from further analysis.The CBHs and CTHs obtained using the ceilometer–COMSdatawere compared w ith the cloud radar data.

    3. Com parative verification of cloud radar data

    3.1. Comparison ofcloud base and top heightformations

    3.1.1. Average cloud base and top heights

    Table 2 shows the CBHs,CTHs,and cloud thicknesses observed by the cloud radarand ceilometer–COMS.The differencebetween theaverage CBH and CTH based on theobservations from the cloud radar(363 cases)and ceilometer–COMS(510 cases),showed that the cloud-radar-derived CBH and CTH were higher by 0.75 and 0.36 km,respectively,and that the radar-derived averagecloud thicknesswas 0.39 km smaller.However,for the 285 cases in which the cloudswere observed simultaneously by the cloud radar and ceilometer–COMS,itwas found that the radar-derived CBH and CTH was 0.11 km higher and 0.73 km lower,respectively,and thatthe radar-derived cloud thicknesswas0.84 km smaller.These cases showed only slightdifferencesbetweenthe data obtained by the cloud radar and ceilometer–COMS. Conversely,when theCBH and CTHwereobserved by either the cloud radar or ceilometer–COMS,the differences in the datawere relativelymore significant.For instance,observationsby thecloud radar(78 cases)showed averageCBHsand CTHs of 5.04 and 7.54 km,respectively,indicatingmainly high cloudsw ith thicknessesof about2.5 km.However,observationsby ceilometer–COMS(225 cases)showed average CBHsand CTHs of 2.13 and 5.38 km,respectively,indicatingmainly low cloudsw ith thicknessesof3.25 km.Although the average CBHs and CTHs were sim ilar when cloud observations were made concurrently by the cloud radar and ceilometer–COMS,there were differences between the frequenciesofoccurrencedetermined forvarying altitudes.The frequency of occurrence of CBH decreased gradually from thesurface to thealtitudeof10 km in the ceilometerobservations,whereas the frequency of occurrencewas concentrated below the altitude of 1 km in the cloud radar observations (Fig.2a).Excluding the fact that the frequency of occurrence of cloudsw ith top heightsof 2–3 km washigher in the cloud radarobservations,sim ilar distributionswere observed atmostaltitudes(Fig.2b).

    Table 2.Mean valuesof CBH,CTH,and cloud thicknessobserved by cloud radar(CR)and ceilometer–COMS(CC)of total,simultaneous, and sole(CR or CC)cases.

    3.1.2. Precipitation events

    Fig.1.(a)Time-height cross section of reflectivity(units:dB Z)observed by cloud radar from September to November2013 and(b)cloud base(crosses)and top(circles)heights(units:km) observed by cloud radar(CR;blue)and ceilometer-COMS(Ceil;red).Thegray and green shading indicatesmissing valuesand rainfall cases,respectively.MDSmeansminimum detectable signal.

    Fig.1.(Continued.)

    In order to analyze the reason for thedifferencesbetween the cloud radar and ceilometer–COMS data,the CBHs and CTHs were compared based on whether precipitation had been present(Fig.3).The cases in which rainfallwas detected by themicro rain radar at the Boseong NCIO were defined as precipitation cases(125 cases),and the remainder defined asnon-precipitation cases(160 cases).TheCBHsobtained by thecloud radarwereeithersimilar to orhigher than the values obtained by the ceilometer in non-precipitation cases(Fig.3a).However,in precipitation cases,the CBHs observed by the cloud radarwere sim ilar to ground level,and for this reason,the frequency of low CBH was shown to be high in the cloud radar data,as shown in Fig.2a.For the precipitation cases,the CTHs derived by cloud radar were sim ilar to or lower than observed by COMS(Fig.3b).

    Fig.2.Frequency of occurrence of cloud(a)base and(b)top heightsobserved by cloud radar(black)and ceilometer–COMS(gray).

    Fig.3.Scatter plotsof cloud(a)baseand(b)top heights(km)observed by cloud radarand ceilometer–COMS. The crossesand circles indicate non-precipitation and precipitation cases,respectively.

    The impact of precipitation could change depending on rainfall intensity.The differences between the CBHs and CTHsobtained by thecloud radarand ceilometer–COMSand them icro rain radar at 200 m at varying rainfall rateswere examined(Fig.5).The results showed that at higher rainfall rates,CTHsobserved by the cloud radarwere lower than COMS(Fig.5b).Generally,the CBHsobserved by the cloud radarwere lower than the ceilometer,but the difference decreased as the rainfall rate increased(Fig.5a).This can be attributed to the ceilometeralso being aground-based instrument.In cases of heavy precipitation(>30 mm h?1),the CBHs observed by the ceilometerwere close to the ground, aswas the case for the cloud radar.

    3.1.3. Cloud thicknessand density

    Even in the non-precipitation cases,there were differences between the CBHs and CTHs observed by the cloud radar and ceilometer–COMS(Fig.3).In order to determine the cause,the differences between the CBHs and CTHs observed by the cloud radarand ceilometer–COMSwereexam-ined according to cloud thickness(Fig.6).Cloud thickness was calculated using the cloud radar data.When the cloud was thick,the CBH and CTH values were relatively sim ilarbetween the cloud radarand ceilometer–COMS,but there weresignificantdifferences for thin cloud.

    Fig.4.Time-seriesofhourly rainfall rate(R;units:mm h?1)observed by MRR(upperpanels)and time–height cross sections of reflectivity(units:dB Z)and cloud base(triangles)and top(circles)height(lower panels) observed by cloud radar(CR)and ceilometer–COMS(Ceil)pn(a)5–6 September 2013 and(b)24 November 2013.

    Fig.5.Scatterplotsand box plotsof rainfall rate(units:mm h?1)observed by MRR versusdifferencesof cloud (a)baseand(b)top heights(units:km)between cloud radar(CR)and ceilometer–COMS(Ceil).Boxes denote the 25th and 75th percentile positions,and the lines inside the box show themedian;thewhiskers denote the 10th and 90th percentile;outliersare indicated by the 5th and 95th percentile positions.

    The cloud radar observations of thin and high clouds showed higher sensitivity(Fig.7a).The reason for this can be conjectured based on the observational characteristics of COMS:in the casesof thin and high clouds,theenergy em itted from below the cloud is observed by the satellite,which can lead to a higher brightness temperature in the infrared channel than theactualcloud top temperature.However,even w ith thin clouds,similar CBHsand CTHswere observed by the cloud radarand ceilometer–COMS in some cases(Fig.6).

    Fig.6.Scatter plotsand box plotsof cloud thickness(units:km)versusdifferencesof(a)CBHsand(b)CTHs (units:km)between cloud radar(CR)and ceilometer–COMS(Ceil).Boxesdenote the25th and 75th percentile positions,and the lines inside the box show themedian;the whiskers denote the 10th and 90th percentile; outliersare indicated by the 5th and 95th percentile positions.

    Fig.7.Time-heightcrosssectionsof reflectivity(units:dB Z)and cloud base(triangles)and top(circles)height observed by cloud radar(CR)and ceilometer–COMS(Ceil)on(a)5(~1500 UTC)October 2013 and(b)6 (1600UTC)to 7(0300UTC)October2013.

    A lthough the cloudswere thin in such cases,the cloud radar reflectivity was greater than 0 dB Z(Fig.7b).The reflectivity of the radar is a log of the ratio of the number of water dropletsw ith diameter of 1mm to the unit volume(1m3); therefore,it can be said that it provides information on the density of the cloud particles.Even in the caseof thin clouds, if the cloud density ishigh,they w illbe observed effectively by ceilometer–COMS.

    3.2. Comparison ofcloud types

    CBH and CTH data from thecloud radarand ceilometer–COMS were used to classify the cloud types observed at Boseong NCIO in the fallof2013,based on the classification method of Kolliasetal.(2007b)(Table3).Using thismethod, cloudswere classified ashigh,middle,and low depending on their CBHs and CTHs.Additionally,low cloudswere subdivided into non-precipitable and precipitable clouds,and then the precipitable clouds subdivided further into shallow and deep precipitable clouds according to their CTHs.The frequency of occurrence during the entire analysis period of clouds observed by the cloud radar was the highest for low clouds(49.59%),followed by m iddle clouds(31.68%),and high clouds(18.73%),as shown in Fig.8a.With respect to themonthly data,the aforementioned frequency patternwasalso observed in September and November,whereas the frequency of occurrence of low clouds was lower than the other two types in October.Similar to the cloud radar data, theceilometer–COMSdata revealed that the frequency ofoccurrence was highest for low clouds(61.37%),followed by m iddle clouds(31.18%),and high clouds(7.45%),as shown in Fig.8b.However,significant differenceswere found regarding the sub-classifications of low clouds.For instance, deep precipitable cloudswere observedmainly by the cloud radar(Fig.8a),whereas non-precipitable clouds were observedmainly by ceilometer–COMS(Fig.8b).

    張清元覺得,唐小芹是孤兒院里最漂亮的女孩。她比那幫小家伙要大一些,但比張清元要小。黎院長就叫她小芹子。小芹子是一個從下江逃難來的女人留在河口的。張清元第一次見到小芹子是在河口。他之所以能記住小芹子,是因為她的嘴唇上長有一顆鮮亮突起的黑痣,圓圓的。他聽大人們說過,那顆痣就叫美人痣,乍一看有些刺眼,但看過之后就覺得這女孩漂亮,過目難忘。

    Table 2.Theclassificationof cloud typesusing CBH and CTH(Kolliasetal.,2007b).

    Cases of precipitable and non-precipitable cloud types were also exam ined(not shown).In the case of precipitable clouds,low cloudswere observedmostly by the cloud radar (92.8%)and ceilometer–COMS(76.8%).However,different frequencies of cloud type were observed in the cases of non-precipitable clouds between the cloud radar(middle 46.25%>low 30.63%>high 23.13%)and ceilometer–COMS(low 43.75%>m iddle 41.25%>high 15.00%). The resultsof sub-classifying the low clouds showed that,in theeventof precipitation,deep precipitable clouds(97.41%) were observed mainly by the cloud radar,whereas the frequency of non-precipitable clouds(94.79%)was highest in the ceilometer–COMS observations.In the event of nonprecipitation,the cloud radar did not observe any one particular cloud type more frequently,while non-precipitable clouds(100%)were still observed w ith high frequency by the ceilometer–COMS.

    This could be explained by the fact that,in the eventof precipitation,theCBH isobserved to beclose to ground level by the cloud radar,whereas theCBH observed by ceilometer–COMSisgreater than 200m.However,theCBH observed by the cloud radar is lower than theactualheightbecauseof the influence of the precipitation and thus,there is a need for a new setof cloud classification criteria for cases in which the CBH values require correction based on ceilometer–COMS data.

    4. Cloud radar data correction and characteristic analysis

    A lthough the cloud radarmade high-sensitivity observations in the absence of precipitation,dataobtained during the occurrenceof precipitationwereunreliable.Thus,in casesofprecipitation ormissing cloud radar data,the CBH and CTH values obtained from the cloud radar were corrected using ceilometer–COMSdata(Fig.9).

    Fig.8.Occurrence countsof cloud typesobserved by(a)cloud radarand(b)ceilometer–COMS.

    Fig.9.Time–height cross section of reflectivity(units:dB Z)and cloud base and top heightusing corrected cloud radardata.The gray and green shading indicatesm issing valuesand rainfallcases,respectively.

    Using the corrected CBH and CTH data,the cloud types were re-classified.Similar to the pre-correction cloud classification results,the cloud types in decreasing order of frequency of occurrencewere:low clouds(54.55%)>m iddle clouds(32.59%)>high clouds(12.86%)(Fig.10).Data obtained in October showed that the frequency of occurrence of low clouds increased follow ing the correction,whichwas attributed to the occurrence of low cloudsmainly under con -ditions of strong w inds that resulted inm issing data values. The resultof sub-classifying the low clouds(notshown)was sim ilar to the result obtained from ceilometer–COMS(Fig. 8b).This was thought to be because low clouds occurred most frequently during precipitation events,whichmeantthat cloud radardatawere substituted by ceilometer–COMSdata. In such cases,the reference value for theCBH(200m)in the sub-classification of low clouds was changed appropriately to the corrected data.Based on the corrected data,the average CBH of 1.27 km was used during precipitation events for the sub-classification of low clouds,and the results are shown in Fig.10.The cloud typew ith the highest frequency ofoccurrencewasdeep precipitable clouds,followed by nonprecipitable clouds,and shallow precipitable clouds.

    5. Summary and conclusions

    Fig.10.As in Fig.8,butusing corrected cloud radar data.

    In this study,the CBHs and CTHs observed by the Kaband cloud radar at the Boseong NCIO in the fall of 2013 (September–November)were verified and corrected.For the purposesof thisstudy,a cloudwasdefined as cases inwhich the cloud radar observed reflectivity values of greater than?30 dB Z and w ith a thickness of 1.5 km.For comparison, cases in which the CBH observed by the ceilometer and the CTH observed by COMSoccurred concurrentlyweredefined asa cloud.

    First,theCBH and CTH dataobtained by the cloud radar and ceilometer–COMSwere compared.In casesofprecipitation,the CBHsand CTHsobserved by the cloud radar tended to be lower than theactualheights.The reason for this could beexplained by theobservational characteristicsof the cloud radar.Cloud radar is a ground-based observation system, which isaffected bymeteorological phenomena occurring in the lower levelsof the atmosphere.Of particularnote,as the cloud radarusesam illimeter-wavelength signal to detect the small cloud particles,signal attenuation occurs in the presence of raindrops.For this reason,the radar-derived CBHs were observed to be closer to the ground,while the CTHs wereobserved to be lower than theactualheights.In theabsence of precipitation,the CBHs and CTHs observed by the cloud radarand ceilometer–COMSweresim ilar.Thin or lowdensity cloudswere observedmore effectively by the cloud radar comparedw ith ceilometer–COMS.

    The resultof classifying the cloud types observed by the cloud radarand ceilometer–COMSshowed thatthe frequency ofoccurrencewashighest for low clouds,followed bymiddle clouds,and high clouds.Sub-classification of low cloudsoccurring in precipitation cases showed that deep precipitable clouds were observed mainly by the cloud radar,whereas non-precipitablecloudswereobservedmainly by ceilometer–COMS.The cloud radardataobtained during theoccurrence of precipitation could notbe considered reliable.Thus,itwas deemed necessary to correct the cloud radar data using the ceilometer–COMS data and to establish new criteria for the sub-classification of cloud in such cases.

    Based on these results,for casesof precipitation orm issing data,the cloud radar data were corrected using the ceilometer–COMS data and re-classified using the new reference value.The reference value for the CBH(200m)was changed to 1.27 km for the sub-classification in casesof precipitation.

    The results of this study show that cloud radar could effectively provideadescription of cloud boundaries in theabsenceof precipitation.However,cloud radardataaredeemed unreliable in the presence of precipitation.In such cases,it is proposed that the radar data be corrected using data obtained from otherobservationalsystems such asa ceilometer or satellite.It isexpected that future research involving analysesof the liquidwatercontentand rain-rateestimation,w ith a focus on themicrophysical characteristics of clouds,w ill contribute to the understanding of themechanismsand characteristicsof cloud formation.

    Acknow ledgements.This study was supported by the principal project,“Development and application of technology for weather forecasting(NIMR-2012-B-1)”of the National Institute of Meteorological Sciences of the Korea Meteorological Adm inistration.

    REFERENCES

    Ahlgrimm,M.,and R.Forbes,2014:Improving the representation of low clouds and drizzle in the ECMWFmodel based on ARMobservations from the Azores.Mon.Wea.Rev.,142, 668–685.

    Aydin,K.,and J.Singh,2004:Cloud ice crystal classification using a95–GHz polarimetric radar.J.Atmos.Oceanic Technol., 21,1679–1688.

    Brown,P.R.A.,A.J.Illingworth,A.J.Heymsfield,G.M.Mc-Farquhar,K.A.Browning,and M.Gosset,1995:The role of spacebornemillimeter-wave radar in theglobalmonitoring of ice cloud.J.Appl.Meteor.,34,2346–2366.

    Clothiaux,E.E.,M.A.Miller,B.A.A lbrecht,T.P.Ackerman,J. Verlinde,D.M.Babb,R.M.Peters,and W.J.Syrett,1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties.J.Atmos.Oceanic Technol.,12,201–229.

    Clothiaux,E.E.,T.P.Ackerman,G.G.Mace,K.P.Moran,R.T. Marchand,M.A.Miller,and B.E.Martner,2000:Objective determination of cloud heights and radar reflectivities using a combination of active remote Sensors at the ARMCART Sites.J.Appl.Meteor.,39,645–665.

    Fuller,W.H.,M.T.Osborn,andW.M.Hunt,1988:48–inch lidar aerosolmeasurements taken at the Langley research center–May 1974 to December 1987.NASAReference Publication, 1209.

    Hogan,R.J.,and A.J.Illingworth,2000:Deriving cloud overlap statistics from radar.Quart.J.Roy.Meteor.Soc.,126,2903–2009.

    Hollars,S.,Q.Fu,J.Comstock,and T.Ackerman,2004:Com-parison of cloud–top height retrievals from ground–based 35 GHzMMCR and GMS–5 satelliteobservationsatARMTWP Manus site.Atmospheric Research,72,169–186.

    Illingworth,A.J.,and Coauthors,2007:Cloudnet.Bull.Amer.Meteor.Soc.,88,883–898.

    Kent,G.S.,and S.K.Schaffner,1988:Analysis of atmospheric dynam ics and radiative properties for understanding weather and climate,task 1,10μm backscattermodeling.STC Tech. Rep.2175,prepared for NASA under contractNAS1–18252.

    Kneifel,S.,M.Maahn,G.Peters,and C.Simmer,2011:Observation of snow fallw ith a low–power FM–CW K–band radar (Micro Rain Radar).Meteor.Atmos.Phys.,113,75–87.

    Kobayashi,F.,T.Takano,and T.Takamura,2011:Isolated cumulonimbus initiation observed by 95–GHz FM–CW radar,X–band radar,and photogrammetry in the Kanto region,Japan. SOLA,7,125–128.

    Kollias,P.,E.E.Clothiaux,M.A.Miller,B.A.A lbrecht,G.L. Stephens,and T.P.Ackerman,2007a:Millimeter-wavelength radars:New frontier in atmospheric cloud and precipitation research.Bull.Amer.Meteor.Soc.,88,1608–1624.

    Kollias,P.,G.Tselioudis,and B.A.A lbrecht,2007b:Cloud climatology at the Southern GreatPlainsand the layerstructure, drizzle,and atmosphericmodesof continentalstratus.J.Geophys.Res.,112,D09116,doi:10.1029/2006JD007307.

    Mace,G.G.,C.Jakob,and K.P.Moran,1998:Validation of hydrometeoroccurrence predicted by the ECMWFmodelusing millimeter wave radar data.Geophys.Res.Lett.,25,1645–1648.

    METRI/KMA,2009:Development of meteorological data processing system of communication,ocean andmeteorological satellite.846 pp.

    Moran,K.P.,B.E.Martner,M.J.Post,R.A.Kropfl i,D.C.Welsh, and K.B.Widener,1998:An unattended cloud-profi ling radar for use in climate research.Bull.Amer.Meteor.Soc., 79,443–455.

    O’Connor,E.J.,R.J.Hogan,and A.J.Illingworth,2005:Retrieving stratocumulusdrizzleparametersusing Doppler radarand lidar.J.Appl.Meteor.,44,14–27.

    Oh,S.B.,H.Y.Won,J.C.Ha,and K.Y.Chung,2014:Comparison of cloud top heightobserved by a Ka–band cloud radar and COMS.Atmosphere,24,39–48.(in Korean)

    Sakurai,N.,K.Iwanam i,T.Maesaka,S.I.Suzuki,S.Shim izu,R. Misumi,D.S.Kim,and M.Maki,2012:Case study ofmisoscale convective echo behaviorassociated w ith cumulonimbus developmentobserved by Ka–band Doppler radar in the Kanto region,Japan.SOLA,8,107–110.

    Stokes,G.M.,and S.E.Schwartz,1994:The Atmospheric Radiation Measurement(ARM)Program:Programmatic Background and Design of theCloud and Radiation TestBed.Bull. Amer.Meteor.Soc.,75,1201–1221.

    Syrett,W.J.,B.A.A lbrecht,and E.E.Clothiaux,1995:Vertical cloud structure in am idlatitude cyclone from a94–GHz radar. Mon.Wea.Rev.,123,3393–3407.

    Widener,K.B.,and J.B.Mead,2004:W-band ARMcloud radar–Specifications and design.Proc.14th ARMScience Team Meeting,A lbuquerque,NM,Department of Energy/Office of Science.[Available online athttp://www.arm.gov/publications/proceedings/conf14/.]

    Xi,B.K.,X.Q.Dong,P.Minnis,and M.M.Khaiyer,2010:A 10 year climatology of cloud fraction and vertical distribution derived from both surface and GOES observations over the DOEARMSGPsite.J.Geophys.Res.,115,D12124,doi: 10.1029/2009JD012800.

    Yum,S.S.,S.N.Oh,J.Y.Kim,C.K.Kim,and J.C.Nam,2004: Measurements of cloud droplet size spectra using a forward scattering spectrometer probe(FSSP)in the Korean peninsula,Journalofthe Korean Meteorological Society,40,623–631(in Korean).

    Zhong,L.Z.,L.P.Liu,S.Feng,R.Ge,and Z.Zhang,2011:A 35–GHz polarimetric Doppler radar and its application for observing clouds associated w ith typhoon Nuri.Adv.Atmos. Sci.,28,945–956,doi:10.1007/s00376-010-0073-5.

    Zhong,L.Z.,L.P.Liu,M.Deng,and X.Zhou,2012:Retrievingm icrophysical properties and airmotion of cirrus clouds based on the Doppler momentsmethod using cloud radar. Adv.Atmos.Sci.,29,611–622,doi:10.1007/s00376-011-0112-x.

    17 February 2015;revised 12 June2015;accepted 17 July 2015)

    :Oh,S.-B.,Y.-H.Kim,K.-H.Kim,C.-H.Cho,and E.Lim,2016:Verification and correction of cloud base and top height retrievals from Ka-band cloud radar in Boseong,Korea.Adv.Atmos.Sci.,33(1),73–84,

    10.1007/s00376-015-5058-y.

    ?Corresponding author:Su-Bin OH

    Email:ohsubin@korea.kr

    猜你喜歡
    黑痣嘴唇河口
    年紀(jì)大了 嘴唇癟了
    可愛的黑痣
    嘴唇干裂怎么辦
    小小黑痣 暗藏危機
    保健與生活(2018年3期)2018-04-19 21:49:16
    他們?yōu)槭裁催x擇河口
    河口,我們的家
    特殊的河口水
    河口
    唇亡齒寒
    環(huán)鉆去黑痣250例臨床觀察
    久久精品综合一区二区三区| 久久精品91蜜桃| 又黄又粗又硬又大视频| 我的老师免费观看完整版| 久久亚洲精品不卡| 日本a在线网址| 女警被强在线播放| 夜夜躁狠狠躁天天躁| h日本视频在线播放| 国产午夜精品久久久久久一区二区三区 | 人妻丰满熟妇av一区二区三区| h日本视频在线播放| 成人三级黄色视频| 叶爱在线成人免费视频播放| bbb黄色大片| 夜夜躁狠狠躁天天躁| 亚洲成人免费电影在线观看| 国产精品久久久人人做人人爽| 黄色视频,在线免费观看| 午夜精品久久久久久毛片777| 99久久成人亚洲精品观看| 亚洲国产精品合色在线| avwww免费| 观看美女的网站| 国产麻豆成人av免费视频| 亚洲精品乱码久久久v下载方式 | 午夜福利视频1000在线观看| 亚洲av成人精品一区久久| 国产精品1区2区在线观看.| 亚洲成人中文字幕在线播放| 欧美一区二区亚洲| 岛国在线免费视频观看| 午夜福利视频1000在线观看| 老司机午夜福利在线观看视频| 久久伊人香网站| 99精品在免费线老司机午夜| 免费无遮挡裸体视频| 999久久久精品免费观看国产| av在线蜜桃| 91久久精品电影网| 亚洲专区中文字幕在线| av中文乱码字幕在线| 亚洲激情在线av| 久久久精品欧美日韩精品| 久久6这里有精品| 一二三四社区在线视频社区8| 91九色精品人成在线观看| 亚洲在线观看片| 99久久精品一区二区三区| 成人永久免费在线观看视频| 99久久99久久久精品蜜桃| 欧美日韩综合久久久久久 | 国产精品亚洲美女久久久| 91久久精品电影网| 99在线人妻在线中文字幕| 欧美乱妇无乱码| 欧美大码av| 欧美日韩黄片免| 日韩人妻高清精品专区| 欧美性猛交╳xxx乱大交人| 国产精品美女特级片免费视频播放器| 中文字幕人妻熟人妻熟丝袜美 | 舔av片在线| 国产午夜精品久久久久久一区二区三区 | 亚洲人成网站高清观看| 欧美一级a爱片免费观看看| 成人精品一区二区免费| 757午夜福利合集在线观看| 每晚都被弄得嗷嗷叫到高潮| 人人妻,人人澡人人爽秒播| 黄色女人牲交| 九九热线精品视视频播放| 亚洲精品影视一区二区三区av| 日韩有码中文字幕| 欧美中文日本在线观看视频| 亚洲在线自拍视频| 欧美乱色亚洲激情| 一区二区三区激情视频| 精华霜和精华液先用哪个| 搡女人真爽免费视频火全软件 | 精品国内亚洲2022精品成人| 日韩人妻高清精品专区| 最近最新中文字幕大全免费视频| 精品久久久久久久久久久久久| av天堂中文字幕网| 欧美黄色片欧美黄色片| 无人区码免费观看不卡| 国产精品99久久久久久久久| 国产主播在线观看一区二区| 国产精品嫩草影院av在线观看 | 日韩欧美国产在线观看| 小说图片视频综合网站| 天堂网av新在线| 久久人妻av系列| 日本在线视频免费播放| 日韩欧美在线乱码| 在线a可以看的网站| 12—13女人毛片做爰片一| 91av网一区二区| 99在线人妻在线中文字幕| 免费搜索国产男女视频| 操出白浆在线播放| 亚洲不卡免费看| 国产亚洲精品综合一区在线观看| 女同久久另类99精品国产91| 国产爱豆传媒在线观看| 国产精品一区二区三区四区久久| 久9热在线精品视频| 99久久精品一区二区三区| 欧美+亚洲+日韩+国产| 国产精品爽爽va在线观看网站| 国产日本99.免费观看| 欧美+日韩+精品| 午夜a级毛片| 久久亚洲真实| 国产激情偷乱视频一区二区| 中文字幕人成人乱码亚洲影| 午夜精品在线福利| 99久久99久久久精品蜜桃| 91av网一区二区| 国产精品 国内视频| 中文在线观看免费www的网站| 精品国产超薄肉色丝袜足j| 老汉色av国产亚洲站长工具| 国产精品亚洲av一区麻豆| 亚洲色图av天堂| 少妇丰满av| 3wmmmm亚洲av在线观看| 亚洲成人中文字幕在线播放| 国产成年人精品一区二区| 性色av乱码一区二区三区2| 国产成人av教育| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产欧美网| 亚洲一区二区三区色噜噜| 国产黄片美女视频| 国产一级毛片七仙女欲春2| 18禁黄网站禁片免费观看直播| 亚洲精品国产精品久久久不卡| 超碰av人人做人人爽久久 | 91麻豆av在线| 国产熟女xx| 99久久久亚洲精品蜜臀av| 他把我摸到了高潮在线观看| 国产伦人伦偷精品视频| 久久久久性生活片| 成人一区二区视频在线观看| 日韩免费av在线播放| 听说在线观看完整版免费高清| 久久草成人影院| 黄色成人免费大全| 亚洲av电影在线进入| 一卡2卡三卡四卡精品乱码亚洲| 一级黄色大片毛片| 露出奶头的视频| 成熟少妇高潮喷水视频| 欧美一区二区精品小视频在线| 黄色视频,在线免费观看| 亚洲国产中文字幕在线视频| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 国产成人啪精品午夜网站| 在线天堂最新版资源| 国产一区二区在线av高清观看| 在线看三级毛片| 欧美激情久久久久久爽电影| 九色成人免费人妻av| e午夜精品久久久久久久| 99久久九九国产精品国产免费| 久久中文看片网| 亚洲成人久久爱视频| 色综合欧美亚洲国产小说| 日韩国内少妇激情av| 黄色女人牲交| 熟女人妻精品中文字幕| 成人国产综合亚洲| АⅤ资源中文在线天堂| 人妻久久中文字幕网| 国产精品久久久久久久电影 | netflix在线观看网站| 国产一区在线观看成人免费| 18禁黄网站禁片午夜丰满| www日本在线高清视频| 一区福利在线观看| 99久久精品国产亚洲精品| av天堂中文字幕网| 国产成人福利小说| 日韩欧美在线二视频| ponron亚洲| 亚洲欧美一区二区三区黑人| 日日夜夜操网爽| 18禁黄网站禁片免费观看直播| 国产亚洲av嫩草精品影院| 人人妻人人看人人澡| 国产伦精品一区二区三区视频9 | 九九在线视频观看精品| 亚洲狠狠婷婷综合久久图片| 欧美国产日韩亚洲一区| 亚洲精品一区av在线观看| 老鸭窝网址在线观看| av专区在线播放| 97人妻精品一区二区三区麻豆| 国产成人影院久久av| 麻豆一二三区av精品| eeuss影院久久| 亚洲成av人片免费观看| 天天一区二区日本电影三级| 亚洲av电影在线进入| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩无卡精品| 欧美日韩一级在线毛片| 成人国产综合亚洲| 偷拍熟女少妇极品色| 中文字幕人妻熟人妻熟丝袜美 | 在线播放国产精品三级| 午夜福利18| 久久九九热精品免费| 好看av亚洲va欧美ⅴa在| 国产精品久久久人人做人人爽| 精品无人区乱码1区二区| 熟妇人妻久久中文字幕3abv| 男人舔奶头视频| 亚洲精品国产精品久久久不卡| 一级黄片播放器| 内射极品少妇av片p| 丁香欧美五月| 精品久久久久久久末码| 欧洲精品卡2卡3卡4卡5卡区| 少妇高潮的动态图| 国产精品久久久人人做人人爽| 嫩草影院入口| 人妻丰满熟妇av一区二区三区| 日韩精品中文字幕看吧| 香蕉av资源在线| 亚洲欧美日韩高清专用| 麻豆一二三区av精品| 国产精品久久久久久亚洲av鲁大| 久久久久久大精品| 亚洲人与动物交配视频| 免费在线观看日本一区| 成年女人看的毛片在线观看| 免费电影在线观看免费观看| 国产成人影院久久av| 亚洲欧美日韩高清在线视频| 一区二区三区高清视频在线| 亚洲熟妇熟女久久| 精品一区二区三区视频在线 | www.999成人在线观看| 欧美色视频一区免费| 成人欧美大片| 亚洲精品在线观看二区| 免费观看人在逋| 校园春色视频在线观看| 亚洲色图av天堂| 国产一区二区亚洲精品在线观看| 久久人妻av系列| 啦啦啦免费观看视频1| 亚洲人与动物交配视频| 不卡一级毛片| 桃红色精品国产亚洲av| 特级一级黄色大片| 淫秽高清视频在线观看| 国产av麻豆久久久久久久| av欧美777| 亚洲欧美激情综合另类| 久久久久久人人人人人| 真人一进一出gif抽搐免费| 国产黄片美女视频| 女人十人毛片免费观看3o分钟| 最近最新中文字幕大全电影3| 亚洲一区二区三区色噜噜| 成年女人永久免费观看视频| 成人性生交大片免费视频hd| 天堂av国产一区二区熟女人妻| 2021天堂中文幕一二区在线观| 男女床上黄色一级片免费看| 亚洲欧美日韩高清专用| 高潮久久久久久久久久久不卡| 日韩人妻高清精品专区| 一夜夜www| 欧美另类亚洲清纯唯美| 欧美日韩综合久久久久久 | 国产综合懂色| 国产免费一级a男人的天堂| 久久久久久国产a免费观看| 欧美色欧美亚洲另类二区| 国产精品国产高清国产av| 色综合亚洲欧美另类图片| 久久九九热精品免费| 日韩欧美在线乱码| 久久精品国产自在天天线| 亚洲精品久久国产高清桃花| 天堂网av新在线| 国产男靠女视频免费网站| 成人午夜高清在线视频| 制服人妻中文乱码| 国产精品影院久久| 熟女人妻精品中文字幕| ponron亚洲| 毛片女人毛片| 九九在线视频观看精品| www.www免费av| 手机成人av网站| 99国产综合亚洲精品| 一级毛片女人18水好多| 久久99热这里只有精品18| 久久久国产成人精品二区| 精品电影一区二区在线| 熟女人妻精品中文字幕| 国产乱人视频| 少妇裸体淫交视频免费看高清| 国产精品久久电影中文字幕| 老熟妇仑乱视频hdxx| 欧美成人a在线观看| 国产伦一二天堂av在线观看| or卡值多少钱| 中文字幕av在线有码专区| 亚洲18禁久久av| 色尼玛亚洲综合影院| 美女大奶头视频| 日日干狠狠操夜夜爽| 啦啦啦韩国在线观看视频| 日韩欧美三级三区| 精品久久久久久久久久免费视频| 搡女人真爽免费视频火全软件 | 午夜福利在线在线| 日韩有码中文字幕| 成人av一区二区三区在线看| 国产欧美日韩一区二区精品| 成人av一区二区三区在线看| 在线观看日韩欧美| 中文字幕av成人在线电影| 最后的刺客免费高清国语| 国产精品99久久99久久久不卡| 日日干狠狠操夜夜爽| 国产成+人综合+亚洲专区| 成人特级av手机在线观看| 99热这里只有是精品50| 亚洲av成人av| 一级毛片女人18水好多| 亚洲国产欧美人成| 人人妻人人看人人澡| 国产一区二区激情短视频| 精品国内亚洲2022精品成人| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 变态另类丝袜制服| 国产精品野战在线观看| 久久久久久国产a免费观看| 欧美最黄视频在线播放免费| 变态另类丝袜制服| 一区二区三区国产精品乱码| 综合色av麻豆| 国产亚洲精品一区二区www| 久久久精品欧美日韩精品| 看黄色毛片网站| 亚洲无线在线观看| 香蕉久久夜色| 日韩欧美免费精品| 日韩国内少妇激情av| 国产黄色小视频在线观看| 欧美乱码精品一区二区三区| 深爱激情五月婷婷| 欧美乱色亚洲激情| 51午夜福利影视在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 两个人视频免费观看高清| 成人高潮视频无遮挡免费网站| 亚洲av一区综合| 国产免费男女视频| 亚洲七黄色美女视频| 亚洲最大成人中文| 露出奶头的视频| 99久久精品国产亚洲精品| 成年版毛片免费区| 女生性感内裤真人,穿戴方法视频| 国产精品美女特级片免费视频播放器| 啦啦啦韩国在线观看视频| 97碰自拍视频| 两个人视频免费观看高清| 午夜精品一区二区三区免费看| 免费看a级黄色片| 久久久久九九精品影院| 无限看片的www在线观看| 亚洲精品色激情综合| 蜜桃亚洲精品一区二区三区| 12—13女人毛片做爰片一| 亚洲aⅴ乱码一区二区在线播放| 看片在线看免费视频| 国产主播在线观看一区二区| 操出白浆在线播放| 又紧又爽又黄一区二区| 久久久精品欧美日韩精品| 九色国产91popny在线| 国产真实伦视频高清在线观看 | 一级a爱片免费观看的视频| 很黄的视频免费| 久久精品人妻少妇| 女人被狂操c到高潮| 久久国产乱子伦精品免费另类| 亚洲精品456在线播放app | 免费看a级黄色片| 首页视频小说图片口味搜索| 3wmmmm亚洲av在线观看| 日本三级黄在线观看| 国产蜜桃级精品一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 丰满的人妻完整版| 高潮久久久久久久久久久不卡| 九色成人免费人妻av| 成人精品一区二区免费| 性色av乱码一区二区三区2| 国产毛片a区久久久久| 久久天躁狠狠躁夜夜2o2o| 三级男女做爰猛烈吃奶摸视频| 成人无遮挡网站| 九九在线视频观看精品| 在线观看日韩欧美| 亚洲精品一区av在线观看| 狂野欧美激情性xxxx| 啦啦啦免费观看视频1| 亚洲精品乱码久久久v下载方式 | 亚洲午夜理论影院| 国产黄色小视频在线观看| 激情在线观看视频在线高清| 男人的好看免费观看在线视频| 亚洲精品在线美女| 国产中年淑女户外野战色| 亚洲欧美日韩无卡精品| 亚洲第一电影网av| 99在线人妻在线中文字幕| 中文字幕高清在线视频| 狠狠狠狠99中文字幕| 亚洲专区国产一区二区| 亚洲成av人片免费观看| 国产精品影院久久| 一卡2卡三卡四卡精品乱码亚洲| 精品国产三级普通话版| 国产色爽女视频免费观看| 大型黄色视频在线免费观看| 国产高潮美女av| 久久国产乱子伦精品免费另类| 亚洲欧美日韩高清专用| 九九在线视频观看精品| 久久亚洲精品不卡| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区精品| 午夜精品久久久久久毛片777| 国产精品亚洲av一区麻豆| 国产综合懂色| 国产成人av激情在线播放| 色老头精品视频在线观看| 男人舔奶头视频| 午夜免费观看网址| 在线观看美女被高潮喷水网站 | 在线观看免费视频日本深夜| 久久久久亚洲av毛片大全| 亚洲av美国av| 69av精品久久久久久| 国产精品亚洲av一区麻豆| 亚洲国产欧美网| 国产高清视频在线播放一区| 18禁国产床啪视频网站| 51午夜福利影视在线观看| 欧美日韩一级在线毛片| 国产在视频线在精品| 国产亚洲精品综合一区在线观看| 亚洲成人免费电影在线观看| av国产免费在线观看| 成人特级av手机在线观看| 欧美成狂野欧美在线观看| 国产av一区在线观看免费| 国产毛片a区久久久久| 国产成人系列免费观看| 天天添夜夜摸| 中文字幕精品亚洲无线码一区| 国产探花在线观看一区二区| 女同久久另类99精品国产91| 国产不卡一卡二| 最近最新中文字幕大全免费视频| 色视频www国产| 午夜日韩欧美国产| 国产乱人视频| 亚洲国产欧美人成| 日韩有码中文字幕| 国产探花在线观看一区二区| 我的老师免费观看完整版| 五月玫瑰六月丁香| 高清毛片免费观看视频网站| 丰满人妻熟妇乱又伦精品不卡| 国语自产精品视频在线第100页| 日韩 欧美 亚洲 中文字幕| 欧美成人性av电影在线观看| 成人亚洲精品av一区二区| 欧美+日韩+精品| 国产午夜精品久久久久久一区二区三区 | 成人av在线播放网站| 中文在线观看免费www的网站| 日本成人三级电影网站| 免费av毛片视频| 在线观看午夜福利视频| 成人18禁在线播放| 又紧又爽又黄一区二区| 香蕉av资源在线| 99riav亚洲国产免费| 制服人妻中文乱码| 动漫黄色视频在线观看| 亚洲男人的天堂狠狠| 国产视频一区二区在线看| 丰满人妻一区二区三区视频av | 女警被强在线播放| 午夜免费男女啪啪视频观看 | 中文字幕av在线有码专区| 久久欧美精品欧美久久欧美| 亚洲狠狠婷婷综合久久图片| 色视频www国产| 激情在线观看视频在线高清| 99久久精品热视频| 18禁裸乳无遮挡免费网站照片| 国产色爽女视频免费观看| 夜夜看夜夜爽夜夜摸| 亚洲精品粉嫩美女一区| x7x7x7水蜜桃| 国内精品一区二区在线观看| 国产免费av片在线观看野外av| 久久久久九九精品影院| 免费在线观看日本一区| 男人舔奶头视频| 亚洲欧美日韩卡通动漫| xxx96com| 亚洲精品亚洲一区二区| 狠狠狠狠99中文字幕| 国内久久婷婷六月综合欲色啪| av在线蜜桃| 国内毛片毛片毛片毛片毛片| 成人亚洲精品av一区二区| 日韩中文字幕欧美一区二区| 亚洲熟妇熟女久久| 成年免费大片在线观看| 99久久九九国产精品国产免费| 黄片小视频在线播放| 午夜激情福利司机影院| 伊人久久精品亚洲午夜| 久久精品国产清高在天天线| 成人性生交大片免费视频hd| 久久精品亚洲精品国产色婷小说| 久久精品国产亚洲av香蕉五月| 一级作爱视频免费观看| 老司机深夜福利视频在线观看| 国产免费av片在线观看野外av| 蜜桃亚洲精品一区二区三区| 男女下面进入的视频免费午夜| 午夜福利成人在线免费观看| 日韩免费av在线播放| 免费搜索国产男女视频| 精品久久久久久久人妻蜜臀av| 黄色女人牲交| 99久久精品国产亚洲精品| 日本黄色视频三级网站网址| 91久久精品国产一区二区成人 | 亚洲精品一卡2卡三卡4卡5卡| 成年女人永久免费观看视频| 亚洲久久久久久中文字幕| 午夜两性在线视频| 少妇裸体淫交视频免费看高清| 国产亚洲精品综合一区在线观看| 免费看美女性在线毛片视频| 香蕉久久夜色| 91在线精品国自产拍蜜月 | 天美传媒精品一区二区| 亚洲国产精品合色在线| 国产精品三级大全| 亚洲国产中文字幕在线视频| 亚洲精品亚洲一区二区| 日韩高清综合在线| 国产亚洲精品一区二区www| 美女高潮喷水抽搐中文字幕| 国产v大片淫在线免费观看| 国产免费一级a男人的天堂| 亚洲欧美日韩卡通动漫| 久久久久久久久中文| 国产欧美日韩一区二区三| 在线看三级毛片| 全区人妻精品视频| 国产高清有码在线观看视频| 成人精品一区二区免费| 国产私拍福利视频在线观看| 日本三级黄在线观看| 久久99热这里只有精品18| 99热这里只有是精品50| 国产精品一区二区三区四区久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产久久久一区二区三区| 色在线成人网| 操出白浆在线播放| 精品国产亚洲在线| 久久性视频一级片| 午夜福利在线观看免费完整高清在 | 99国产精品一区二区蜜桃av| 小蜜桃在线观看免费完整版高清| www.色视频.com| www国产在线视频色| 久久欧美精品欧美久久欧美| 日韩亚洲欧美综合| 欧美精品啪啪一区二区三区| 欧美性猛交╳xxx乱大交人| 国产色婷婷99| 九九久久精品国产亚洲av麻豆| 美女高潮的动态| 中文字幕av成人在线电影| 精品欧美国产一区二区三| 国产精品99久久99久久久不卡| 国产黄色小视频在线观看| 在线国产一区二区在线| 床上黄色一级片|