宋佳慧,劉 喆,,崔秀芳,金 國(guó),王海斗,徐濱士(.哈爾濱工程大學(xué) 材料科學(xué)與化學(xué)工程學(xué)院表/界面科學(xué)與技術(shù)研究所,哈爾濱 5000;.裝甲兵工程學(xué)院,裝備再制造技術(shù)國(guó)防科技重點(diǎn)實(shí)驗(yàn)室,北京 0007)
基于轉(zhuǎn)化膜成膜機(jī)制的工藝優(yōu)化研究進(jìn)展
宋佳慧1,劉喆1,2,崔秀芳2,金國(guó)1,王海斗2,徐濱士2
(1.哈爾濱工程大學(xué) 材料科學(xué)與化學(xué)工程學(xué)院表/界面科學(xué)與技術(shù)研究所,哈爾濱 150001;2.裝甲兵工程學(xué)院,裝備再制造技術(shù)國(guó)防科技重點(diǎn)實(shí)驗(yàn)室,北京 100072)
鎂/鋁合金表面轉(zhuǎn)化膜在成膜過(guò)程中由于存在劇烈的析氫反應(yīng)以及成膜結(jié)束后的失水收縮現(xiàn)象,導(dǎo)致該種轉(zhuǎn)化膜存在結(jié)構(gòu)疏松、連續(xù)性差、結(jié)合力低等缺點(diǎn)。從轉(zhuǎn)化膜成膜機(jī)制角度出發(fā)結(jié)合3種主要的失效現(xiàn)象(局部損傷、失水收縮致開(kāi)裂以及結(jié)構(gòu)疏松導(dǎo)致的脫落),對(duì)其失效機(jī)理進(jìn)行詳細(xì)闡述。同時(shí)基于這3種失效機(jī)理,簡(jiǎn)明扼要地介紹目前針對(duì)這3個(gè)方面所采取的損傷修復(fù)、轉(zhuǎn)化膜致密化以及界面結(jié)合力增強(qiáng)方面轉(zhuǎn)化膜成膜工藝優(yōu)化的研究進(jìn)展,并對(duì)轉(zhuǎn)化膜后續(xù)發(fā)展進(jìn)行展望。
成膜機(jī)制;損傷自修復(fù);致密化;界面結(jié)合力
目前針對(duì)提高鎂、鋁合金耐蝕性能的表面改性處理方法主要有陽(yáng)極氧化處理、微弧氧化處理、化學(xué)轉(zhuǎn)化膜、表面滲層處理、激光/等離子表面處理、浸鍍鋅等方法[1-3]。相比之下,化學(xué)轉(zhuǎn)化膜處理工藝具有設(shè)備小、占地少、操作簡(jiǎn)單、能耗低、成本低廉等優(yōu)點(diǎn)而倍受青睞,已在醫(yī)用器械、航空航天等領(lǐng)域得到了廣泛的應(yīng)用。傳統(tǒng)的鉻酸鹽轉(zhuǎn)化膜具有優(yōu)異的耐蝕性能、自修復(fù)性能,但由于其制備過(guò)程中伴隨產(chǎn)生具有致癌性的Cr6+離子,故而鉻酸鹽轉(zhuǎn)化膜已經(jīng)被多數(shù)國(guó)家限制使用。對(duì)轉(zhuǎn)化膜的無(wú)鉻化以及無(wú)鉻轉(zhuǎn)化膜性能優(yōu)化已成為目前轉(zhuǎn)化膜研究領(lǐng)域的主要方向。目前,鎂/鋁合金表面無(wú)鉻轉(zhuǎn)化膜包括:鋯鹽轉(zhuǎn)化膜、磷酸鹽轉(zhuǎn)化膜、植酸轉(zhuǎn)化膜、稀土轉(zhuǎn)化膜和有機(jī)物轉(zhuǎn)化膜等[4-6]。
然而轉(zhuǎn)化膜仍存在著許多有待解決的問(wèn)題,當(dāng)在腐蝕環(huán)境下遭到損傷時(shí),轉(zhuǎn)化膜不能具有自修復(fù)的能力;化學(xué)氧化法成膜過(guò)程中劇烈的析氫反應(yīng)以及成膜后期轉(zhuǎn)化膜失水收縮促,使膜層裂紋增多出現(xiàn)典型的龜裂狀結(jié)構(gòu),裂紋為電解質(zhì)提供了有效的通道,降低了轉(zhuǎn)化膜對(duì)基體的防護(hù)性能[7-9];反應(yīng)過(guò)程中的析氫反應(yīng)劇烈,劇烈的氫氣釋放導(dǎo)致轉(zhuǎn)化膜結(jié)構(gòu)疏松,極易在外力作用下造成機(jī)械損傷以及電解質(zhì)環(huán)境中出現(xiàn)明顯的點(diǎn)蝕現(xiàn)象[10-12]。綜上所述,本文作者基于腐蝕環(huán)境損傷、失水收縮致開(kāi)裂以及析氫致界面結(jié)合力弱3個(gè)轉(zhuǎn)化膜的主要失效因素方面對(duì)目前轉(zhuǎn)化膜研究進(jìn)展進(jìn)行了詳細(xì)介紹。
目前,航空工業(yè)中使用的鎂合金的表面防護(hù)多采用化學(xué)氧化的方法,這種表面膜薄而軟,在使用過(guò)程很容易被劃傷、擦傷或磨損,從而導(dǎo)致表面局部損壞或因此而造成不得不報(bào)廢和更換[6-8]。賦予膜層以損傷自修復(fù)性能,促使其在受到機(jī)械損傷后能夠產(chǎn)生一層新的薄膜以繼續(xù)對(duì)基體產(chǎn)生防護(hù)作用是解決上述問(wèn)題最為有效的方法。自修復(fù)現(xiàn)在屬于發(fā)展快速的新方向,當(dāng)轉(zhuǎn)化膜內(nèi)層或外層受到損害時(shí),不需要任何外界因素膜層會(huì)在損壞環(huán)境中自修復(fù)。最簡(jiǎn)單的提供抑制劑的方法有兩種:1)直接在基體表面加入抑制劑;2)緩蝕劑加入膠囊中加到基體中。目前具有自修復(fù)功能的化學(xué)轉(zhuǎn)化膜的自修復(fù)機(jī)理主要分為離子變價(jià)修復(fù)、離子遷移修復(fù)以及添加劑緩釋修復(fù)3種[9-11]。
1.1金屬離子變價(jià)修復(fù)
1.1.1鉻離子
鉻轉(zhuǎn)化膜具有非常好的耐腐蝕性能和優(yōu)異的自修復(fù)能力。POMMIERS-BELIN等研究表明Cr具有自修復(fù)性,存在Cr3+的轉(zhuǎn)化膜中包括Cr(OH)3和Cr2O3,有很好的耐蝕性并具有類似Cr6+的自修復(fù)性。Cr3+的自修復(fù)機(jī)理并不是單一因素控制的,其中可能有K2CrO4和CrO3晶態(tài)結(jié)構(gòu)存在;還有轉(zhuǎn)化膜涂層捕獲強(qiáng)氧化劑,形成還原態(tài)的鈍化膜等原因,使得Cr3+轉(zhuǎn)化膜有獨(dú)特的自修復(fù)性能,有很高的耐蝕性。
鉻轉(zhuǎn)化膜的自修復(fù)主要是由于Cr6+的反應(yīng),Cr6+釋放至腐蝕環(huán)境中,Cr6+穿過(guò)液相轉(zhuǎn)移至沒(méi)有覆蓋轉(zhuǎn)化膜或者劃傷區(qū)域,可溶性鉻發(fā)生還原反應(yīng)生成不可溶的鉻的氫氧化物,從而防止腐蝕發(fā)生[13]。然而Cr6+有毒,對(duì)人體有致癌作用,且會(huì)對(duì)環(huán)境造成巨大損害。很多國(guó)家和地區(qū)陸續(xù)出臺(tái)法律限制其使用,所以急需一種與其類似、具有自修復(fù)性、且耐蝕性高的轉(zhuǎn)化膜。
1.1.2釩離子
釩酸鹽作為一種陽(yáng)極緩蝕劑,常用在鋅和鋼鐵表面防腐領(lǐng)域,而在轉(zhuǎn)化膜這個(gè)行業(yè)中研究相對(duì)較少,HAMDY等[14-16]在其研究中發(fā)現(xiàn),雖然釩轉(zhuǎn)化膜耐蝕性能較差,但是其具備一定的自修復(fù)能力,具有和鉻酸鹽轉(zhuǎn)化膜相似的鈍化現(xiàn)象,是一種具有自修復(fù)應(yīng)用潛能的防護(hù)膜。推測(cè)膜層中的釩主要以V5+和V4+形式存在,又由于雙氧水的添加,使得釩化合物在被包裹到轉(zhuǎn)化膜的過(guò)程中能夠保持五價(jià)的致鈍狀態(tài)[16-17]。當(dāng)轉(zhuǎn)化膜遭到腐蝕時(shí),V可能起到與Cr相同的作用,在腐蝕區(qū)域發(fā)生氧化還原反應(yīng),被還原為V4+狀態(tài)??赡苷怯捎诖嬖谶@種反應(yīng),才使得釩酸鹽的添加能夠?yàn)檗D(zhuǎn)化膜帶來(lái)自修復(fù)功能[18-20]。綜上可知,自修復(fù)可通過(guò)氧化還原反應(yīng)使金屬離子變價(jià),從而得到自修復(fù)性能。
圖1 在NaCl溶液中336 h后空白水平和轉(zhuǎn)化膜的微觀形貌[23]Fig.1 Microstructures of samples after 336 h in NaCl solution[23]:(a)Zr-CC without conversion coating;(b)Zr-CC with conversion coating;(c)Zr-Ce-CC without conversion coating;(d)Zr-Ce-CC with conversion coating
1.2離子遷移自修復(fù)
鈰轉(zhuǎn)化膜在被破壞的情況下,Ce3+會(huì)遷移到被破壞的區(qū)域,形成一種新的Ce2O3氧化膜,使轉(zhuǎn)化膜具有自修復(fù)性能[21-22]。YOGANANDAN等[23]研究了ZrCC和ZrCeCC模擬劃痕測(cè)試在NaCl溶液336 h后,空白樣和轉(zhuǎn)化膜在光學(xué)顯微鏡下的形貌如圖1所示[23]。觀察圖1(a)和(b)可知,兩個(gè)樣品都出現(xiàn)一些點(diǎn)蝕坑。表明空白樣和ZrCC樣品在Cl-腐蝕環(huán)境下都會(huì)發(fā)生點(diǎn)蝕。對(duì)比圖1(c)和(d),ZrCeCC表面在NaCl溶液中并沒(méi)有發(fā)生點(diǎn)蝕。說(shuō)明ZrCeCC為鎂合金基體提供了長(zhǎng)期的耐蝕性。經(jīng)分析圖1(c)黑斑處Ce的含量為0.05%~0.15%,但表面XPS分析Ce含量在0.7%左右,說(shuō)明了有鈰離子的遷移或黑斑處生成了新的產(chǎn)物,導(dǎo)致Ce含量相對(duì)減少。通過(guò)紫外分析進(jìn)一步確定黑斑處減少鈰離子的作用,鈰離子為可溶性并未形成新的產(chǎn)物,說(shuō)明鈰離子發(fā)生遷移。也正是由于Ce離子的遷移使得轉(zhuǎn)化膜具有長(zhǎng)期的耐蝕性,圖2所示的塔菲爾曲線說(shuō)明了含鈰轉(zhuǎn)化膜的自腐蝕電位升高,耐蝕性增強(qiáng)。同時(shí)文獻(xiàn)[24-26]用紫外吸光度技術(shù)分析得出,可溶性的Ce是鈰轉(zhuǎn)化膜具有自修復(fù)性能的關(guān)鍵。
圖2 3.5%NaCl溶液中空白樣和轉(zhuǎn)化膜的塔菲爾曲線[23]Fig.2 Tafel curves in 3.5%NaCl solution[23]
圖3 微囊體裝載緩蝕劑的自修復(fù)示意圖[28]Fig.3 Self-healing schematic diagrams of micro capsule loaded corrosion inhibitor[28]:(a)Corrosion attack;(b)Response of PEs;(c)Self-healing
1.3添加劑緩釋修復(fù)
RANI等[27]和WEI等[28]采用微囊體裝載緩蝕劑添加到轉(zhuǎn)化膜中,其自修復(fù)機(jī)理如圖3所示[28]。機(jī)體表面產(chǎn)生裂紋,使得微囊體破裂,緩蝕劑通過(guò)毛細(xì)現(xiàn)象釋放在裂紋處,隨后緩蝕劑接觸到了催化因子,引發(fā)聚合物聯(lián)結(jié)使裂紋愈合,就產(chǎn)生了自修復(fù)現(xiàn)象。
聚電解質(zhì)防腐涂層自修復(fù)作用機(jī)制的原理,如圖4所示。當(dāng)受到外界腐蝕時(shí),會(huì)造成pH值的變化,促進(jìn)了聚電解質(zhì)涂層包括pH緩沖、聚合物鏈的重排和緩蝕劑的釋放。圖4中PE+是帶正電荷的聚電解質(zhì);PE-是帶負(fù)電的聚電解質(zhì);Inh是腐蝕抑制劑,形成了多層膜結(jié)構(gòu),起到自修復(fù)性能[28]。
圖4 聚電解質(zhì)防腐涂層自修復(fù)示意圖[28]Fig.4 Self-healing schematic diagrams of polyelectrolyte anticorrosive coating[28]:(a)Corrosion attack;(b)Response of PEs;(c)Self-healing
干泥狀的龜裂結(jié)構(gòu)是大多數(shù)轉(zhuǎn)化膜的典型形貌,產(chǎn)生這種形貌的根本原因是轉(zhuǎn)化膜成膜后期干燥失水造成的,而另一方面則是由于成膜過(guò)程中劇烈的析氫反應(yīng)產(chǎn)生的氫氣泡。這種網(wǎng)狀分布的裂紋降低了轉(zhuǎn)化膜的連續(xù)性,為腐蝕介質(zhì)和基體的基礎(chǔ)提供了有效的通道,不利于轉(zhuǎn)化膜的長(zhǎng)期服役。目前對(duì)于降低轉(zhuǎn)化膜開(kāi)裂方面的研究主要集中在4個(gè)方面:采用后處理手段抑制脫水、無(wú)水溶劑環(huán)境制備轉(zhuǎn)化膜、附加磁場(chǎng)對(duì)析氫反應(yīng)進(jìn)行抑制、以及成膜后進(jìn)一步熱處理。
2.1后處理抑制脫水
對(duì)鈰轉(zhuǎn)化膜的成膜過(guò)程及機(jī)理研究可知,轉(zhuǎn)化膜是由3層膜構(gòu)成,干燥過(guò)程導(dǎo)致轉(zhuǎn)化膜膜層開(kāi)裂的主要原因是表面纖維層的組織疏松、膜層之間結(jié)合力的不同以及干燥時(shí)的脫水反應(yīng)[29-30]。徐洛民等[31]發(fā)現(xiàn),采用NH4H2PO4對(duì)鋁合金進(jìn)行后處理,膜層的形貌和性能是一個(gè)受溫度和時(shí)間影響的動(dòng)力學(xué)過(guò)程。將稀土轉(zhuǎn)化膜浸泡在Na3PO4溶液中進(jìn)行磷酸鹽致密化處理,結(jié)果表明經(jīng)致密化處理,原膜層中的含結(jié)晶水多的鈰的氧化物和氫氧化物轉(zhuǎn)變?yōu)榉€(wěn)定的CePO4,抑制了轉(zhuǎn)化膜在干燥過(guò)程中的脫水反應(yīng),膜層的裂紋明顯減少,如圖5電化學(xué)測(cè)試結(jié)果表明耐腐蝕性能明顯提高,圖5(a)中進(jìn)行磷酸鹽致密化處理后的轉(zhuǎn)化膜,阻抗半徑提高近5倍,腐蝕速度減慢,耐蝕性提高。圖5(b)圖中進(jìn)行磷酸鹽致密化處理后的轉(zhuǎn)化膜,腐蝕電位提高,耐蝕性提高。
圖5 鈰轉(zhuǎn)化膜電化學(xué)測(cè)試曲線[31]Fig.5 Electrochemical test curves of cerium conversion coating[31]:(a)Nyquist plots;(b)Potentiodynamic polarization curves
由于轉(zhuǎn)化膜結(jié)晶水含量減少,改善了因干燥脫水而引起的轉(zhuǎn)化膜開(kāi)裂行為,轉(zhuǎn)化膜致密化后的微裂紋產(chǎn)生是由原組成物與新生成膜層之間密度的差異而引起的[32-33]。轉(zhuǎn)化膜的表面形貌改善和致密性提高,使得Rcoat和Rcoat+Rct都提高,有效地隔絕了基體與腐蝕介質(zhì),同時(shí)抑制了腐蝕產(chǎn)物的擴(kuò)散,改變了裂紋引起轉(zhuǎn)化膜的一系列腐蝕行為,因此耐蝕性能得到大幅度提高[34]。
因此,轉(zhuǎn)化膜的致密化后處理技術(shù)可以顯著的修復(fù)膜層存在的孔隙和裂紋等缺陷,提高膜層的致密性和連續(xù)性,從而提高耐蝕性能。
2.2無(wú)水溶劑抑制析氫
成膜溶劑對(duì)于成膜質(zhì)量的影響主要體現(xiàn)在兩個(gè)方面:一方面鎂/鋁合金轉(zhuǎn)化膜在成膜初期在其表面會(huì)產(chǎn)生劇烈的析氫反應(yīng),氫氣泡的釋放是造成轉(zhuǎn)化膜疏松多孔結(jié)構(gòu)的一個(gè)主要原因。而另一方面轉(zhuǎn)化膜在離開(kāi)成膜液后,因?yàn)槭a(chǎn)生嚴(yán)重的收縮進(jìn)而出現(xiàn)典型的裂片狀結(jié)構(gòu)。轉(zhuǎn)化膜在經(jīng)過(guò)初步干燥后,仍然會(huì)含有相當(dāng)含量的結(jié)晶水,結(jié)晶水的揮發(fā)也會(huì)進(jìn)一步地導(dǎo)致轉(zhuǎn)化膜的開(kāi)裂情況。
綜上所述,降低轉(zhuǎn)化膜中結(jié)晶水含量的降低,有助于抑制膜層的開(kāi)裂行為,保證轉(zhuǎn)化膜的連續(xù)性和致密性。采用無(wú)水溶劑作為成膜溶劑能夠有效的降低轉(zhuǎn)化膜在成膜后期的失水現(xiàn)象[35-36]。
文獻(xiàn)[37-39]研究中發(fā)現(xiàn),無(wú)水環(huán)境下制備的轉(zhuǎn)化膜主要沉積在α相,而水溶液環(huán)境下的轉(zhuǎn)化膜則主要沉積在β相,如圖6所示。乙醇溶液作為成膜溶劑的轉(zhuǎn)化膜,其耐蝕性和結(jié)合力均大于水溶液環(huán)境制備的轉(zhuǎn)化膜。
圖6 鈰轉(zhuǎn)化膜微觀結(jié)構(gòu)[37]Fig.6 Microstructures of cerium conversion coating[37]:(a)Ethanol solvent;(b)Water solvent
文獻(xiàn)[40-42]中研究了一種新型的羧酸釹鹽無(wú)水轉(zhuǎn)化膜被成功制備和應(yīng)用在AZ91D鎂合金上,是以乙醇為溶劑、4種羧酸溶液(草酸、酒石酸、檸檬酸、植酸)為活化劑。鎂合金的化學(xué)性質(zhì)比較活潑,在酸的水和溶液中會(huì)產(chǎn)生大量H2。與此同時(shí),H2引起的沉淀和不可避免的腐蝕性問(wèn)題都影響著轉(zhuǎn)化膜的密度。所以以水作為溶劑的鍍液制備出的轉(zhuǎn)化膜存在較嚴(yán)重的開(kāi)裂情況。以乙醇為溶劑的無(wú)水轉(zhuǎn)化系統(tǒng)中的氫離子含量很低,在一定程度上會(huì)產(chǎn)生相對(duì)穩(wěn)定的低腐蝕性能,同時(shí)也會(huì)減少轉(zhuǎn)化膜的開(kāi)裂情況。除此之外,有機(jī)溶劑和有機(jī)酸溶液富含的官能團(tuán)(如—COOH、—OH),能有效提高機(jī)體表面與轉(zhuǎn)化膜間的鍵合力。鎂合金表面經(jīng)無(wú)水羧酸處理的釹鹽轉(zhuǎn)化膜是為了更好地改善鎂合金的前處理過(guò)程。圖7所示為4種羧酸為活性劑的羧酸釹鹽無(wú)水轉(zhuǎn)化膜的微觀結(jié)構(gòu)。圖7(a)和(d)所示具有相似的裂紋。圖7(c)中轉(zhuǎn)化膜有很少的裂紋,結(jié)構(gòu)致密,轉(zhuǎn)化膜較薄,能夠清晰地觀測(cè)到基體β相結(jié)構(gòu)。圖7(b)結(jié)構(gòu)與其他幾種明顯不同,在機(jī)體表面呈細(xì)團(tuán)粒狀,裂紋較小,膜層較厚,很難區(qū)分底層相結(jié)構(gòu)。
圖7 無(wú)水轉(zhuǎn)化膜微觀結(jié)構(gòu)[40]Fig.7 Microstructures of no water conversion coatings[40]:(a)Oxalate;(b)Tartaric acid;(c)Citric acid;(d)Phytic acid
目前研究表明,在形成轉(zhuǎn)化膜的過(guò)程中有機(jī)羧酸溶液有不同的離子化能力,這直接影響了轉(zhuǎn)化膜的性能。在以上的酸溶液中,植酸中含有12個(gè)活性羧酸原子,因此為鎂合金基體提供更多離子化的機(jī)會(huì),所以4種無(wú)水羧基釹鹽轉(zhuǎn)化膜中,植酸的性能更好。
2.3附加磁場(chǎng)抑制氫氣附著
磁場(chǎng)能夠影響電子自旋進(jìn)而影響化學(xué)反應(yīng)的進(jìn)行。已經(jīng)有研究證明磁場(chǎng)能夠加速溶液中HP的形核率和生長(zhǎng)率。與無(wú)磁場(chǎng)作用相比,磁場(chǎng)能夠增加HP的形核,生成的轉(zhuǎn)化膜更加均勻致密,顆粒細(xì)小。在附加磁場(chǎng)作用下,氧氣泡體積緩慢膨脹,析氫反應(yīng)則為大量的小氣泡,而且能夠快速的從基體表面分離出去,這有利于形成光滑致密的轉(zhuǎn)化膜[43-44]。如果氧氣不能及時(shí)從基體表面移除,表面吸附的氧氣會(huì)抑制膜的生長(zhǎng)。此外,大量小氣泡的形成會(huì)引起微磁流體動(dòng)力學(xué)作用,進(jìn)而在這些氣泡附近產(chǎn)生強(qiáng)烈的局部對(duì)流現(xiàn)象[45]。
轉(zhuǎn)化膜的形成主要取決于形核和長(zhǎng)大兩個(gè)過(guò)程,由于磁場(chǎng)能夠使電子的馳豫時(shí)間的延長(zhǎng),從而增加了轉(zhuǎn)化膜溶液中反應(yīng)離子的碰撞幾率,加速形核,抑制長(zhǎng)大。得到了更多細(xì)小的晶粒,因而獲得致密的膜層結(jié)構(gòu)。這可以從圖8中的SEM結(jié)果得到驗(yàn)證,附加磁場(chǎng)下獲得的涂層顆粒數(shù)目明顯多于無(wú)磁場(chǎng)下的,因?yàn)樾魏怂俣燃涌?,生長(zhǎng)過(guò)程受到限制,磁場(chǎng)下獲得顆粒粒徑更加細(xì)小一些。磁場(chǎng)除了影響化學(xué)反應(yīng)過(guò)程的自由基反應(yīng)、電子自旋和系統(tǒng)熵等重要因素,洛倫茲力也會(huì)引起磁流體力學(xué)效應(yīng),也是可以調(diào)節(jié)轉(zhuǎn)化膜生成過(guò)程中的離子傳輸過(guò)程[46]。
圖8 轉(zhuǎn)化膜的二維微觀形貌[46]Fig.8 Microstructures of conversion coatings[46]:(a)Without magnetic field;(b)Additional magnetic field of 0.25 T;(c)Additional magnetic field of 0.5 T
2.4熱處理致密化
文獻(xiàn)[47-49]研究得出了鎂合金表面植酸轉(zhuǎn)化膜在150~400℃熱處理后,表面裂紋出現(xiàn)愈合的現(xiàn)象。如圖9電化學(xué)測(cè)試可知,隨著熱處理溫度的升高,轉(zhuǎn)化膜表面的裂紋逐步愈合,這使得鎂合金表面轉(zhuǎn)化膜的耐蝕性進(jìn)一步增強(qiáng)。在熱處理過(guò)程中,轉(zhuǎn)化膜的組成由非晶態(tài)的鎂和植酸鹽轉(zhuǎn)換成晶態(tài)的Mg2P2O7。與此同時(shí),復(fù)雜的大分子變成了小的有機(jī)結(jié)構(gòu),并伴隨著體積的增加,導(dǎo)致表面裂縫自愈[50-51]。
圖9 不同熱處理溫度下的極化曲線[47]Fig.9 Polarization curves under different heat treatment temperatures[47]
在轉(zhuǎn)化膜成膜初期,鎂/鋁合金基體和成膜溶液接觸,劇烈的析氫反應(yīng)產(chǎn)生大量不同尺寸的氫氣泡,尺寸較小的氣泡附著在基體表面阻斷了成膜溶液和基體的進(jìn)一步接觸,導(dǎo)致界面處結(jié)合力較差,進(jìn)而出現(xiàn)薄膜脫落的現(xiàn)象,因而界面析氫將導(dǎo)致轉(zhuǎn)化膜的結(jié)合力減弱,這也是轉(zhuǎn)化膜結(jié)合力較弱的主要原因。轉(zhuǎn)化膜界面與基體的結(jié)合力是決定轉(zhuǎn)化膜性能的關(guān)鍵因素,同時(shí)也是影響轉(zhuǎn)化膜使用壽命的重要因素。
提高基體與轉(zhuǎn)化膜的結(jié)合力可以有效提高轉(zhuǎn)化膜的耐蝕性及耐摩擦性等。控制析氫是提高轉(zhuǎn)化膜結(jié)合力的一個(gè)有效方法,還可通過(guò)熱處理來(lái)提高結(jié)合力。在熱處理的過(guò)程中可能會(huì)發(fā)生基體與鍍層中一些組分的相互擴(kuò)散,因而增大了鍍層與基體的接觸面積,改善了結(jié)合力。所以轉(zhuǎn)化膜也可以也通過(guò)熱處理來(lái)提高基體與膜層的結(jié)合力[52-53]。
隨著現(xiàn)代科學(xué)技術(shù)的發(fā)展,轉(zhuǎn)化膜以其成本低、操作簡(jiǎn)單等優(yōu)點(diǎn)而倍受青睞。從3方面對(duì)提高鎂合金表面轉(zhuǎn)化膜性能進(jìn)行了綜述,轉(zhuǎn)化膜的新研究方向可以從其自修復(fù)、減少膜層開(kāi)裂情況、增強(qiáng)膜層結(jié)合力等方面開(kāi)展:
1)在成膜過(guò)程中引入外場(chǎng)作用,例如(電場(chǎng)、磁場(chǎng)、應(yīng)力場(chǎng)、熱力場(chǎng))提高轉(zhuǎn)化膜的成膜效率和成膜質(zhì)量,促使主要成膜離子在成膜過(guò)程中能夠有效地向基體沉積,改善基體和轉(zhuǎn)化膜的界面結(jié)合強(qiáng)度。
2)制備多層復(fù)合轉(zhuǎn)化膜,對(duì)于不同的功能區(qū)域制備針對(duì)性的轉(zhuǎn)化膜。界面結(jié)合處可采用熱處理或者是附加外場(chǎng)以提高基體和轉(zhuǎn)化膜間的結(jié)合力。轉(zhuǎn)化膜中層,則采用復(fù)合添加緩釋劑、納米分散顆粒等物質(zhì)以提高轉(zhuǎn)化膜的耐蝕性能。而對(duì)于轉(zhuǎn)化膜的外層則可正對(duì)性的制備具有一定耐磨性能的轉(zhuǎn)化膜。從而能夠從整體上提高轉(zhuǎn)化膜的性能。
REFERENCES
[1] 金和喜,王日初,彭超群,馮艷,石凱,陳彬.鎂合金表面化學(xué)轉(zhuǎn)化膜研究進(jìn)展[J].中國(guó)有色金屬學(xué)報(bào),2011,21(9):2049-2059. JIN He-xi,WANG Ri-chu,PENG Chao-qun,F(xiàn)ENG Yan,CHEN Bin.Progress in research of rare earth conversion coatings on magnesium alloys[J].The Chinese Journal of Nonferrous Metals,2011,21(9):2049-2059.
[2] 曾榮昌,孔令鴻,陳君,崔洪芝,劉成龍.醫(yī)用鎂合金表面改性研究進(jìn)展[J].中國(guó)有色金屬學(xué)報(bào),2011,21(1):35-43. ZENGRong-chang,KONGLing-hong,CHENJun,CUI Hong-zhi,LIU Cheng-long.Research progress on surface modification of magnesium alloys for medical applications[J]. The Chinese Journal of Nonferrous Metals,2011,21(1):35-43.
[3] 曾榮昌,蘭自棟,陳君,莫鮮花,韓恩厚.鎂合金表面化學(xué)轉(zhuǎn)化膜的研究進(jìn)展[J].中國(guó)有色金屬學(xué)報(bào),2009,19(3):397-404. ZENG Rong-chang,LAN Zi-dong,CHEN Jun,MO Xian-hua,HAN En-hou.Degradation process of fluorine conversion coating on magnesium alloy by electrochemical impedance spectroscopy[J].The Chinese Journal of Nonferrous Metals,2009,19(3):397-404.
[4] CHENXB,BIRBILISN,ABBOTT TB.Reviewof corrosion-resistant conversion coatings for magnesium and its alloys[J].Corrosion,2011,67(3):035005-1-035005-16.
[5] TOMOZAWAM, HIROMOTOS.Microstructureof hydroxyapatite and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values[J]. Acta Materialia,2011,59(1):355-363.
[6]WILLIAMS G,GRACE R,WOODS R M.Inhibition of the localized corrosion of Mg alloy AZ31 in chloride containing electrolyte[J].Corrosion,2015,71(2):184-198.
[7]SONG G L.Corrosion electrochemistry of magnesium(Mg)and its alloys[M].Corrosion of MagnesiumAlloys,2011:13-15.
[8] ZHAO M,WU S,LUO J R,F(xiàn)UKUDA Y,NAKAE H.A chromium-free conversion coating of magnesium alloy by a phosphate-permanganatesolution[J].SurfaceandCoatings Technology,2006,200(18):5407-5412.
[9]WU C,ZHANG J.State-of-art on corrosion and protection of magnesium alloys based on patent literatures[J].Transactions of Nonferrous Metals Society of China,2011,21(4):892-902.
[10]BASSIGNANI M J,BUBASH-FAUST L,CIAMBOTTI J,MORAN R,MCLLHENNY J.Conversion of teaching file cases from film to digital format:A comparison between use of a diagnostic-quality digitizer and use of a flatbed scanner with transparency adapter[J].Academic Radiology,2003,10(5):536-542.
[11]SONG G L,SHI Z.Anodization and corrosion of magnesium (Mg)alloys[J].Corrosion of Magnesium Alloys,2011,41:565-614.
[12]POMMIERS-BELIN S,F(xiàn)RAYRET J,UHARTA,LEDEUIL J B,DUPIN J C.Determination of the chemical mechanism of chromate conversion coating on magnesium alloys EV31A[J]. Applied Surface Science,2014,298(14):199-207.
[13]WANG Hao,AN Cheng-xiang,HAO Jian-jun,LIN Xue,CHEN Li.Advances in research on non-chromate passivation of aluminum and aluminum alloys[J].Electroplating&Pollution Control,2014,1(2):469-480.
[14]HAMDY AS,DOENCHI,MOHWALDH.Intelligent self-healing corrosion resistant vanadia coating for AA2024[J]. Thin Solid Films,2011,520(5):1668-1678.
[15]HAMDY A S,BUTT D P.Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol-gel method for aluminum alloys[J].Journal of Materials Processing Technology,2007,18(1):76-80.
[16]HAMDYA S,DOENCH I,MOHWALD H.Assessment of a one step intelligent self-healing vanadia protective coatings for magnesium alloys in corrosive media[J].Electrochimica Acta,2011,56(5):2493-2502.
[17]NIU Li-yuan,TONG Xian,LI Guang-yu,SHI Zi-mu.Analysis of characteristics of vanadate conversion coating on the surface of magnesium alloy[J].Journal of Alloys and Compounds,2014,617:214-218.
[18]LIVAGE J.Sol-gel chemistry and electrochemical properties of vanadium oxide gels[J].Solid State Ionics,1996,86:935-942.
[19]ZOU Zhong-li,LI Ning,LI De-yu,LIU Hai-ping,MU Song-lin. A vanadium-based conversion coating as chromate replacement for electrogalvanized steel substrates[J].Journal of Alloys and Compounds,2011,509(2):503-507.
[20]DABALA M,BRUNELLI K,NAPOLITANI E,NAPOLITA E,MAGRINI M.Cerium-based chemical conversion coating on AZ63 magnesium alloy[J].Surface and Coatings Technology,2003,172(2):227-232.
[21]MALFATTI C F,MENEZES T L,RADTKE C,BONINO J P. The influence of cerium ion concentrations on the characteristics of hybrid films obtained on AA2024-T3 aluminum alloy[J]. Materials&Corrosion,2012,63(9):819-827.
[22]KIYOTA S,VALDEZ B,STOYTCHEVA M,ZLATEV R,BASTIDAS J M.Anticorrosion behavior of conversion coatings obtainedfromunbufferedceriumsaltssolutionson AA6061-T6[J].Journal of Rare Earths,2011,29(10):961-968.
[23]YOGANANDAN G,PREMKUMAR K P,BALARAJU J N. Evaluation of corrosion resistance and self-healing behavior of zirconium-cerium conversion coating developed on AA2024 alloy[J].Surface and Coatings Technology,2015,270:249-258.
[24]雷黎,王昕,徐海港.鎂合金鈰轉(zhuǎn)化膜在NaCl溶液中的腐蝕行為及腐蝕機(jī)理[J].中國(guó)有色金屬學(xué)報(bào),2015,25(1):125-132. LEI Li,WANG Xin,XU Hai-gang.Corrosion behavior and corrosionmechanismofceriumconversioncoatingon magnesium alloy in NaCl solution[J].The Chinese Journal of Nonferrous Metals,2015,25(1):125-132.
[25]ANDREATTA F,TERRYN H,DEWIT J H W.Corrosion behavior of different tempers of AA7075 aluminum alloy[J]. ElectrochemicalActa,2004,49(17):2851-2862.
[26]CAVANAUGHMK,BUCHHEITRG,BIRBILISN. Evaluation of a simple microstructural-electrochemical model forcorrosiondamageaccumulationinmicrostructurally complex aluminum alloys[J].Engineering Fracture Mechanics,2009,76(5):641-650.
[27]RANIA,SOMAIAH D,PODDAR M.Scratch cell test:A simple,costeffectivescreeningtooltoevaluateself-healingin anti-corrosion coatings[J].Journal of Materials Engineering& Performance,2014,23(9):3328-3335.
[28]WEI Hui-zhi,WANG Yi-ran,GUO Jiang,NANCY Z,JIANG Da-wei,ZHANGXin.Advancedmicro/nanocapsulesfor self-healing smart anticorrosion coatings[J].Journal of Materials ChemistryA,2015,3(2):469-480.
[29]LIN C S,F(xiàn)ANG S K.Formation of cerium conversion coatings on AZ31 magnesium alloys[J].Journal of the Electrochemical Society,2005,152(2):54-59.
[30]SUN Jie,WANG Gang.Preparation and corrosion resistance of cerium conversion coatings on AZ91D magnesium alloy by a cathodicelectrochemicaltreatment[J].Surface&Coatings Technology,2014,254(18):42-48.
[31]徐洛民,王昕,雷黎,左柯.AZ31鎂鋁合金鈰鹽轉(zhuǎn)化膜的致密化處理[J].中國(guó)有色金屬學(xué)報(bào),2013,23(11):3135-3140. XU Luo-min,WANG Xin,LEI Li,ZUO Ke.Densification processofcerium-basedconversioncoatingsonAZ31 magnesium alloy[J].The Chinese Journal of Nonferrous Metals,2013,23(11):3135-3140.
[32]張春艷,柳歆鵬,黃佳祈,劉成龍,楊惠,楊有利.鎂合金表面氟轉(zhuǎn)化層降解過(guò)程的電化學(xué)阻抗譜[J].中國(guó)有色金屬學(xué)報(bào),2015,25(2):401-407. ZHANGChun-yan,LIUXin-peng,HUANGJia-qi,LIU Cheng-long,YANG Hui,YANG You-li.Degradation process of fluorineconversioncoatingonmagnesiumalloyby electrochemical impedance spectroscopy[J].The Chinese Journal of Nonferrous Metals,2015,25(2):401-407.
[33]CHEN Dong-chu,WU Jian-feng,LIANG Yi-qing,LIN Shu,LI Wen-fang.Preparationofceriumoxidebased environment-friendlychemicalconversioncoatingon magnesium alloy with additives[J].Transactions of Nonferrous Metals Society of China,2011,21(8):1905-1910.
[34]HELLER D K,F(xiàn)AHRENHOLTZ W G,KEEFE M J.The effect ofpost-treatmenttimeandtemperatureoncerium-based conversion coatings on Al 2024-T3[J].Corrosion Science,2010,52(2):360-368.
[35]ZOU Jian-hua,ZHU Da-liang,LI Fei-fei,LI Fu-song,WU He,LI Qiao-yun,YANG Guo-wen,ZHANG Ping,MIAO Yun-xia,XIE Jian.Three new coordination compounds with neodymium basedontetrazolecontainingcarboxylicacidligands[J]. Zeitschrift für Anorganische and Allgemeine Chemie,2014,640(11):2226-2231.
[36]LIU Cai-ming,ZUO Jing-lin,ZHANG De-qing,ZHU Dao-ben. Carboxylic acid-dependent assembly of neodymium-organic frameworkswithattractivetopologiesandsecond-order nonlinear optical and/or magnetic properties[J].Cryst EngComm,2008,10(11):1674-1680.
[37]WANG Cheng,ZHU Sheng-long,JIANG Feng,WANG Fu-hui. Cerium conversion coatings for AZ91D magnesium alloy in ethanol solution and its corrosion resistance[J].Corrosion Science,2009,51(12):2916-2923.
[38]ROCCA E,JUERS C,STEINMETZ J.Corrosion behaviour of chemical conversiontreatmentson as-castMg-Alalloys:Electrochemical and non-electrochemical methods[J].Corrosion Science,2010,52(6):2172-2178.
[39]ELSENTRIECY H,AZUMI K,KONNO H.Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy[J].Electrochimica Acta,2008,53(12):4267-4275.
[40]CUI Xiu-fang,LIU Zhe,LIN Li-li,JIN Guo,WANG Hai-dou,XUBin-shi.Investigationofcarboxylicacid-neodymium conversion films on magnesium alloy[J].Journal of Materials Engineering and Performance,2015,24(1):461-467.
[41]JINGuo,YANGYu-yun,CUIXiu-fang,LIUEr-bao. Chrome-freeneodymium-basedprotectivecoatingsfor magnesium alloys[J].Materials Letters,2011,65(8):1145-1147.
[42]PETROY D,ANGELOY B.Preparation and characterisation of NdAlO3nanocrystals by modified sol-gel method[J].Journal of Sol-gel Science and Technology,2010,53(2):227-231.
[43]SIMKA W.Preliminary investigations on the anodic oxidation of Ti-13Nb-13Zr alloy in a solution containing calcium and phosphorus[J].Electrochimica Acta,2011,56(27):9831-9837.
[44]GNEDENKOV S V,KHRISANFOVA O A,ZAVIDNAYA A G,SINEBRUKHOV S L,GORDIENKOA P S,IWATSUBOB S,MATSUI A.Composition and adhesion of protective coatings on aluininum[J].Surface and Coatings Technology,2001,145(1):146-151.
[45]VALANEZHAD A,TSURU K,MARUTA M,KAWACHI G,MATSUYA S,ISGIKAWA K.A new biocompatible coating layer applied on titanium substrates using a modified zinc phosphatizing method[J].Surface and Coatings Technology,2012,206(8):2207-2212.
[46]ZHAO Ming,LI Jian-guo,HE Guang-ping,XIE Hong-lan,F(xiàn)u Ya-nan.An investigation of the effect of a magnetic field on the phosphate conversion coating formed on magnesium alloy[J]. Applied Surface Science,2013,282:499-505.
[47]ZHANG Rui-xue,CAI Shu,XU Guo-hua,ZHAO Huan,LI Yan,WANG Xue-xin,HUANG Kai,REN Meng-guo,WU Xiao-dong. Crack self-healing of phytic acid conversion coating on AZ31 magnesiumalloybyheattreatmentandthecorrosion resistance[J].Applied Surface Science,2014,313:896-904.
[48]WANG Xue-xin,CAI Shu,LIU Tie-long,REN Meng-guo,HUANG Kai,ZHANG Rui-yue,ZHAO Huan.Fabrication and corrosion resistance of calcium phosphate glass-ceramic coated Mg alloy via a PEG assisted sol-gel method[J].Ceramics International,2014,40(2):3389-3398.
[49]REN Meng-guo,CAI Shu,XU Guo-hua,YE Xin-yu,DOU Ying,HUANG Kai,WANG Xue-xin.Influence of heat treatment on crystallization and corrosion behavior of calcium phosphate glass coated AZ31 magnesium alloy by sol-gel method[J]. Journal of Non-Crystalline Solids,2013,369:69-75.
[50]DELAUNOIS F,LIENARD P.Heat treatments for electroless nickel-boronplatingonaluminiumalloys[J].Surface and Coatings Technology,2002,160(2):239-248.
[51]DERVOS C T,NOVAKOVICA J,VASSILIOU P,DERVOS C T,NOVAKOVIC J,VASSILIOU P.Vacuum heat treatment of electroless Ni-B coatings[J].Materials Letters,2004,58(5):619-623.
[52]CRITCHLOW G W,WEBB P W,TREMLETT C J,BROWN K. Chemical conversion coatings for structural adhesive bonding of plain carbon steels[J].International Journal of Adhesion and Adhesives,2000,20(2):113-122.
[53]CHANG J J,YEIH W C.The effect of particle shape on bond strength improvement of epoxy-particle coating composites[J].J Mater Sci Technol,2001,9:153-160.
(編輯王超)
Research progress of process optimization based on film-forming mechanisms of conversion coatings
SONG Jia-hui1,LIU Zhe1,2,CUI Xiu-fang2,JIN Guo1,WANG Hai-dou2,XU Bin-shi2
(1.Institute of Surface/Interface Science and Technology,School of Materials Science and Chemical Engineering,Harbin Engineering University,Harbin 150001,China;2.National Key Laboratory for Remanufacturing,Academy of Armored Forces Engineering,Beijing 100072,China)
In the formation process of the conversion film on the surface of magnesium/aluminum alloy,severe hydrogen evolution reaction and water shrinkage at the end of the film formation,which leads to several disadvantages in the conversion coating such as loose structure,poor continuity and low adhesive force.From the perspective of conversion coating film formation mechanism,combining with three kinds of failure phenomenon(partial damage,conversion coating cracking and loose structure),these three failure mechanisms were reviewed.And the progresses of formation process optimization of conversion coating film including self-healing,densification of conversion coating and enhancement of interface binding force were presented briefly.The development trend of conversion coating was also discussed.
film formation mechanism;damage self-healing;densification;interface bonding force
Projects(51375106,51275105)supported by National Natural Science Foundation of China;Project (2015M571390)supported by Postdoctoral Science Foundation,China;Project(LBH-Z14050)supported by the Heilongjiang Postdoctoral Science Foundation,China
date:2015-05-19;Accepted date:2015-09-13
CUI Xiu-fang;Tel:+86-451-82589660;E-mail:cuixf721@163.com
TG178
A
1004-0609(2016)-03-0568-09
國(guó)家自然科學(xué)基金資助項(xiàng)目(51375106,51275105);中國(guó)博士后基金資助項(xiàng)目(2015M571390);黑龍江省博士后基金資助項(xiàng)目(LBH-Z14050)
2015-05-19;
2015-09-13
崔秀芳,博士;電話:0451-82589660;E-mail:cuixf721@163.com