張曉宇,任平弟,蔡振兵,彭金方,劉建華,朱旻昊(西南交通大學(xué) 機(jī)械工程學(xué)院,成都 610031)
300℃氮?dú)庵薪蛔冚d荷條件下Inconel 690合金的微動(dòng)磨損特性
張曉宇,任平弟,蔡振兵,彭金方,劉建華,朱旻昊
(西南交通大學(xué) 機(jī)械工程學(xué)院,成都 610031)
采用改進(jìn)后的PLINT高溫可控氣氛的微動(dòng)磨損試驗(yàn)機(jī),研究Inconel 690合金在300℃氮?dú)饧胺ㄏ蚪蛔冚d荷條件下的微動(dòng)磨損機(jī)制和動(dòng)力學(xué)特性。結(jié)果表明:微動(dòng)運(yùn)行行為與激振頻率密切相關(guān),微動(dòng)的Ft-D曲線呈現(xiàn)摩擦力周期波動(dòng)的平行四邊形型特征,微動(dòng)運(yùn)行于滑移區(qū)。在300℃氮?dú)猸h(huán)境中,摩擦力的動(dòng)態(tài)變化可以分為5個(gè)階段,即跑合階段、上升階段、峰值階段、下降階段和穩(wěn)定階段。Inconel 690合金的微動(dòng)損傷行為強(qiáng)烈地依賴(lài)于載荷、位移幅值、環(huán)境溫度、氣氛及激振頻率等試驗(yàn)條件。從表面損傷形貌看,損傷微結(jié)構(gòu)與試驗(yàn)參數(shù)密切相關(guān);由于交變法向力和切向力共同作用,微動(dòng)產(chǎn)生疊加效應(yīng),使剝層現(xiàn)象更加突出。在300℃氮?dú)猸h(huán)境下,Inconel 690合金的損傷機(jī)理主要表現(xiàn)為磨粒磨損和剝層。
Inconel 690合金;交變載荷;微動(dòng);高溫;疊加效應(yīng);剝層
在核電系統(tǒng)中,蒸汽發(fā)生器是關(guān)鍵設(shè)備之一,由于蒸汽發(fā)生器一回路和二回路熱傳導(dǎo)及高溫高壓介質(zhì)流致振動(dòng),使傳熱管與支撐部件之間產(chǎn)生微動(dòng)磨損[1-2],導(dǎo)致傳熱管局部損傷甚至破裂,使用壽命降低,危及核電安全。因此,防止蒸汽發(fā)生器傳熱管的破損,提高核電設(shè)備安全性和使用壽命,是核電工程的重大課題[3-4]。目前,對(duì)Inconel 690合金的研究主要集中在大氣環(huán)境下恒定載荷微動(dòng)磨損方面[4-14],而交變載荷條件下微動(dòng)磨損的研究很少。開(kāi)展高溫氮?dú)庵蟹ㄏ蚪蛔冚d荷下微動(dòng)磨損的試驗(yàn)研究,不僅對(duì)探索特殊工況下的復(fù)雜微動(dòng)損傷機(jī)理具有實(shí)際指導(dǎo)意義,而且也能為核電設(shè)備抗微動(dòng)損傷設(shè)計(jì)、運(yùn)行安全性和使用壽命具有重要應(yīng)用價(jià)值。
在PLINT試驗(yàn)機(jī)法向上外加電磁激振器進(jìn)行微動(dòng)試驗(yàn),試驗(yàn)機(jī)結(jié)構(gòu)示意圖如圖1所示[7]。試驗(yàn)材料為直徑19.05 mm、厚度1.09 mm的Inconel 690合金管,表面粗糙度 Ra=0.02μm。對(duì)偶件為1Cr13不銹鋼實(shí)心圓柱體(d=10 mm,Ra=0.02μm)。微動(dòng)磨損試驗(yàn)參數(shù)如下:法向恒定載荷(Fn)分別為20、50和100 N,位移幅值(D)分別為100、150和200μm,試驗(yàn)溫度為300℃,循環(huán)次數(shù)3×104次,切向頻率為2 Hz,法向激振力Fn1=16 sin(ωt),法向激頻率(fn)為10和50 Hz。在改進(jìn)后PLINT高溫氮?dú)馕?dòng)磨損試驗(yàn)機(jī)上,采用圓柱/圓柱水平“十”字交叉接觸方式進(jìn)行微動(dòng)磨損試驗(yàn)。本試驗(yàn)中使用工業(yè)氮?dú)饧兌葹?8%,由氣瓶(氣壓均為12 MPa,流速0.1 m3/min)向密封試驗(yàn)室輸送氮?dú)?0 min,使試驗(yàn)室空氣排出后開(kāi)始試驗(yàn),實(shí)驗(yàn)過(guò)程中用L型塑咀采樣袋收集大量混合氣體,通過(guò)Se-6000型氣相色譜儀檢測(cè)混合氣體(氧含量占5%,氮含量占95%)。試驗(yàn)前用丙酮清洗試樣表面。試驗(yàn)結(jié)束后用掃描電鏡(SEM,F(xiàn)EI-S50型)、臺(tái)階儀(AMBIOS XP-2型)和X射線電子能譜儀(XPS,PHI-5702型)等對(duì)磨斑表面進(jìn)行觀測(cè)分析,利用Hysitron原位納米力學(xué)測(cè)試系統(tǒng)(Ti-900 Triboludenter型)對(duì)磨痕剖面上微區(qū)的力學(xué)性能進(jìn)行測(cè)試。
2.1微動(dòng)運(yùn)行規(guī)律
圖2和圖3所示分別為300℃氮?dú)猸h(huán)境下最大載荷Fmax分別為36、66和116 N,位移幅值D為200 μm,激振頻率fn分別為10和50 Hz時(shí),Inconel 690合金在不同循環(huán)次數(shù)下微動(dòng)的Ft-D曲線。微動(dòng)運(yùn)行行為與激振頻率密切相關(guān),Inconel 690合金從初始循環(huán)直至試驗(yàn)結(jié)束,微動(dòng)的Ft-D曲線表現(xiàn)出在法向交變載荷作用下微動(dòng)模式的疊加特征,摩擦力呈周期變化的平行四邊形特征。根據(jù)微動(dòng)圖理論,微動(dòng)運(yùn)行狀態(tài)均處于完全滑移狀態(tài)。
圖1 高溫可控氣氛環(huán)境中微動(dòng)磨損試驗(yàn)機(jī)示意圖Fig.1 Schematic diagram of fretting wear test rig in high-temperature controlled-atmosphere environment:1—Tube specimen;2—Cylinder specimen;3—Holder of tube specimen;4—Holder of cylinder specimen;5—Bolt;6—Asbestos insulation;7—Sample chamber;8—Piston of hydraulic system;9—Counterbalance weight;10—Thermocouple;11—Heater;12—Nitrogen bottle;13—Spring;14—Connecting rod;15—Pressure sensor;16—Fixing bolts;17—Adjusting screw nut;18—Vibration exciter;19—Mouting plate
2.2摩擦力
當(dāng)最大載荷Fmax=66 N、位移幅值D=200 μm、徑向頻率分別為f=10 Hz和50 Hz時(shí),摩擦力隨循環(huán)次數(shù)演變曲線如圖4所示。在高溫氮?dú)猸h(huán)境下,摩擦力的動(dòng)態(tài)變化分為5個(gè)階段,即跑合階段、上升階段、峰值階段、下降階段和穩(wěn)定階段。穩(wěn)態(tài)摩擦力隨激振頻率增加而增加。
圖2 300℃氮?dú)猸h(huán)境中不同荷載下Ft-D曲線隨循環(huán)次數(shù)的變化(fn=10 Hz,D=200 μm)Fig.2 Variation of Ft-D curves as function of number of cycle with different normal loads at 300℃ in nitrogen environment (fn=10 Hz,D=200 μm):(a)N=1;(b)N=10;(c)N=100;(d)N=1000
2.3磨痕深度分析
圖3 300℃氮?dú)猸h(huán)境中不同荷載下Ft-D曲線隨循環(huán)次數(shù)的變化(fn=50 Hz,D=200 μm)Fig.3 Variation of Ft-D curves as function of number of cycle with different normal loads at 300℃ in nitrogen environment (fn=50 Hz,D=200 μm):(a)N=1;(b)N=10;(c)N=100;(d)N=1000
圖4 300℃氮?dú)猸h(huán)境中摩擦力與循環(huán)次數(shù)的關(guān)系(Fmax=66 N,D=200 μm)Fig.4 Relationship between friction force and cycle numbers at 300℃ in nitrogen environment(Fmax=66 N,D=200 μm):(a)fn=10 Hz;(b)fn=50 Hz
圖5所示為300℃氮?dú)猸h(huán)境中Inconel 690合金磨痕的截面輪廓最大深度分別與位移幅值或載荷的關(guān)系。由圖5(a)可見(jiàn),300℃氮?dú)猸h(huán)境中,當(dāng)激振頻率為10 Hz或50 Hz、最大載荷為66 N時(shí),隨位移幅值增加,磨痕的最大深度增加,由于位移增加,磨屑容易被溢出、轉(zhuǎn)移,材料表面磨損嚴(yán)重。當(dāng)載荷和位移幅值不變,磨痕的最大深度和損傷程度隨激振頻率增加而增加。由圖5(b)所示,當(dāng)激振頻率為10 Hz或50Hz,位移幅值為100 μm時(shí),磨痕的最大深度和損傷程度隨載荷增加而增加。當(dāng)載荷和位移幅值一定時(shí),磨痕的最大深度隨激振頻率增加而增加,這是因?yàn)榧ふ耦l率加快,交變法向力作用明顯加強(qiáng),材料表面磨損加劇。因此,在300℃氮?dú)猸h(huán)境中,由于在高含量氮?dú)庾饔孟?,氧化效?yīng)明顯減弱,氧化反應(yīng)速率顯著降低,氧化物磨屑的生成受到抑制,磨屑極少,絕大部分裸露在磨痕表面,材料界面微凸體直接接觸機(jī)會(huì)增加,磨損嚴(yán)重。
圖5 300℃氮?dú)猸h(huán)境下Inconel 690合金磨痕的最大深度與位移幅值或載荷的關(guān)系Fig.5 Relationship between depth maximum depth of wear traces of Inconel 690 alloy and displacement amplitudes or normal loads at 300℃ in nitrogen environment:(a)Fmax=66 N;(b)D=100 μm
圖6 300℃氮?dú)庵蠭nconel 690合金磨痕的SEM像(D=100 μm)Fig.6 SEM images of worn scars of Inconel 690 alloy at 300℃ in nitrogen environment(D=100 μm):(a)Fmax=36 N,fn=10 Hz;(b)Fmax=66 N,fn=10 Hz;(c)Fmax=36 N,fn=50 Hz;(d)Fmax=66 N,fn=50 Hz
2.4磨痕形貌分析
圖6所示為300℃氮?dú)猸h(huán)境下Inconel 690合金磨痕的SEM像。當(dāng)最大載荷為36 N、激振頻率為10 Hz時(shí),由圖6(a)可以看出,磨痕的整個(gè)表面較平整,在磨痕中心,可以觀察到厚厚的磨屑層覆蓋于接觸區(qū),同時(shí)可以觀察到平行于摩擦方向的較淺犁溝痕跡;隨最大載荷增加到66 N時(shí),磨痕整個(gè)接觸區(qū)域表面平整,磨痕中心區(qū)域幾乎沒(méi)有細(xì)小磨屑,僅觀察到少量剝落坑和大量較深的犁溝痕跡(見(jiàn)圖6(b)),這是因?yàn)檩d荷增加,相應(yīng)切向力分量增加,切向力起到主導(dǎo)作用,同時(shí)在300℃氮?dú)猸h(huán)境下,由于高含量氮作用,降低了氧含量,氧化磨損輕微,形成的氧化磨屑較少且薄,導(dǎo)致材料表面兩體直接接觸,磨痕表面損傷嚴(yán)重。
當(dāng)最大載荷為36 N、位移幅值為100 μm、激振頻率為50 Hz時(shí),可以觀察到較深平行于摩擦方向的犁溝痕跡、剝落坑以及少量的細(xì)小磨屑散布在剝落坑區(qū)域(見(jiàn)如圖6(c));隨最大載荷增加,磨痕中心區(qū)域可以觀察到較大尺寸的剝落坑、犁溝痕跡以及塑性流動(dòng)特征,材料表面損傷嚴(yán)重(見(jiàn)圖6(d));當(dāng)載荷一定時(shí),隨激振頻率增加,剝落坑的數(shù)量、尺寸以及塑性流變現(xiàn)象特別明顯(見(jiàn)圖6(b)和(d)),這可能是因?yàn)檩d荷和激振頻率較大,在法向交變載荷作用下產(chǎn)生疊加效應(yīng)特性顯著增強(qiáng)。因此,300℃氮?dú)猸h(huán)境下Inconel 690合金的磨損機(jī)制是以磨粒磨損與剝層為主[15]。
圖7 Inconel 690合金在300℃氮?dú)猸h(huán)境下磨痕剖面的SEM像(Fmax=116 N,fn=50 Hz,D=200 μm)Fig.7 SEM images of wear scar cross-section of Inconel 690 alloy at 300℃ in nitrogen environment(Fmax=116 N,fn=50 Hz,D=200 μm):(a)SEM image of wear scar cross-section;(b)Partially enlarged SEM image of zone 1 in Fig.7(a);(c)Partially enlarged SEM image of zone 2 in Fig.7(b);(d)Partially enlarged SEM image of zone 3 in Fig.7(c)
2.5剖面損傷形貌分析
圖7所示為Inconel 690合金在300℃氮?dú)猸h(huán)境中磨痕橫截面的SEM像。在磨損區(qū)由上到下分別為呈疏松態(tài)細(xì)小磨屑的磨屑層、在交變載荷作用下晶粒結(jié)構(gòu)發(fā)生顯著變化(產(chǎn)生塑性變形)形成塑變層以及基體層[16-17]。
圖8所示為磨痕橫截面上距上表面不同深度區(qū)域進(jìn)行納米壓痕測(cè)試獲得的力-位移曲線(測(cè)試區(qū)域見(jiàn)圖7(b)中QA、QB以及QC區(qū)域)。當(dāng)測(cè)試深度相同時(shí)(100 nm),QA區(qū)域需要施加的載荷最大,QB區(qū)域相對(duì)較小,而QC區(qū)域最小。圖9所示為圖8中不同力-位移曲線計(jì)算獲得的納米壓痕硬度值。QA區(qū)域附近的納米壓痕硬度明顯比QB區(qū)域和QC區(qū)域(基體層)高。因此,通過(guò)對(duì)磨痕橫截面(QA區(qū)域)的晶粒結(jié)構(gòu)形貌觀察以及該區(qū)域的較高納米壓痕硬度值[18],發(fā)現(xiàn)材料在交變載荷條件下的摩擦過(guò)程中,由于加工硬化作用更容易形成塑性變形層。
圖8 納米壓痕試驗(yàn)典型的力-位移曲線Fig.8 Typical force-displacement curve on nano-indentation test
圖9 納米壓痕硬度測(cè)試Fig.9 Nano-indentation hardness tests
1)微動(dòng)的Ft-D曲線表現(xiàn)出在法向交變載荷作用下微動(dòng)模式的疊加特征,摩擦力呈周期變化的平行四邊形特征,微動(dòng)運(yùn)行于完全滑移狀態(tài)。
2)在300℃氮?dú)猸h(huán)境中,摩擦力的動(dòng)態(tài)變化可以分為5個(gè)階段,即跑合階段、上升階段、峰值階段、下降階段和穩(wěn)定階段。
3)在300℃氮?dú)猸h(huán)境中,Inconel 690合金微動(dòng)行為運(yùn)行于滑移區(qū)時(shí),試驗(yàn)參數(shù)對(duì)微動(dòng)損傷行為產(chǎn)生重要影響。在磨痕表面呈現(xiàn)較大尺寸的剝落坑、犁溝痕跡以及塑性變形特征,材料表面損傷嚴(yán)重,這是因?yàn)樵诜ㄏ蚪蛔冚d荷作用下疊加效應(yīng)特性顯著增強(qiáng)。Inconel 690合金的磨損機(jī)制主要表現(xiàn)為磨粒磨損與剝層。
REFERENCES
[1] 周仲榮,朱旻昊.復(fù)合微動(dòng)磨損[M].上海:上海交通大學(xué)出版社,2004. ZHOU Zhong-rong,ZHU Min-hao.Composite fretting[M]. Shanghai:Shanghai Jiao Tong University Press,2004.
[2]ZHU M H,Zhou Z R.Composite fretting wear of aluminum alloy[J].KeyEngineeringMaterials,2007,353/358(6):868-873.
[3]LOW M B J.Fretting problems and some solutions in power plant machinery[J].Wear,1985,106(3):315-336.
[4] 唐輝.世界核電設(shè)備與結(jié)構(gòu)將長(zhǎng)期面臨的一個(gè)問(wèn)題—微動(dòng)磨損[J].核動(dòng)力工程,2000,21(3):222-231. TANG Hui.Fretting damage,one of world wide difficulties in the field of nuclear power equipment and structures for a long term[J].Nuclear Power Engineering,2000,21(3):222-231.
[5] 葉毅,任平弟,張曉宇,郭洪,李長(zhǎng)香.高溫大氣和N2中Inconel690/1Cr13不銹鋼的微動(dòng)磨損特性[J].中國(guó)有色金屬學(xué)報(bào),2013,7(23):1900-1906. YE Yi,REN Ping-di,ZHANG Xiao-yu,GUO Hong,LI Chang-xiang.FrettingwearbehaviorofInconel690/1Cr13 stainless steel in high-temperature air and nitrogen[J].The Chinese Journal of Nonferrous Metals Society,2013,7(23):1900-1906.
[6]張曉宇,任平弟,張亞非,朱旻昊,周仲榮.Incoloy800合金的高溫微動(dòng)磨損特性研究[J].中國(guó)有色金屬學(xué)報(bào),2010,20(8):1545-1551. ZHANG Xiao-yu,REN Ping-di,ZHANG Ya-fei,ZHU Min-hao,ZHOU Zhong-rong.Fretting wear behavior of Incoloy800 alloy at high temperature[J].Transactions of Nonferrous Metals Society of China,2010,20(8):1545-1551.
[7]向紅先,任平弟,張曉宇,劉建濤,李放.交變載荷條件下NC30Fe合金微動(dòng)損傷特性研究[J].摩擦學(xué)學(xué)報(bào),2014,34(4):437-445. XIANG Hong-xian,REN Ping-di,ZHANG Xiao-yu,LIU Jian-tao,LIFang.Frettingdamagebehavior ofNC30Fe nickel-basedalloyunderalternatingloadconditions[J]. Tribology,2014,34(4):437-445.
[8]HONG J K,KIM I S.Environment effects on the reciprocating wear of Inconel690 steam generator tubes[J].Wear,2003,255(9):1174-1182.
[9]CHUNGA I,LEE M.An experimental study on fretting wear behavior of cross-contacting Inconel 690 tubes[J].Nuclear Engineering and Design,2011,241(5):4103-4110.
[10]SUNG H J,CHUN W C,LEE Y Z.Fretting and wear of Inconel 690 for steam generator tube in elevated temperature water under frettingcondition[J].TribologyInternation,2005,38(4):283-288.
[11]YUN J Y,PARK M C,SHIN,G S,HEO J H,KIM D I,KIM S J. Effects of amplitude and frequency on the wear mode change of Inconel 690 SG tube mated with SUS 409[J].Wear,2014,313:83-88.
[12]LI J,LU Y H.Effects of displacement amplitude on fretting wear behaviors and mechanism of Inconel 600 alloy[J].Wear,2013,304(1/2):223-230.
[13]MI X,WANG W X,XIONG X M,QIAN H,TANG LC,XIE Y C,PENG J F,CAI Z B,ZHU M H.Investigation of fretting wear behavior of Inconel 690 alloy in tube/plate contact configuration[J].Wear,2015,328/329:582-590.
[14]ZHANGXiao-yu,RENPing-di,ZHONGFa-chun,ZHU Min-hao,ZHOUZhong-rong.Frettingwearandfriction oxidationbehaviorof0Cr20Ni32AlTialloyathigh temperature[J].Transactions of Nonferrous Metals Society of China,2012,22(4):825-830.
[15]JAE Y Y,GYEONG S S,DAE I K,HO S L,WOONG S K,SEON J K.Effect of carbide size and spacing on the fretting wear behavior of Inconel 690 SG tube mated with SUS 409[J]. Wear,2015,338/339:252-257
[16]辛龍,李杰,陸永浩.Inconel 690合金高溫微動(dòng)磨損特性研究[J].摩擦學(xué)學(xué)報(bào),2015,35(4):470-476. XIN Long,LI Jie,LU Yong-hao.Fretting wear properties of inconel 690 alloy at elevated temperature[J].Tribology,2015,35(4):470-476.
[17]王文秀,蔡振兵,錢(qián)浩,李晨,謝永誠(chéng),米雪,彭金方,朱旻昊.不同溫度下 690合金傳熱管與抗振條的微動(dòng)磨損特性[J].中國(guó)有色金屬學(xué)報(bào),2014,24(11):2777-2783. WANG Wen-xiu,CAI Zhen-bing,QIAN Hao,LI Chen,XIE Yong-chen,MI Xue,PENG Jin-fang,ZHU Min-hao.Fretting wearbehaviorofalloy690heattransfertubesagainst anti-vibration strip at different temperatures[J].The Chinese Journal of Nonferrous Metals,2014,24(11):2777-2783.
[18]QIAN L M,LI M,ZHOU Z R,YANG H,SHI X Y.Comparison ofnanoindentationhardnesstomicrohardness[J].Surface Coating Technology,2005,195(4):264-271.
(編輯龍懷中)
Fretting wear behavior of Inconel 690 alloy under alternating load conditions at 300℃ in nitrogen environment
ZHANG Xiao-yu,REN Ping-di,CAI Zhen-bing,PENG Jin-fang,LIU Jian-hua,ZHU Min-hao
(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
The fretting wear mechanisms and kinetic behaviours of Inconel690 alloy were investigated on the improved PLINT fretting rig under alternating loads conditions in high-temperature controlled-atmosphere environments.The results show that the fretting running behaviors are closely related to the normal excitation frequency.In parallelogram shaped Ft-D curves,the friction fluctuates periodically,and accordingly the fretting runs in the slip regime(SR).Five stages of friction force curves can be observed at 300℃in nitrogen environment,including initial stage,ascending stage,peak value stage descending stage and steady stage.The fretting wear behaviors for Inconel 690 alloy strongly depend on the normal load,displacement amplitude,temperature,atmosphere,excitation frequency and other test conditions.The super position effect of fretting wear behavior due to the combined effect of alternating normal force and tangential force is produced,so that delamination phenomenon becomes much more prominent.The abrasive wear and delamination are the major mechanisms of Inconel 690 at 300℃ in nitrogen environment.
alternating load;fretting wear;high temperature;superposition effect;delamination
Projects(51075324,51305364)supported by the National Natural Science Foundation of China;Project(2682014CX03)supported by the 2014 Scientific and Technological Innovation Funds of the Central Universities
date:2015-05-29;Accepted date:2015-10-28
REN Ping-di;Tel:+86-28-87603924;E-mail:rpd@swjtu.edu.cn
TH117.1
A
1004-0609(2016)-03-0544-07
國(guó)家自然科學(xué)基金資助項(xiàng)目(51075324,51305364);中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金科技創(chuàng)新項(xiàng)目(2682014CX037)
2015-05-29;
2015-10-28
任平弟,教授,博士;電話(huà):028-87603924;E-mail:rpd@swjtu.edu.cn