羅 執(zhí),張 楊,趙愈亮,張衛(wèi)文(華南理工大學(xué) 機(jī)械與汽車工程學(xué)院,廣州 510640)
結(jié)構(gòu)材料
復(fù)合場作用下Al-5.0Cu-1.0Fe合金的顯微組織和力學(xué)性能
羅 執(zhí),張 楊,趙愈亮,張衛(wèi)文
(華南理工大學(xué) 機(jī)械與汽車工程學(xué)院,廣州 510640)
將壓力場和超聲場復(fù)合作用于鋁合金的凝固過程,并對比分析無外場、單一外場(壓力場、超聲場)和復(fù)合場的作用效果。采用定量金相分析、掃描電鏡、電子探針等手段研究壓力場、超聲場以及壓力和超聲復(fù)合場作用下Al-5.0Cu-1.0Fe合金的顯微組織和顯微硬度。結(jié)果表明:分別施加50 MPa壓力場和800 W超聲場均能減少α(Al)二次枝晶間距,細(xì)化并分散富鐵相和θ(Al2Cu)相,同時(shí)改變富鐵相的形貌,使針狀的Al7Cu2Fe相轉(zhuǎn)變成漢字狀的富鐵相Al6(CuFe);同時(shí)復(fù)合場比單一外場能更大程度地細(xì)化α(Al)二次枝晶間距、富鐵相和θ(Al2Cu)相;單獨(dú)施加壓力50 MPa比單獨(dú)施加800 W的超聲更能夠有效減少縮松,但同時(shí)施加壓力和超聲時(shí)效果最佳;同時(shí)施加壓力和超聲場時(shí)可獲得最高的 α(Al)基體顯微硬度。對復(fù)合場的作用效果進(jìn)行初步探討,這是超聲場的空化效應(yīng)以及聲流效應(yīng)和壓力場的壓力效應(yīng)共同作用的結(jié)果。
Al-5.0Cu-1.0Fe合金;超聲場;壓力場;富鐵相;顯微組織;顯微硬度
Al-Cu系合金由于 Cu的固溶作用而具有較好的強(qiáng)韌性,同時(shí)具有較高的比強(qiáng)度和硬度、良好的耐腐蝕性、易于加工等優(yōu)點(diǎn)而被廣泛應(yīng)用于汽車、軍事、航空航天工業(yè)[1?3]。但是,由于Al-Cu系合金的結(jié)晶溫度范圍寬、流動性差、鑄造性能較差,同時(shí)由于雜質(zhì)元素Fe在鋁合金中難以避免,會形成α-富Fe相,β-富Fe相以及固溶少量Mn、Cu原子的AlmFe、Al3Fe 與Al6Fe,降低了基體中有效Cu的含量,惡化了鑄造Al-Cu合金的力學(xué)性能,限制了其應(yīng)用[4?7]。在這幾種富鐵相中,β-富Fe相組成多為β-Al5FeSi、Al9Fe2Si2、Al7Cu2Fe和Al7Cu2(FeMn)等,常以針片狀的形貌出現(xiàn),此形貌易形成應(yīng)力集中,割裂基體,脆性較大,α-富Fe相組成多為α-Al8Fe2Si、Al12Fe3Si2和Al15(FeMn)3-(SiCu)2等,通常為漢字狀或骨骼狀,排布緊密,末端呈球狀。而Al6Fe與AlmFe作為非平衡鐵相,易在較高的冷卻速率下形成,通常為漢字狀、魚骨狀或是塊狀,應(yīng)力集中?。?]。因此,β-富Fe相對合金性能危害更大[8?11]。而且,當(dāng)Fe量較大時(shí),粗大的針片狀富鐵相會阻礙枝晶間液態(tài)金屬的流動,降低Al-Cu熔體的流動性和充型能力。所以,通過優(yōu)化工藝來減少雜質(zhì)Fe的有害影響對于開發(fā)高性能低成本的Al-Cu合金材料具有重要的指導(dǎo)意義。
目前,國內(nèi)外通過減小Fe在合金中含量和改變富鐵相形貌的方法來降低鋁合金熔體中 Fe的危害作用[4, 12],利用諸如壓力場、超聲場等外加場[13?27]成為一種重要的途徑。擠壓鑄造作為一種優(yōu)質(zhì)、高效、節(jié)能的近凈成形技術(shù),其工藝流程簡單,能獲得組織致密、力學(xué)性能優(yōu)異的合金鑄件[28?29]。DONG等[13]研究了擠壓鑄造Al-7Si-0.3Mg合金,發(fā)現(xiàn)擠壓鑄造能細(xì)化富鐵相,并且提高合金的力學(xué)性能。ARHAMI等[14]對擠壓鑄造 Al-8Fe-1.4V-8Si合金進(jìn)行了研究,能使β-富Fe相轉(zhuǎn)變成危害性較小的α-富Fe相。本課題組的前期研究[4, 15?18]表明,當(dāng)擠壓壓力從0 MPa增大到75 MPa時(shí),Al-5.0Cu合金中針狀β-富Fe相轉(zhuǎn)變?yōu)闈h字狀的α-富Fe相,強(qiáng)度和伸長率增加。
超聲熔體處理通過空化效應(yīng)、聲流效應(yīng)和熱效應(yīng)等多種效應(yīng)的綜合作用,改變金屬的凝固過程,最終改善和控制金屬的凝固行為。張勇等[19]采用受控凝固和受控振動相結(jié)合的實(shí)驗(yàn)裝置和方法,在Al-Fe合金中引入不同功率的超聲振動,揭示了超聲可以顯著細(xì)化鐵相,大幅提高了抗拉強(qiáng)度。吳樹森課題組[20?24]和OSAWA等[25]則對高硅高鐵鋁合金熔體施加超聲振動后澆注,富鐵相細(xì)化和其形態(tài)發(fā)生改變,塊狀和短條狀 δ-富 Fe相增多,而針狀 β-富 Fe相減少。李廷舉等[26]對Al-12%Si-2%Fe合金進(jìn)行超聲處理,發(fā)現(xiàn)隨超聲時(shí)間增長,α-富Fe相逐漸增多,而β-富Fe相逐漸減少。同時(shí),KHALIFA等[27]對含鐵量為 0.78%的ADC12鋁合金施加超聲振動,同樣得到富鐵相形貌改變和強(qiáng)度提高的結(jié)論。由此可知,超聲處理能細(xì)化鋁合金的富鐵相,但超聲處理多用于Al-Si系合金中,而對Al-Cu系合金的研究則較少。
當(dāng)前,國內(nèi)外通常單獨(dú)利用擠壓鑄造壓力場或超聲場來改善鋁合金中的富鐵相,然而,THIRUMAL等[30]研究了 AA6061合金擠壓鑄造和超聲振動的作用,兩者均能提高合金性能。DAI等[31]也嘗試用兩種外場來改變AlCuMnTi合金的組織和性能,同樣效果明顯。上述研究均是將合金熔體先超聲處理再進(jìn)行不同工藝參數(shù)的擠壓鑄造,而本文作者則是首次使超聲場和擠壓鑄造壓力場同時(shí)作用于合金熔體,相對前者本研究組織細(xì)化效果更加明顯,組織缺陷較少,實(shí)驗(yàn)流程更短。本文作者選擇一種成分簡單、含鐵量較高Al-5.0Cu-1.0Fe合金為研究對象,研究不同條件下該合金的顯微組織和力學(xué)性能,一方面填補(bǔ)超聲處理Al-Cu系合金研究的空白,另一方面開創(chuàng)一種新型復(fù)合場,為開發(fā)高性能低成本的Al-Cu系合金提供理論指導(dǎo)和實(shí)驗(yàn)支撐。
本試驗(yàn)中所用原材料為高純鋁錠(99.95%,質(zhì)量分?jǐn)?shù))、Al-50Cu、Al-5Fe中間合金,在7.5 kW坩堝井式電阻爐中熔煉合金,完全熔化后使用商用固體精煉劑進(jìn)行精煉除氣除渣,控制熔體溫度在710 ℃左右,利用d 80 mm×100 mm大小的澆勺快速澆注,合金通過光譜儀分析,成分如表1所列。
復(fù)合場裝置如圖1所示,裝置由兩部分構(gòu)成:超聲振動系統(tǒng)和擠壓鑄造系統(tǒng)。超聲振動系統(tǒng)由空冷的頻率為20 kHz的發(fā)生器、PZT合金制成的換能器和一個(gè)工作桿組成。實(shí)驗(yàn)中使用的超聲功率為800 W,頻率為19.3 kHz,超聲的時(shí)間為30 s。擠壓鑄造系統(tǒng)中的壓機(jī)液壓力為100 t,鑄造模具材料為H13鋼,尺寸為 75 mm×75 mm×100 mm。模具的預(yù)熱溫度為200 ℃,擠壓壓力分別為0、50 MPa,擠壓速度為10~20 mm/s,保壓時(shí)間為30 s,獲得鑄錠尺寸為75 mm× 75 mm×70 mm。在復(fù)合場下,超聲功率為800 W,擠壓壓力50 MPa,共同作用時(shí)間為30 s。
圖1 復(fù)合場裝置示意圖Fig. 1 Schematic diagram of compound field system: 1—Ultrasonic generator; 2—Transducer; 3—Radiator bar; 4—Punch; 5—Mold; 6—Molten melt; 7—Ejector
表1 合金的化學(xué)成分Table 1 Chemical composition of alloy (mass fraction, %)
在超聲桿尖端處截取d 10 mm×12 mm的金相試樣,拋光后采用質(zhì)量分?jǐn)?shù)為0.5%的HF溶液腐蝕,在LEICA/DMI 5000M型金相顯微鏡下進(jìn)行顯微組織觀察,并利用Image-Pro Plus 6.0圖像分析軟件進(jìn)行第二相比例分?jǐn)?shù)的定量分析,在放大500倍下選取不少于30個(gè)視場,每個(gè)視場選取不少于10條截線。采用定量立體測量學(xué)中所公認(rèn)的公式AA=VV[32],即第二相的面積分?jǐn)?shù)(AA)等于體積分?jǐn)?shù)(VV),將軟件計(jì)算出的面積分?jǐn)?shù)轉(zhuǎn)換為體積分?jǐn)?shù)。金相中的孔洞以及第二相具體成分在Quanta 2000型掃描電子顯微鏡下進(jìn)行。在維氏硬度計(jì)上測 α(Al)基體的顯微硬度,其中載荷為0.49 N,保壓時(shí)間為15 s,試驗(yàn)結(jié)果是10個(gè)測試點(diǎn)的平均值。采用EPMA?1600型波譜儀分析了不同條件下鑄態(tài)合金α(Al)基體中Cu的成分,探究合金的硬度變化原因。同時(shí),為更清晰地觀察富鐵相的三維立體形貌,將拋光后的金相樣品倒置于濃度為10 g/mL的碘甲醇溶液中 4~5 h,然后用酒精和超聲波清洗后,采用Nova Nano SEM 430型掃描電子顯微鏡觀察合金的顯微組織。
2.1 合金的顯微組織
不同條件下的鑄態(tài)合金的顯微組織如圖2所示。由圖2可知,合金鑄態(tài)組織為典型的枝晶結(jié)構(gòu),主要由α(Al)枝晶及分布在枝晶之間的各種第二相組成。在圖2(a)中,在無外場的作用下,合金在富鐵相周圍出現(xiàn)大量的縮松,根據(jù)Al-Cu-Fe三元合金相圖[33]看出,富鐵相在金屬熔液降溫過程中逐漸形成,無液態(tài)金屬補(bǔ)縮,而形成縮松。在圖2(b)中,50 MPa擠壓壓力下的組織得到細(xì)化,縮松大幅減少,并且出現(xiàn)明顯的雙峰組織。在圖2(c)中,相對圖2(a)而言,縮松減少,晶粒細(xì)化,并且富鐵相也較分散。圖2(d)中枝晶的細(xì)化程度更加明顯,同時(shí)富鐵相尺寸也減小。由此可見,壓力場和超聲場的共同作用使得對枝晶的作用更明顯,但卻并不是簡單意義上的加成。
圖2 不同條件下的鑄態(tài)合金的顯微組織Fig. 2 Microstructures of as-cast alloys under different conditions: (a) Without field; (b) With 50 MPa pressure field; (c) With ultrasonic field; (d) With compound field
圖3 不同條件下合金的相尺寸和體積分?jǐn)?shù)Fig. 3 Sizes(a) and volume fraction(b) of phases in alloys under different conditions: 1—Without field; 2—With 50 MPa pressure field; 3—With ultrasonic field; 4—With compound field
不同方法下相的體積分?jǐn)?shù)與 α(Al)基體的二次枝晶間距的大小如圖3所示??梢钥闯觯?dāng)施加復(fù)合場時(shí),α(Al)的二次枝晶間距相對于無外場作用的 72.5 μm減小到12.5 μm,減小了80%,富鐵相的平均長度由22.5 μm減小到4.6 μm,平均寬度由13.4 μm減小到2.3 μm,θ(Al2Cu)相的最大寬度也由14.1 μm減小到1.8 μm。復(fù)合場的作用也使得θ(Al2Cu)相的體積分?jǐn)?shù)由5.5%減小到0.6%,β-富Fe相的體積分?jǐn)?shù)由1.2%減小到 0.1%,Al6(CuFe)的體積分?jǐn)?shù)由 1.6%增加到2.9%。因此,復(fù)合場的引入,不僅能細(xì)化第二相,而且使得針狀富鐵相減少,漢字狀富鐵相增多。
圖4所示為不同條件下鑄態(tài)合金富鐵相的3D形貌??梢钥闯觯跓o外場下,針片狀A(yù)l7Cu2Fe較細(xì)長,同時(shí)貫穿于骨骼狀A(yù)l6(CuFe),而Al6(CuFe)則較粗大,呈塊狀。當(dāng)施加壓力場時(shí),鐵相變短小,骨骼狀的Al6(CuFe)更加細(xì)小,且更分散,而施加超聲場時(shí),針片狀鐵相幾乎看不到。當(dāng)復(fù)合場作用時(shí),富鐵相的細(xì)化效果更明顯,主要出現(xiàn)橢圓花紋狀鐵相,而沒有針狀鐵相。
圖4 不同條件下的鑄態(tài)合金富鐵相的3D形貌Fig. 4 Three-dimensional morphology of Fe-rich intermetallics of as-cast alloys under different conditions: (a) Without field; (b)With 50 MPa pressure field; (c) With ultrasonic field; (d) With compound field
圖5 合金中緊挨富鐵相的孔洞Fig. 5 Porosity in alloy associated with Al7Cu2Fe phase without field (a) and Al6(CuFe) phase with ultrasonic field (b)
2.2 縮松
圖5所示為不同鐵相附近的縮松??s松周圍出現(xiàn)的相也是合金中存在的相,其能譜分析結(jié)果如表2所列。其所對應(yīng)的相分別為黑色漢字狀富鐵相Al6(CuFe),針片狀富鐵相 Al7Cu2Fe,灰色花紋狀相Al2Cu,與相關(guān)文獻(xiàn)[10, 17, 34]的報(bào)道一致。由于寬的結(jié)晶溫度范圍,所以Al-Cu合金中較易形成縮松。合金的實(shí)際密度采用阿基米德排水法測得,縮松體積分?jǐn)?shù)采用定量金相分析軟件IPP算得,不同條件下的實(shí)際密度與縮松體積分?jǐn)?shù)如圖6所示,外場的作用使得合金的密度上升,縮松體積分?jǐn)?shù)減少,尤其是復(fù)合場作用下,相對無外場作用時(shí)而言,密度上升 3.85%,縮松體積分?jǐn)?shù)減少68.0%。
表2 圖5中各點(diǎn)的EDS能譜分析結(jié)果Table 2 EDS analysis results of locations in Fig. 5
圖6 不同條件下合金的密度和縮松體積分?jǐn)?shù)Fig. 6 Density and volume fraction of porosity of alloys under different conditions: 1—Without field; 2—With 50 MPa pressure field; 3—With ultrasonic field; 4—With compound field
2.3 顯微硬度
不同條件下鑄態(tài)合金的顯微硬度如圖7所示,從圖7中可以看出,在施加壓力場、超聲場或壓力超聲復(fù)合場時(shí),顯微硬度都較無外場時(shí)大,且復(fù)合場時(shí)合金的顯微硬度最大。與無外場相比,當(dāng)施加 50 MPa壓力場時(shí),鑄態(tài)下顯微硬度從32 HV增大到39 HV,增幅為21.9%;當(dāng)施加超聲場時(shí),顯微硬度從32 HV增大到37 HV,增幅為15.6%;當(dāng)施加復(fù)合場時(shí),顯微硬度從32 HV增大到50 HV,增幅為56.3%。復(fù)合場時(shí)性能的提高并非兩種外場的簡單疊加,鑄態(tài)合金復(fù)合場作用下相對無外場顯微硬度的增幅大于單一外場作用增幅的加和。通過 EPMA測試鋁合金基體中Cu的含量,如圖8所示,在外場的作用下,合金元素Cu在基體中的溶解度增大,合理地解釋了復(fù)合場下顯微硬度最大這一現(xiàn)象。這是由于Cu在α(Al)中的溶解度較大(達(dá)到4.5%),隨著壓力的增加,Cu在α(Al)中的溶解度增大,這與本課題組的前期研究[17]是一致的。
圖7 不同條件下α(Al)基體的顯微硬度Fig. 7 Micro-hardness of α(Al) matrix in alloys under different conditions: 1—Without field; 2—With 50 MPa pressure field; 3—With ultrasonic field; 4—With compound field
圖8 不同條件下鑄態(tài)合金α(Al)基體的Cu含量Fig. 8 Cu content in α(Al) matrix in cast alloys under different conditions: 1—Without field; 2—With 50 MPa pressure field; 3—With ultrasonic field; 4—With compound field
試驗(yàn)結(jié)果表明,在施加外場的作用時(shí),晶粒的二次枝晶間距減小,針狀 β-富 Fe相與縮松體積分?jǐn)?shù)減少。針對壓力場而言,一方面,由克拉佩龍方程可知,壓力能使凝固點(diǎn)升高,使原本過熱的金屬液出現(xiàn)過冷的狀態(tài),增大形核率,單位體積的晶核數(shù)目越多,長成的晶粒越細(xì)小,同時(shí)壓力縮小結(jié)晶溫度區(qū)間,更快的形核也使鑄件縮松、孔洞減少[35]。另一方面,由于金屬的散熱速率快于氣體的,而壓力使鑄件與模具接觸更為緊密,提高了二者之間的熱傳遞效率,導(dǎo)致鑄件的冷卻速率升高,鑄件的凝固時(shí)間縮短[36]。LIU等[7]和KAMGA等[37]分別對Al-4.6Cu-0.5Fe和B206合金的研究表明,提高冷卻速率能促使針片狀β-富Fe相轉(zhuǎn)變漢字狀A(yù)l6(CuFe),這是由于,一方面凝固點(diǎn)升高使得Al6(CuFe)的形核、生長的溫度區(qū)間增大,另一方面過冷度的增大也促進(jìn)了Al6(CuFe)的形核。此外,正交晶格 Al6(CuFe)的形核動力能大于四方晶格 β-Fe的,冷卻速度很快時(shí),F(xiàn)e原子更易成長為Al6(CuFe)。
對超聲場而言,超聲波在熔體中傳播時(shí)會產(chǎn)生空化效應(yīng)和聲流效應(yīng),空化效應(yīng)一方面使氣泡破裂產(chǎn)生瞬時(shí)高壓,使液態(tài)金屬局部壓力過大,造成過冷度的增加,從而提高了形核率;另一方面氣泡在長大、上升、破滅的過程中,吸收了一部分的熱量,導(dǎo)致氣泡周圍的金屬熔液過冷,也使得形核率增大。聲流效應(yīng)是超聲波在介質(zhì)中衰減而使沿超聲波傳播方向的聲壓減小的現(xiàn)象,聲壓梯度使得液體介質(zhì)高速流動,大量的早期形成的枝晶被打斷、富鐵相受到?jīng)_擊,最終富鐵相均勻分布,晶粒細(xì)化,縮松等缺陷減少[38?39]。而根據(jù)SALAS等[40]的研究表明,在AlCu合金中,冷卻速度越快,二次枝晶間距越小,也解釋了合金在受到外場的作用下,二次枝晶間距減小的現(xiàn)象。
在這兩種外場單獨(dú)作用時(shí),合金中的縮松都有一定程度的減少,單獨(dú)施加壓力50 MPa比單獨(dú)施加800 W 的超聲更能夠有效減少縮松。在合金液降溫過程中,富鐵相首先形成,不同形貌、尺寸的富鐵相阻礙了金屬液的流動通道,從而產(chǎn)生縮松,同時(shí)縮松也較易緊挨富鐵相形成。隨著外場的加入,合金中的縮松體積分?jǐn)?shù)減少,這是由于在壓力場下,壓力提高了金屬液的流動速度;在超聲場下,聲流效應(yīng)加劇了液體的對流,也使得縮松減少。
由于兩種外場各自對合金顯微組織的影響,所以試驗(yàn)首次將兩種外場結(jié)合起來應(yīng)用于鑄造Al-Cu系合金的研究中,初步探討了復(fù)合場對合金組織與力學(xué)性能的影響。在復(fù)合場中,超聲場的空化效應(yīng)和壓力場的共同作用使合金的冷卻速度增加,因此合金的晶粒尺寸和二次枝晶間距變得細(xì)小,第二相由穩(wěn)定的Al7Cu2Fe相向亞穩(wěn)的Al6(CuFe)相轉(zhuǎn)變。同時(shí)在超聲場聲流效應(yīng)的作用下,合金中的第二相細(xì)小均勻地分布在基體上,并且在擠壓鑄造中經(jīng)常出現(xiàn)的雙峰組織也明顯減輕。同時(shí)復(fù)合場的外場的效應(yīng)使得晶粒形核增多,晶粒明顯細(xì)化,且縮松隨之減少,Cu元素在基體溶解度的提高也使得合金的顯微硬度得到提高。但是,復(fù)合場共同作用機(jī)制仍未被深入研究清楚。作為一種新穎的方法,更多的研究有待進(jìn)一步的開展。
1) 壓力場和超聲場組成的復(fù)合場較單一外場而言,更大程度地細(xì)化二次枝晶,縮松、孔洞減少,SDAS 由72.5 μm減小到12.5 μm,減小了80%,孔洞體積分?jǐn)?shù)減少了68%。
2) 復(fù)合場下細(xì)化、減少以及分散了第二相,使得合金富鐵相從針片狀 Al7Cu2Fe相大量地向危害性較小的漢字狀A(yù)l6(CuFe)相轉(zhuǎn)變,同時(shí)促進(jìn)了Cu元素在基體中的溶解,提高了合金的顯微硬度。
3) 復(fù)合場的作用機(jī)制在試驗(yàn)中得到了初步探討,壓力場和超聲場均提高合金的冷卻速率,同時(shí)超聲場的空化效應(yīng)和聲流效應(yīng)提高了形核率,細(xì)化了晶粒,促進(jìn)了第二相的形核、生長。
REFERENCES
[1] 王瑞紅, 王永俊, 王艷紅. 微量鈧添加對Al-Cu合金時(shí)效析出及電化學(xué)腐蝕行為的影響[J]. 中國稀土學(xué)報(bào), 2014, 4, 32(2): 190?196. WANG Rui-hong, WANG Yong-jun, WANG Yan-hong. Effect of minor scandium addition on precipitation and electrochemical corrosion of Al-Cu alloy[J]. Journal of the Chinese Rare Earth Society, 2014, 4, 32(2): 190?196.
[2] 陳子勇, 舒 群, 陳玉勇. 高強(qiáng)鑄造鋁銅合金顯微組織和力學(xué)性能的研究[J]. 材料科學(xué)與工藝, 2007, 10, 15(5): 718?722. CHEN Zi-yong, SHU Qun, CHEN Yu-yong. The study of microstructure and mechanical properties of high strength and toughness casting Al-Cu alloy[J]. Materials Science and Technology, 2007, 10, 15(5): 718?722.
[3] GUO Hong-min, ZHANG Ai-sheng, YANG Xiang-jie, YAN Ming-ming. Grain refinement of Al-5%Cu aluminum alloy under mechanical vibration using meltable vibrating probe[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8): 2489?2496.
[4] 林 波, 張衛(wèi)文, 程 佩, 汪先送, 李元元. 擠壓鑄造Al-5.0Cu-0.6Mn-0.5Fe合金的顯微組織和力學(xué)性能[J]. 中國有色金屬學(xué)報(bào), 2013, 23(5): 1195?1201. LIN Bo, ZHANG Wei-wen, CHENG Pei, WANG Xian-song, LI Yuan-yuan. Microstructure and mechanical properties of Al-5.0Cu-0.6Mn-0.5Fe alloy prepared by squeeze casting[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(5): 1195?1201.
[5] COUTURE A. Iron in aluminum casting alloys-a literature survey[J]. American Foundry Society International Cast Metal Journal, 1981(6): 9?17.
[6] TSENG C J, LEE S L, WU T F. Effect of Fe content on microstructure and mechanical properties of A206 alloy[J]. Materials Transactions, 2000, 41(10): 708?713.
[7] LIU K, CAO X, CHEN X G. Formation and phase selection of iron-rich intermetallics in Al-4.6Cu-0.5Fe cast alloy[J]. Metallurgical and Materials Transaction A, 2013, 44(2): 682?695.
[8] SALEM S, STEN J, INGVAR L S. The influence of cooling rate and manganese content on the α-Al5FeSi phase formation and mechanical properties of Al-Si-based alloys[J]. Materials Science and Engineering A, 2008, 490: 385?390.
[9] SHABESTARI S G. The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys[J]. Materials Science and Engineering A, 2004, 383: 289?298.
[10] SREEJA KUMARI S S, PILLAI R M, RAJAN T P D, PAI B C. Effects of individual and combined additions of Be, Mn, Ca and Sr on the solidification behaviour, structure and mechanical properties of Al-7Si-0.3Mg-0.8Fe alloy[J]. Materials Science and Engineering A, 2007, 460/461: 561?573.
[11] LIU K, CAO X, CHEN X G. Effect of Mn, Si, and cooling rate on the formation of iron-rich intermetallics in 206 Al-Cu cast alloys[J]. Metallurgical and Materials Transactions B, 2012, 43: 1231?1240.
[12] 孫常明, 史志銘, 李志芳. 利用富鈰混合稀土改善工業(yè)純鋁中富鐵相形貌的研究[J]. 中國稀土學(xué)報(bào), 2007, 25(3): 318?322. SUN Chang-ming, SHI Zhi-ming, LI Zhi-fang. Improvement of morphology of Fe-riched phase in commercial pure aluminum by Ce-riched rare earth modification[J]. Journal of the Chinese Rare Earth Society, 2007, 25(3): 318?322.
[13] DONG J X , KARNEZIS P A , DURRANT G, CANTOR B.The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy[J]. Metallurgical and Materials Transactions A, 1999, 10: 1341?1356.
[14] ARHAMI M, SARIOGLU F, KALKANLI A, HASHEMIPOUR M. Microstructural characterization of squeeze-cast Al-8Fe-1.4V-8Si[J]. Materials Science and Engineering A, 2008, 405: 218?223.
[15] ZHANG W W, LIN B, FAN J L, ZHANG D T, LI Y Y. Microstructures and mechanical properties of heat-treated Al-5.0Cu-0.5Fe squeeze cast alloys with different Mn/Fe ratio[J]. Materials Science and Engineering A, 2013, 588: 366?375.
[16] ZHANG W W, LIN B, CHENG P, ZHANG D T, LI Y Y. Effects of Mn content on microstructures and mechanical properties of Al-5.0Cu-0.5Fe alloys prepared by squeeze casting[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1525?1531.
[17] ZHANG W W, LIN B, ZHANG D T, LI Y Y. Microstructures and mechanical properties of squeeze cast Al-5.0Cu-0.6Mn alloys with different Fe content[J]. Materials and Design, 2013,52: 225?233.
[18] LIN B, ZHANG W W, LOU Z H, ZHANG D T, LI Y Y. Comparative study on microstructures and mechanical properties of the heat-treated Al-5.0Cu-0.6Mn-xFe alloys prepared by gravity die casting and squeeze casting[J]. Materials and Design,2014, 59: 10?18.
[19] 張 勇, 何德坪, 陳 峰. 超聲振動細(xì)化Al-Fe合金的研究[J].兵器材料科學(xué)與工程, 1992, 15(9): 1?5. ZHANG Yong, HE De-ping, CHEN Feng. The research of the microstructure of Al-Fe alloy treated by ultrasonic vibration[J]. Ordnance Material Science and Engineering, 1992, 15(9): 1?5.
[20] 林 沖, 吳樹森, 鐘 鼓, 戴 維. 超聲振動對 Al-17Si-xFe合金富鐵相形貌的影響[J]. 特種鑄造及有色合金, 2011,31(11): 1012?1017. LIN Chong, WU Shu-sen, ZHONG Gu, DAI Wei. Effects of ultrasonic vibration on morphology of iron-containing intermetallic compounds in Al-17Si-xFe alloys[J]. Special Casting and Nonferrous Alloys, 2011, 31(11): 1012?1017.
[21] LIN C, WU S S, LU S L, AN P, WAN L. Effects of ultrasonic vibration and manganese on microstructure and mechanical properties of hypereutectic Al-Si alloys with 2%Fe[J]. Intermetallics, 2013, 32: 176?183.
[22] LIN C, WU S S, LU S L, AN P, WAN L. Microstructure and mechanical properties of rheo-diecast hypereutectic Al-Si alloy with 2%Fe assisted with ultrasonic vibration process[J]. Journal of Alloy and Compounds, 2013, 568: 42?48.
[23] LIN C, WU S S, ZHONG G, WAN L, AN P. Effect of ultrasonic vibration on Fe-containing intermetallic compounds of hypereutectic Al-Si alloys with high Fe content[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(5): 1245?1252.
[24] ZHONG G, WU S S, JIANG H W, AN P. Effects of ultrasonic vibration on the iron-containing intermetallic compounds of high silicon aluminum alloy with 2% Fe[J]. Journal of Alloy and Compounds, 2010, 492: 482?487.
[25] OSAWA Y, TAKAMORI S, KIMURA T, MINAGAWA K,KAKISAWA H. Morphology of intermetallic compounds in Al-Si-Fe alloy and its control by ultrasonic vibration[J]. Materials Transactions, 2007, 48(9): 2467?2475.
[26] ZHANG Y B, JIE J C, GAO Y, LU Y P, LI T J. Effects of ultrasonic treatment on the formation of iron-containing intermetallic compounds in Al-12%Si-2%Fe alloys[J]. Intermetallics, 2013, 42: 120?125.
[27] KHALIFA W, TSUNEKAWA Y, OKUMIYA M. Effect of ultrasonic treatment on the Fe-intermetallic phases in ADC12 die cast alloy[J]. Journal of Materials Processing Technology, 2010,210: 2178?2187.
[28] ZHANG M, ZHANG W W, ZHAO H D, ZHANG D T, LI Y Y. Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(3):496?501.
[29] ZHANG M L, XING S M, XIAO L M. Design of process parameters for direct squeeze casting[J]. Journal of University of Science and Technology Beijing, 2008, 15(3): 339?343.
[30] THIRUMAL A M, MOHAN B, RAJADURAI A. Comparative study of squeeze casting of AA6061 with and without employing ultrasonic cavitations[J]. Applied Mechanics and Materials, 2014,541/542: 349?353.
[31] DAI W, WU S S, LU S L, LIN C. Effects of rheo-squeeze casting parameters on microstructure and mechanical properties of AlCuMnTi alloy[J]. Materials Science and Engineering A,2012, 538: 320?326.
[32] RUSS J C. Practical stereology[M]. New York: Plenum Press,1986.
[33] MONDOLFO L F. Aluminum alloys: Structure and properties[M]. London: Butterworths, 1976.
[34] 范建磊, 鄭成坤, 羅宗強(qiáng), 張衛(wèi)文. 壓力對鑄造Al-Li-Cu合金組織和力學(xué)性能的影響[J]. 中國有色金屬學(xué)報(bào), 2014, 24(9): 2307?2314. FAN Jian-lei, ZHENG Cheng-kun, LUO Zong-qiang, ZHANG Wei-wen. Effect of pressure on macro-/micro- structures and mechanical properties of Al-Li-Cu cast alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(9): 2307?2314.
[35] GHOMASHCHI M R, VIKHROV A. Squeeze casting: An overview[J]. Journal of Materials Processing Technology, 2000,101: 1?9.
[36] 羅守靖, 陳炳光, 齊丕驤. 液態(tài)模鍛與擠壓鑄造技術(shù)[M]. 北京: 化學(xué)工業(yè)出版社, 2006. LUO Shou-jing, CHEN Bing-guang, QI Pei-xiang. The technology of liquid forging and squeeze casting[M]. Beijing: Chemical Industry Press, 2006.
[37] KAMGA H K, LAROUCHE D, BOURNANE M, RAHEM A. Solidification of aluminum-copper B206 alloys with iron and solid additions[J]. Metallurgical and Materials Transactions A,2010, 41(11): 2845?2855.
[38] 劉清梅. 超聲波對金屬凝固特性及組織影響的研究[D]. 上海:上海大學(xué), 2007. LIU Qing-mei. Research of ultrasonic treatment on solidfication characteristics and structure of metals[D]. Shanghai: Shanghai University, 2007.
[39] JIANA X, XUA H, MEEKA T T, HAN Q. Effect of power ultrasound on solidification of aluminum A356 alloy[J]. Materials Letters, 2005, 59: 190?193.
[40] SALAS G F, NOGUEZ M E, RAMIREZ J G. Application of secondary dendrite arm spacing-cooling rate equation for cast alloys[J]. Transactions of the American Foundry Society, 2000,108: 593?597.
(編輯 王 超)
Microstructure and mechanical property of Al-5.0Cu-1.0Fe alloy treated by compound field
LUO Zhi, ZHANG Yang, ZHAO Yu-liang, ZHANG Wei-wen
(School of Mechanical and Automotive Engineering, South China University of Technology,Guangzhou 510640, China)
Compound field was firstly used to influence the solidification of Al alloy, and the effect of different field on the microstructure and mechanical properties was investigated. The microstructure and micro-hardness of Al-5.0Cu-1.0Fe alloy treated by compound field (combination of 50 MPa pressure field and 800 W ultrasonic field) were studied by image analysis, scanning electron microscopy and electron probe micro-analysis. The results show that both 50 MPa pressure field and ultrasonic field decrease the second dendritic arm spacing, thin and spread the second intermetallics. Meanwhile, large amounts of iron-rich phases transform from acicular shape to Chinese script morphology. Compared with the single field, the microstructure of the alloy treated by compound field is refined and modified more obviously. The casting defects, such as porosity, are reduced more efficiently when 50 MPa pressure field is applied, and the alloy applied compound field has the highest micro-hardness with the smallest volume percentage of porosity. The mechanism of compound field was also preliminarily discussed, which results from ultrasonically-induced cavitation and acoustic streaming effect and pressurely-induced pressure effect.
Al-5.0Cu-1.0Fe alloy; ultrasonic field; pressure field; iron-rich phases; microstructure; micro-hardness
Project(51374110) supported by the National Natural Science Foundation of China; Project (2015A030312003) supported by the Natural Science Foundation of Guangdong Province, China
date: 2015-04-19; Accepted date: 2015-11-30
ZHANG Wei-wen; Tel: +86-20-87112933; E-mail: mewzhang@scut.edu.cn
TG292
A
1004-0609(2016)-04-0707-08
國家自然科學(xué)基金資助項(xiàng)目(51374110);廣東省自然科學(xué)基金團(tuán)隊(duì)項(xiàng)目(2015A030312003)
2015-04-19;
2015-11-30
張衛(wèi)文,教授,博士;電話:020-87112933;E-mail: mewzhang@scut.edu.cn