李 娜,豐建文,趙 毅
深圳大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,廣東深圳 518060
?
具有馬氏跳拓?fù)鋸?fù)雜網(wǎng)絡(luò)的有限時(shí)間同步
李娜,豐建文,趙毅
深圳大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,廣東深圳 518060
摘要:考慮一類帶有部分未知轉(zhuǎn)移率,以及含有內(nèi)部時(shí)滯和耦合時(shí)滯的馬氏跳復(fù)雜網(wǎng)絡(luò)的有限時(shí)間同步問(wèn)題.通過(guò)構(gòu)造適當(dāng)?shù)碾S機(jī)Lyapunov-Krasovskii函數(shù),利用有限時(shí)間穩(wěn)定定理以及矩陣不等式得到保證該網(wǎng)絡(luò)在一個(gè)確定時(shí)間內(nèi)達(dá)到同步的判據(jù).有限時(shí)間同步意味著可獲得最佳收斂時(shí)間及較好的魯棒性和抗干擾性.?dāng)?shù)值模擬驗(yàn)證了所得理論結(jié)果的有效性.
關(guān)鍵詞:復(fù)雜網(wǎng)絡(luò);馬氏跳;時(shí)滯;轉(zhuǎn)移率;有限時(shí)間同步;控制器
復(fù)雜網(wǎng)絡(luò)是復(fù)雜系統(tǒng)的一種網(wǎng)絡(luò)形式,是對(duì)復(fù)雜系統(tǒng)相互作用的一種本質(zhì)抽象,普遍存在于現(xiàn)實(shí)世界中,如萬(wàn)維網(wǎng)、電力網(wǎng)、通訊網(wǎng)及生物網(wǎng)等[1-3].同步是指網(wǎng)絡(luò)中耦合節(jié)點(diǎn)的動(dòng)力學(xué)行為經(jīng)過(guò)一段時(shí)間的演變最終達(dá)到相同的狀態(tài),是網(wǎng)絡(luò)上典型的集體運(yùn)動(dòng)形式和網(wǎng)絡(luò)結(jié)構(gòu)導(dǎo)致的涌現(xiàn)現(xiàn)象,近年已成為網(wǎng)絡(luò)科學(xué)的研究熱點(diǎn)之一,受到不同學(xué)科研究者的廣泛關(guān)注,并取得大量研究成果,這些研究大都涉及完全同步[4]、指數(shù)同步[5]、漸近同步[6]及廣義同步[7]等的討論.
上面所提及的網(wǎng)絡(luò)同步指的都是當(dāng)時(shí)間趨于無(wú)窮時(shí)達(dá)到的同步,然而,在工程領(lǐng)域卻經(jīng)常需要盡可能快地達(dá)到同步,即在一定的時(shí)間內(nèi)達(dá)到同步,也就是有限時(shí)間同步[8-9].例如,在安全通信中通常需要在較短時(shí)間內(nèi)恢復(fù)傳遞信號(hào),以此來(lái)提高其有效性和保密性,所以有限時(shí)間同步不僅能在收斂時(shí)間內(nèi)達(dá)到最佳性,而且對(duì)外部不確定因素具有更好的抗干擾能力,并能增強(qiáng)系統(tǒng)的魯棒性[10-12].2010年,Yang等[13]首先討論一類復(fù)雜網(wǎng)絡(luò)的有限時(shí)間隨機(jī)同步問(wèn)題,2013年,他們又研究了非恒同不連續(xù)節(jié)點(diǎn)網(wǎng)絡(luò)的有限時(shí)間同步[14].與此同時(shí)Mei等[15]研究了帶有不確定參數(shù)驅(qū)動(dòng)響應(yīng)系統(tǒng)的有限時(shí)間結(jié)構(gòu)識(shí)別和同步.但上述研究忽略了時(shí)滯,而時(shí)滯在現(xiàn)實(shí)世界中普遍存在[16],如電話通信,QQ聯(lián)系時(shí)由于通信信道阻塞等多種原因是存在時(shí)間延遲的.近來(lái)的一些研究中也注意到時(shí)滯的影響,如Mei等[17]利用脈沖控制和間歇控制實(shí)現(xiàn)了帶有耦合時(shí)滯的復(fù)雜動(dòng)力網(wǎng)絡(luò)的有限時(shí)間同步;Li等[8]對(duì)帶有時(shí)變時(shí)滯的耦合網(wǎng)絡(luò)有限時(shí)間同步問(wèn)題進(jìn)行討論;Cui等[18]給出了帶有部分未知轉(zhuǎn)移率和內(nèi)部時(shí)滯的馬氏跳復(fù)雜網(wǎng)絡(luò)的有限時(shí)間同步充分條件,但僅考慮了內(nèi)部時(shí)滯或者耦合時(shí)滯.本研究考慮內(nèi)部時(shí)滯和耦合時(shí)滯均存在且為時(shí)變的實(shí)際網(wǎng)絡(luò).另一方面,網(wǎng)絡(luò)結(jié)構(gòu)是隨著時(shí)間演變?cè)诓粩嘧兓模瑸槭顾芯康那樾胃臃蠈?shí)際,現(xiàn)有研究引入馬爾可夫鏈(簡(jiǎn)稱為馬氏跳)來(lái)描述網(wǎng)絡(luò)的結(jié)構(gòu)變化,即網(wǎng)絡(luò)的結(jié)構(gòu)只在有限個(gè)狀態(tài)下發(fā)生變化,且由一種狀態(tài)依一定概率變化到另一種狀態(tài),事實(shí)上,這種現(xiàn)象存在于現(xiàn)實(shí)網(wǎng)絡(luò)中,如神經(jīng)網(wǎng)絡(luò)[19]、基因調(diào)控網(wǎng)絡(luò)[20]及Hopfield網(wǎng)絡(luò)[21]等.然而在大多數(shù)情況下,馬氏跳網(wǎng)絡(luò)的轉(zhuǎn)移率是未知的,且對(duì)狀態(tài)轉(zhuǎn)移率的估計(jì)值可能引起網(wǎng)絡(luò)的不穩(wěn)定或降低系統(tǒng)的表現(xiàn),最近得到一些有關(guān)不確定轉(zhuǎn)移率的拓展結(jié)果[22-24],但上述這些工作中均要求不確定轉(zhuǎn)移率是有界的.通過(guò)上述分析,對(duì)未知轉(zhuǎn)移率無(wú)任何附加條件下考慮帶有部分未知轉(zhuǎn)移率的馬氏跳復(fù)雜網(wǎng)絡(luò)的有限時(shí)間同步是非常有意義的.
受相關(guān)研究啟發(fā),本研究考慮帶有內(nèi)部時(shí)滯(發(fā)生在節(jié)點(diǎn)內(nèi)部的時(shí)滯)和耦合時(shí)滯(節(jié)點(diǎn)之間產(chǎn)生的時(shí)滯),且有部分未知轉(zhuǎn)移率馬氏跳復(fù)雜網(wǎng)絡(luò)的有限時(shí)間同步問(wèn)題,通過(guò)設(shè)計(jì)一系列控制器,根據(jù)有限時(shí)間穩(wěn)定定理,經(jīng)過(guò)嚴(yán)格的數(shù)學(xué)證明得到該類網(wǎng)絡(luò)的有限時(shí)間同步判據(jù).最后,通過(guò)數(shù)值模擬論證所得理論結(jié)果的有效性.
1模型描述與準(zhǔn)備工作
考慮如下復(fù)雜網(wǎng)絡(luò)模型:
τ2(t))),i=1,2,…,N
(1)
網(wǎng)絡(luò)(1)的初始條件為
xi(z)=φi(z)∈C([-τ,0],Rn),
i=1,2,…,N
其中, τ=max{τ1,τ2}, C([-τ,0],Rn)表示從區(qū)間[-τ,0]映射到Rn的連續(xù)函數(shù)集.
網(wǎng)絡(luò)(1)的孤立節(jié)點(diǎn)方程為
(2)
用s(t)表示式(2)滿足初始條件s(t)=ψ(t),t∈[-τ,0]的解.其中, ψ(t)∈C([-τ,0],Rn).
本研究旨在通過(guò)設(shè)計(jì)適當(dāng)?shù)目刂破魇瓜到y(tǒng)(1)在給定時(shí)間內(nèi)同步到系統(tǒng)(2),為此首先給出文中所用到的定義、引理及假設(shè).
定義1[18]馬氏跳復(fù)雜網(wǎng)絡(luò)(1)是有限時(shí)間同步的,若存在t*>0, 對(duì)任意的t≥t*,使
(3)
成立.
假設(shè)1[18]存在兩個(gè)常數(shù)矩陣Θ=(θij)n×n和Φ=(φij)n×n, 其中, θij≥0, φij≥0, 使得系統(tǒng)(1)中的 f(t,xi(t),xi(t-τ1(t)))滿足
?x=(x1,x2,…,xn)T∈Rn,
y=(y1,y2,…,yn)T∈Rn, i=1,2,…,n.
(4)
注1若式(4)中τ1(t)=0, 則式(4)變?yōu)?/p>
引理2[17]對(duì)于?x1, x2,…,xn∈Rn是任意向量, 0 2帶有時(shí)滯的部分未知轉(zhuǎn)移率馬氏跳復(fù)雜網(wǎng)絡(luò)的有限時(shí)間同步 為實(shí)現(xiàn)網(wǎng)絡(luò)系統(tǒng)(1)在有限時(shí)間內(nèi)同步,需要施加一些控制器ui(t), 這樣被控制的網(wǎng)絡(luò)系統(tǒng)為 (5) 記ei(t)=xi(t)-s(t), 根據(jù)式(2)和式(5),并注意到 A和 B的性質(zhì)可得誤差系統(tǒng)為 f(t,s(t),s(t-τ1(t)))+ τ2(t))+ui(t),i=1,2,…,N (6) 設(shè)計(jì)下述形式的控制器 (7) 在控制器(7)的作用下,我們討論受控系統(tǒng)(6)在原點(diǎn)處的有限時(shí)間穩(wěn)定.以下為本研究所取得的主要結(jié)果. 定理1若函數(shù) f(t, xi(t), xi(t-τ1(t)))滿足式(4),且以下不等式成立 (8) 【證】對(duì)任意的qr>1和r∈S, 選取如下隨機(jī)Lyapunov-Krasovskii函數(shù) (9) 根據(jù)伊藤公式,代入式(6)得 (10) (11) (12) E[LV(t, e(t),r)]≤ (13) 由引理2可得 則式(13)可改寫為 由引理1知, E(V(t, e(t),r))在有限時(shí)間內(nèi)趨于0,同時(shí)可估計(jì)同步時(shí)間的上界為 因此,誤差向量 ei(t),i=1,2,…,N在時(shí)間t*內(nèi)將會(huì)趨于0.此定理得證. 當(dāng)內(nèi)部時(shí)滯與耦合時(shí)滯都等于零時(shí),相應(yīng)的系統(tǒng)為 (14) 其孤立節(jié)點(diǎn)的方程為 (15) 設(shè)計(jì)控制器為 ui(t)=-ξi(r)ei(t)- (16) 由此可得如下推論. 推論1若假設(shè)1成立,且 (17) 注3定理1討論了內(nèi)部時(shí)滯與耦合時(shí)滯共存這類更符合實(shí)際的情形,如果令τ1(t)=0或者τ2(t)=0, 即僅考慮耦合時(shí)滯[15]或者內(nèi)部時(shí)滯[18],那么對(duì)應(yīng)改變?cè)O(shè)計(jì)的控制器即可,所以此處所得的結(jié)果推廣了現(xiàn)有文獻(xiàn)[15,18]的相關(guān)結(jié)果. 3數(shù)值模擬 考慮僅有兩種模式的馬氏跳系統(tǒng)(1),即r=2, 且系統(tǒng)有6個(gè)節(jié)點(diǎn),每個(gè)節(jié)點(diǎn)的維數(shù)為二維.定理1中節(jié)點(diǎn)動(dòng)力學(xué)f(·)定義如下[25] f(t, xi(t), xi(t-τ1(t)))= -Cxi(t)+Mg(xi(t))+Ng(xi(t-τ1(t))), 不失一般性,令外耦合矩陣定義如下: B(1)=A(1)= B(2)=A(2)= 圖1 節(jié)點(diǎn)狀態(tài)xij(t)隨時(shí)間的演變Fig.1 (Color online) Variation of node state with time 圖2 同步誤差范數(shù)隨時(shí)間的演變Fig.2 (Color online) Evolution of the norm of error variable over time 圖3 同步誤差范數(shù)隨時(shí)間的演變Fig.3 Evolution of the norm of error variable over time 結(jié)語(yǔ) 本文研究了帶有部分未知轉(zhuǎn)移率的馬氏跳復(fù)雜網(wǎng)絡(luò)的有限時(shí)間同步問(wèn)題,該系統(tǒng)具有可變的內(nèi)部時(shí)滯和耦合時(shí)滯.通過(guò)設(shè)計(jì)一系列控制器及合適的Lyapunov-Krasovskii函數(shù),利用線性矩陣不等式和有限時(shí)間穩(wěn)定理論得到實(shí)現(xiàn)所研究系統(tǒng)在給定時(shí)間內(nèi)達(dá)到同步的判據(jù).通過(guò)數(shù)值模擬論證了所得結(jié)果的有效性. 引文:李娜,豐建文,趙毅.具有馬氏跳拓?fù)鋸?fù)雜網(wǎng)絡(luò)的有限時(shí)間同步[J]. 深圳大學(xué)學(xué)報(bào)理工版,2016,33(4):359-366. 參考文獻(xiàn)/ References: [1] Boccaletti S,Latora V,Moreno Y,et al.Complex networks:structure and dynamics[J].Physics Reports,2006,424(4):175-308. [2] Pagani G A,Aiello M.The power grid as a complex network:a survey[J].Physica,2013,392(11):2688-2700. [3] Tang Jinjun,Wang Yinhai,Liu Fang.Characterizing traffic time series based on complex network theory[J].Physica,2013,392(18):4192-4201. [4] Wang Shuguo, Yao Hongxing, Bian Qiuxiang. Synchronization in complex networks with time-varying delays dynamical nodes via pinning control[J].Mathematical Problems in Engineering,2012,2012(1): 654742. [5] Sheng Li,Yang Huizhong.Exponential synchronization of a class of neural networks with mixed time-varying delays and impulsive effects[J].Neurocomputing,2008,71(16): 3666-3674. [6] Wang Zhanshan,Zhang Huaguang.Synchronization stability in complex interconnected neural networks with non-symmetric coupling[J].Neurocomputing,2013,108(5): 84-92. [7] Wu Xiaoqun,Zheng Weixing,Zhou Jin.Generalized outer synchronization between complex dynamical networks[J].Chaos,2009,19(1):193-204. [8] Li Dong,Cao Jinde.Finite-time synchronization of coupled networks with one single time-varying delay coupling[J].Neurocomputing,2015,166(31):265-270. [9] Huang Junjian,Li Chuandong,Huang Tingwen,et al.Finite-time lag synchronization of delayed neural networks[J].Neurocomputing,2014,139:145-149. [10] Bhat S P,Bernstein D S.Finite-time stability of continuous autonomous systems,SIAM[J].Control Optim,2000,38(3):751-766. [11] Li Shihua,Du Haibo,Lin Xiangze.Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics[J].Automatica,2011,47(8):1706-1712. [12] Du Haibo,Li Shihua,Qian Chunjiang.Finite-time attitude tracking control of spacecraft with application to attitude synchronization[J].IEEE Transactions on Automatic Control,2011,56(11):2711-2717. [13] Yang Xinsong,Cao Jinde.Finite-time stochastic synchronization of complex networks[J].Applied Mathematical Modelling,2010,34(11):3631-3641. [14] Yang Xinsong,Wu Zhiyou,Cao Jinde.Finite-time synchronization of complex networks with nonidentical discontinuous nodes[J].Nonlinear Dynamics,2013,73(4):2313-2327. [15] Mei Jun,Jiang Minghui,Wang Jun.Finite-time structure identification and synchronization of drive-response systems with uncertain parameter[J].Communications in Nonlinear Science and Numerical Simulation,2013,18(4):999-1015. [16] Fei Zhongyang,Gao Huijun,Zheng Weixing.New synchronization stability of complex networks with an interval time-varying coupling delay[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2009,56(6):499-503. [17] Mei Jun,Jiang Minghui,Xu Wangming,et al.Finite-time synchronization control of complex dynamical networks with time delay[J].Communications in Nonlinear Science and Numerical Simulation,2013,18(9):2462-2478. [18] Cui Wenxia,Sun Shaoyuan,F(xiàn)ang Jianan,et al.Finite-time synchronization of Markovian jump complex networks with partially unknown transition rates[J].Journal of the Franklin Institute,2014,351(5):2543-2561. [19] Yang Xinsong,Cao Jinde,Lu Jianquan.Synchronization of Markovian coupled neural networks with nonidentical node-delays and random coupling strengths[J].IEEE Transactions on Neural Networks and Learning Systerms,2012,23(1):60-71. [20] Zhang Wenbing,F(xiàn)ang Jianan,Tang Yang.Stochastic stability of Markovian jumping genetic regulatory networks with mixed time delays[J].Applied Mathematics Computation,2011,217(17):7210-7225. [21] Hopfield J J.Neurons with graded response have collective computational properties like those of two state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America,1984,81(10):3088-3092. [22] Xiong Junlin,Lam J,Gao Huijun,et al.On robust stabilization of Markovian jump systems with uncertain switching probabilities[J].Automatica,2005,41(5):897-903. [23] Costa O L V,Val J B L,Geomel J C.Continuous time state feedback H2-control of Markovian jump linear system via convex analysis[J].Automatica,1999,35(2):259-268. [24] Kalyanasundaram S,Chong E K P,Shroff N B.Markov decision processes with uncertain transition rates: sensitivity and max hyphen min control[J].Asian Journal of Control,2004,6(2):253-269. [25] Gilli M.Strange attractors in delayed cellular neural networks[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1993,40(11):849-853. 【中文責(zé)編:方圓;英文責(zé)編:木南】 中圖分類號(hào):O 193 文獻(xiàn)標(biāo)志碼:A doi:10.3724/SP.J.1249.2016.04359 基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(61273220,61373087) 作者簡(jiǎn)介:李娜(1990—),女,深圳大學(xué)碩士研究生.研究方向:微分動(dòng)力學(xué)在復(fù)雜網(wǎng)絡(luò)中的應(yīng)用.E-mail:lina19900305@163.com Finite-time synchronization of Markovian jump complex networks Li Na, Feng Jianwen?, and Zhao Yi College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China Abstract:A finite-time synchronization issue on a class of Markovian jump complex networks with partially unknown transition rates and time delays, including internal delay and coupling delay, is studied. With finite-time stability theorem and matrix inequality, some sufficient criteria have been proposed to guarantee the synchronization during a setting time by constructing the suitable stochastic Lyapunov-Krasovskii function. Since finite-time synchronization suggests optimality in convergence time, better robustness and better disturbance rejection properties, the results are important. The validity and effectiveness of the theoretical result are verified with several numerical simulations. Key words:complex networks; Markovian jump; time delay; transition rate; finite-time synchronization; controller Received:2016-03-10;Accepted:2016-05-25 Foundation:National Natural Science Foundation of China (61273220, 61373087) ? Corresponding author:Professor Feng Jianwen.E-mail: fengjw@szu.edu.cn Citation:Li Na,F(xiàn)eng Jianwen,Zhao Yi.Finite-time synchronization of Markovian jump complex networks[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(4): 359-366.(in Chinese) 【電子與信息科學(xué) / Electronics and Information Science】