洪盛熙,鄧文基,劉軍豐
1) 華南理工大學(xué)物理與光電學(xué)院,廣東廣州 510641;2)南方科技大學(xué)物理系,廣東深圳 518055
?
類石墨烯材料中應(yīng)力調(diào)制的量子泵浦效應(yīng)
洪盛熙1,2,鄧文基1,劉軍豐2
1) 華南理工大學(xué)物理與光電學(xué)院,廣東廣州 510641;2)南方科技大學(xué)物理系,廣東深圳 518055
摘要:通過(guò)對(duì)應(yīng)力及電勢(shì)壘的周期調(diào)制,在石墨烯及類石墨烯蜂窩格子材料中泵浦出能谷流.應(yīng)力在能谷K和K′處誘導(dǎo)的符號(hào)相反的矢勢(shì),等效于加載K和K′能谷處的應(yīng)力泵浦信號(hào)間有一個(gè)π相位差,導(dǎo)致純能谷流的產(chǎn)生.當(dāng)在含有自旋軌道耦合的類石墨烯蜂窩格子材料中存在一個(gè)交錯(cuò)子格子勢(shì)時(shí),經(jīng)由自旋-能谷鎖定相,泵浦出的純能谷流可伴隨著純的自旋流.再引入一個(gè)交換場(chǎng)后,可通過(guò)泵浦得到電荷流、能谷極化流以及自旋極化流.
關(guān)鍵詞:凝聚態(tài)物理;類石墨烯材料;能谷流;自旋流;量子泵浦;周期調(diào)制
在石墨烯及類石墨烯二維蜂窩格子材料中,電子具有一個(gè)額外的自由度,即能谷自由度.能谷自由度產(chǎn)生于布里淵區(qū)中存在的兩個(gè)不等價(jià)的狄拉克點(diǎn)(K和K′點(diǎn))[1-3].這兩個(gè)狄拉克點(diǎn)在能量上是簡(jiǎn)并的,它們之間由時(shí)間反演對(duì)稱性聯(lián)系起來(lái).由于兩個(gè)狄拉克點(diǎn)之間存在大動(dòng)量差,能谷之間的散射在不含雜質(zhì)的本征樣品中是嚴(yán)格禁止的[4-7].因此,能谷在電子輸運(yùn)過(guò)程中可作為一個(gè)守恒量而被用作編碼信息.這種基于能谷自由度的電子學(xué)被稱作能谷電子學(xué)[8-10].與自旋電子學(xué)相似,能谷電子學(xué)致力于產(chǎn)生、操縱及探測(cè)能谷流.許多學(xué)者在利用鋸齒形石墨烯條帶[11-12]、應(yīng)力[13-15]以及線缺陷[16-17]來(lái)產(chǎn)生能谷極化流方面都取得了卓越成果.
能谷電子學(xué)中的另外一個(gè)挑戰(zhàn)是如何產(chǎn)生純能谷流.純能谷流源于兩個(gè)能谷處大小相等方向相反的電流,類似于旋電子學(xué)中的純自旋流[18-21].最近,有學(xué)者建議在應(yīng)力調(diào)控的石墨烯中利用量子泵浦的方法來(lái)產(chǎn)生純能谷流[22-25].其中,Wang等[24-25]建議在具有兩個(gè)反對(duì)稱磁勢(shì)壘的結(jié)構(gòu)中對(duì)稱地泵浦另外3個(gè)電勢(shì)壘.磁矢勢(shì)與應(yīng)力誘導(dǎo)的有效矢勢(shì)的共同效應(yīng)是文獻(xiàn)[22-25]的核心思想.但是,在實(shí)際的器件應(yīng)用中,磁勢(shì)壘的調(diào)制并不容易.Jiang等[22]建議同時(shí)用周期性調(diào)制應(yīng)力以及化學(xué)勢(shì)來(lái)實(shí)現(xiàn)純能谷流的泵浦.然而,其中的機(jī)制尚未被完全揭示,還缺少一個(gè)簡(jiǎn)單的物理圖像讓人們來(lái)理解這一效應(yīng).并且,利用其中機(jī)制將此泵浦推廣到一般的同時(shí),調(diào)制應(yīng)力與另外任一參數(shù)的泵浦是非常必要的,因?yàn)檫@將有助于此類純能谷流量子泵浦的實(shí)驗(yàn)實(shí)現(xiàn).
此外,二維類石墨烯材料,如硅烯[26-28]、鍺烯[29]和錫烯[30]等,提供了一個(gè)融合自旋電子學(xué)及能谷電子學(xué)的平臺(tái).這些材料中的電子性質(zhì)類似于石墨烯,但卻存在較大的自旋軌道耦合相互作用.二維類石墨烯材料的另一個(gè)顯著優(yōu)勢(shì)是這些材料的平面結(jié)構(gòu)有一定的起伏,即兩套子格子分別在兩個(gè)平面上,使利用垂直電場(chǎng)來(lái)得到交錯(cuò)的子格子勢(shì)成為可能,并因此能在很大程度上調(diào)控電子性質(zhì).當(dāng)Kane-Mele型[31]的自旋軌道耦合與交錯(cuò)子格子勢(shì)共存時(shí),類石墨烯材料的體態(tài)將進(jìn)入自旋-能谷鎖定相[32].也就是說(shuō),在一定的費(fèi)米能范圍內(nèi),特定能谷的電子將具有特定的自旋方向.在此相中,自旋流總是伴隨著能谷流出現(xiàn).這種自旋-能谷鎖定相也存在于過(guò)渡金屬氧化物中,如二硫化鉬[33].在這樣的相中,原來(lái)用于操縱能谷的方法,也可用于操縱自旋,反之亦然.
本研究介紹一種在類石墨烯材料中泵浦出能谷流及自旋流的方法.這種方法將對(duì)兩個(gè)系統(tǒng)參數(shù)進(jìn)行周期性調(diào)制:一個(gè)參數(shù)是應(yīng)力,它在兩個(gè)能谷處產(chǎn)生的等效矢勢(shì)是相反的;另外一個(gè)則是在兩個(gè)能谷處有相同效應(yīng)的任意參數(shù),如電勢(shì)壘、化學(xué)勢(shì)或磁場(chǎng)等.應(yīng)力導(dǎo)致的兩個(gè)能谷處相反的矢勢(shì)可由時(shí)間反演不變性保證,它將在兩個(gè)能谷處的泵浦中產(chǎn)生一個(gè)π的相位差,并因此使兩個(gè)能谷處泵浦出的電流因反向而產(chǎn)生純能谷流.當(dāng)自旋軌道耦合與外電場(chǎng)引起的子格子交錯(cuò)勢(shì)共存時(shí),系統(tǒng)進(jìn)入自旋-能谷鎖定相,此時(shí)泵浦出的純能谷流將伴隨該純自旋流.在進(jìn)一步引入一個(gè)交換場(chǎng)后,時(shí)間反演將被破壞,電荷場(chǎng)、能谷極化流及自旋極化流都可被泵浦產(chǎn)生.
1模型與方法
如圖1,二維類石墨烯材料中有一個(gè)區(qū)域存在周期性的應(yīng)力調(diào)制.這可由納米機(jī)電振蕩系統(tǒng)實(shí)現(xiàn)[34-37].另外一個(gè)泵浦參數(shù)應(yīng)當(dāng)在兩個(gè)谷具有同樣的效應(yīng),本研究選擇電勢(shì)壘作為另外一個(gè)泵浦參數(shù).在應(yīng)力調(diào)制區(qū)域和電勢(shì)壘調(diào)制區(qū)域之間的中間區(qū)域,垂直電場(chǎng)和交換場(chǎng)可用來(lái)調(diào)控泵浦的性質(zhì),這3個(gè)區(qū)域的長(zhǎng)度分別為L(zhǎng)1, L2和L3.
圖1 基于類石墨烯六角格子的純能谷流泵浦示意圖Fig.1 (Color online) Schematic illustration of the proposed pure valley current pump based on graphene-like honeycomb crystals
類石墨烯材料的低能有效哈密頓量為
Hη=?vF[ηkxτx+(ky+Aη)τy]+
Δτz+σh+U
(1)
其中, ?為普朗克常數(shù); vF是費(fèi)米速度; η=±1分別對(duì)應(yīng)能谷K和K′; kx和ky分別為波矢的x與y分量; τx, τy和 τz為泡利矩陣; A是應(yīng)力引起的規(guī)范矢勢(shì)y分量; Δ=ησλ+Δz, σ=±1對(duì)應(yīng)自旋↑和↓, λ為自旋軌道耦合強(qiáng)度, Δz是交錯(cuò)子格子勢(shì); h為交換場(chǎng)的強(qiáng)度; U為電勢(shì)壘的大小.由此可解得能帶關(guān)系為
(2)
在此結(jié)構(gòu)中,自旋軌道耦合存在于體系的所有區(qū)域,而交錯(cuò)子格子勢(shì)和交換場(chǎng)只存在于L2區(qū)域,應(yīng)力調(diào)制位于L1區(qū)域,電勢(shì)壘調(diào)制位于L3區(qū)域.應(yīng)力和電勢(shì)壘的周期性調(diào)制可分別表示為
A(t)=A0+δAsin(ωt+φ)
(3)
U(t)=U0+δUsin(ωt)
(4)
其中, A0和U0分別為兩個(gè)泵浦參數(shù)的靜態(tài)值;δA和δU為泵浦幅度; ω為泵浦頻率; φ為兩個(gè)周期調(diào)制之間的相位差.在泵浦幅度很小的情況下,δU的表達(dá)式為文獻(xiàn)[22,38]中納米振蕩器誘導(dǎo)矢勢(shì)的1階展開(kāi).
因?yàn)轶w系在y方向是無(wú)限大的, ky是一個(gè)好量子數(shù).每個(gè)區(qū)域的本征波函數(shù)可以很容易求出,利用波函數(shù)在各個(gè)邊界處的連續(xù)條件,可得到整個(gè)系統(tǒng)的散射矩陣[19].在絕熱近似以及小幅度泵浦近似下,用Brouwer公式計(jì)算泵浦電流[39]為
(5)
其中, e為電子電荷; r是從左邊入射的反射系數(shù); t′是從右到左的透射系數(shù);符號(hào)*表示復(fù)共軛運(yùn)算; kF為費(fèi)米波矢的大?。?/p>
得到特定能谷特定自旋的電流之后,系統(tǒng)總的電荷流可定義為
Ic=IK↑+IK′↑+IK↓+IK′↓
(6)
能谷流定義為
Iv=IK↑+IK↓-IK′↑-IK′↓
(7)
自旋流定義為
(8)
2結(jié)果及討論
由式(1)可知,應(yīng)力引起的有效規(guī)范矢勢(shì)A在兩個(gè)谷K和K′處取相反的符號(hào).該符號(hào)的變化等效于在A(t)的周期調(diào)制部分有1個(gè)π的相移,即導(dǎo)致調(diào)制相差φ產(chǎn)生1個(gè)π的相移.另由式(2)至式(4)可知, φ中π的相移將導(dǎo)致泵浦電流反號(hào).在以下數(shù)值計(jì)算中,令相位差φ=π/2以使泵浦電流最大化,泵浦幅度δA=δU=1 meV,泵浦頻率ω=1 GHz.
圖2 不同靜態(tài)參數(shù)A0與U0下泵浦的電荷流及能谷流作為費(fèi)米能的函數(shù)(L1=L2=L3=100 nm,λ=1 meV, Δz=h=0)Fig.2 (Color online) The pumped charge current and valley current versus the Fermi energy for different static parameters A0 and U0.(L1=L2=L3=100 nm,λ=1 meV, Δz=h=0)
IK↑= IK↓=-IK′↑=-IK′↓
從圖2可見(jiàn),系統(tǒng)泵浦出的是純能谷流,電荷流為0.由于電子空穴的對(duì)稱性,在圖中僅顯示了電子部分的結(jié)果,空穴部分的結(jié)果與電子部分關(guān)于中性點(diǎn)對(duì)稱.盡管能谷流隨費(fèi)米能的變化而振蕩,但依然存在較大的能谷流是較為平滑的能量區(qū)域.在圖2(a)中,能谷流在10 meV附近有劇烈振蕩,這源于自旋軌道耦合打開(kāi)的2λ=2 meV的能隙.隨著靜態(tài)應(yīng)力A0的增大,泵浦的能谷流幅度減小.隨著靜態(tài)電勢(shì)壘U0的增大,能隙導(dǎo)致的能谷流劇烈振蕩將向高能區(qū)移動(dòng).
圖3 在L2區(qū)域引入交錯(cuò)子格子勢(shì)后泵浦出的自旋流與能谷流(L1=L2=L3=100 nm, A0=1 meV, U0=10 meV, h=0)Fig.3 (Color online) The pumped spin currents and valley currents for various parameters(L1=L2=L3=100 nm, A0=1 meV, U0=10 meV, h=0)
由對(duì)稱性分析可知,體系泵浦出的是純能谷流和純自旋流,電荷流將依然為0.在圖3(a)中,電子能量位于U0=10 meV附近時(shí)的劇烈震蕩依然源于自旋軌道耦合引起的能隙.從圖中可見(jiàn),因?yàn)槟軒У淖孕?,大幅度的純自旋流不僅存在于自旋-能谷鎖定相出現(xiàn)的能量區(qū)域,也存在于帶隙附近.同樣因?yàn)樽孕训脑龃螅S著Δz的增大,純自旋流也增大.圖3(b)顯示, λ的增大不僅使自旋流增大,亦會(huì)使震蕩的位置發(fā)生移動(dòng).圖3(c)和圖3(d)表明,自旋流產(chǎn)生的條件是Δz和λ必須同時(shí)存在,且通過(guò)適當(dāng)調(diào)節(jié)兩者的大小可使自旋流的幅度最大化.
在L2區(qū)域引入交換場(chǎng)后,系統(tǒng)將在該區(qū)域進(jìn)入能谷極化相.因?yàn)槟芄群?jiǎn)并被破缺,將產(chǎn)生泵浦電荷流.圖4(a)和圖4(b)顯示了在交換場(chǎng)施加在L2區(qū)域后,泵浦出的能谷極化流和自旋極化流隨電子費(fèi)米能的變化.從圖4(c)可見(jiàn),隨著交換場(chǎng)強(qiáng)度h的增大,泵浦電荷流開(kāi)始時(shí)也會(huì)增大,并在達(dá)到極值后再變小.
圖4 不同交換場(chǎng)下Ic, Iv, Is作為費(fèi)米能的函數(shù)及固定費(fèi)米能EF=25 meV時(shí)Ic對(duì)h的依賴(λ=Δz=1 meV, L1=L2=L3=100 nm, A0=1 meV, U0=10 meV)Fig.4 (Color online) Ic, Iv, Is versus EF for different h, and Ic versus h for fixed EF=25 meV(λ=Δz=1 meV, L1=L2=L3=100 nm, A0=1 meV, U0=10 meV)
最后討論此類泵浦的實(shí)驗(yàn)可行性.若僅需泵浦出純能谷流,石墨烯則是一個(gè)理想的選擇.納米振蕩系統(tǒng)上的懸掛石墨烯是實(shí)現(xiàn)應(yīng)力周期調(diào)制的理想平臺(tái),而對(duì)于純自旋流的泵浦,可選擇硅烯.雖然懸掛的硅烯還未被實(shí)驗(yàn)實(shí)現(xiàn),但是在柔性薄膜襯底上的硅烯仍可能通過(guò)納米振蕩系統(tǒng)來(lái)實(shí)現(xiàn)應(yīng)力調(diào)制.另外,鍺烯、錫烯、雙層鈣鈦礦結(jié)構(gòu)以及金屬有機(jī)框架聚合物皆可.本研究在計(jì)算時(shí)采用的自旋軌道耦合強(qiáng)度為1 meV,與上述類石墨烯材料中自旋軌道耦合的平均強(qiáng)度屬同一量級(jí),交換場(chǎng)強(qiáng)度為5 meV,也可通過(guò)鐵磁材料近鄰效應(yīng)誘導(dǎo)出來(lái).因此,所建議的基于類石墨烯材料中應(yīng)力調(diào)制的泵浦在實(shí)驗(yàn)上是可行的.
結(jié)語(yǔ)
通過(guò)系統(tǒng)研究石墨烯及類石墨烯二維材料中一般的基于應(yīng)力周期調(diào)制的量子泵浦,發(fā)現(xiàn)若除了應(yīng)力之外的另外一個(gè)泵浦參數(shù)在兩個(gè)谷K和K′處的效應(yīng)是一樣的,則純能谷流可被泵浦出來(lái);而在自旋軌道耦合較大的類石墨材料中,體系在垂直電場(chǎng)下可進(jìn)入自旋-能谷鎖定相,這時(shí)伴隨純能谷流還可泵浦出純自旋流.更進(jìn)一步,在體系中引入交換場(chǎng)后,電荷流、能谷極化流以及自旋極化流都可被泵浦得到.本研究的意義在于,將文獻(xiàn)[22]中建議的同時(shí)調(diào)制應(yīng)力以及化學(xué)勢(shì)的純能谷流泵浦推廣到一般的同時(shí)調(diào)制應(yīng)力與任一另外參數(shù)的泵浦,并且從泵浦參數(shù)相位差與對(duì)稱性的角度對(duì)純能谷流的產(chǎn)生給出了一個(gè)簡(jiǎn)單的解釋與物理圖像.由于應(yīng)力在兩個(gè)能谷處的贗矢勢(shì)反號(hào),如果另一個(gè)泵浦參數(shù)在兩個(gè)能谷處效應(yīng)一樣,則兩個(gè)能谷處的泵浦的調(diào)制參數(shù)相位差會(huì)差一個(gè).這樣,兩個(gè)能谷處的泵浦流在沒(méi)有磁場(chǎng)的時(shí)候?qū)?yán)格相反,純能谷流的產(chǎn)生將由對(duì)稱性保證.這個(gè)簡(jiǎn)單的物理圖像將有助于此類純能谷流量子泵浦的理解、推廣、與物理實(shí)現(xiàn).
引文:洪盛熙,鄧文基,劉軍豐.類石墨烯材料中應(yīng)力調(diào)制的量子泵浦效應(yīng)[J]. 深圳大學(xué)學(xué)報(bào)理工版,2016,33(4):352-358.
參考文獻(xiàn)/ References:
[1] Castro Neto A H, Guinea F, Peres NMR, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109.
[2] Peres NMR. Colloquium: the transport properties of graphene: an introduction[J]. Reviews of Modern Physics, 2010, 82(3): 2673.
[3] Sarma D S, Adam S, Hwang EH, et al. Electronic transport in two-dimensional graphene[J]. Reviews of Modern Physics, 2011, 83(2): 407.
[4] Morpurgo A F, Guinea F. Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene[J]. Physical Review Letters, 2006, 97(19): 196804.
[5] Morozov S V, Novoselov K S, Katsnelson M I, et al. Strong suppression of weak localization in graphene[J]. Physical Review Letters, 2006, 97(1): 016801.
[6] Gorbachev R V, Tikhonenko F V, Mayorov A S, et al. Weak localization in Bilayer graphene[J]. Physical Review Letters, 2007, 98(17): 176805.
[7] Chen Jianhao, Cullen W G, Jang C, et al. Defect scattering in graphene[J]. Physical Review Letters, 2009, 102(23): 236805.
[8] Pesin D, MacDonald A H. Spintronics and pseudospintronics in graphene and topological insulators[J]. Nature Materials, 2012, 11(5): 409-416.
[9] Behnia K. Polarized light boosts valleytronics[J]. Nature Nanotech, 2012, 7: 488-489.
[10] Xiao Di, Yao Wang, Niu Qian. Valley-contrasting physics in graphene: magnetic moment and topological transport[J]. Physical Review Letters, 2007, 99(23): 236809.
[12] Zhang Z Z, Chang Kai, Chan K S. Resonant tunneling through double-bended graphene nanoribbons[J]. Applied Physics Letters, 2008, 93: 062106.
[13] Wang Jing, Chan K S, Lin Zijing. Quantum pumping of valley current in strain engineered graphene barrier on strained graphene: a possible valley filter[J]. Physical Review B, 2010, 82(11): 115442.
[14] Zhai Feng, Ma Yanling, Zhang Yingtao. A valley-filtering switch based on strained graphene[J]. Journal of Physics: Condensed Matter, 2011, 23: 385302.
[15] Cao Zhenzhou, Cheng Yanfu, Li Guanqiang. Strain-controlled electron switch in graphene[J].Applied Physics Letters, 2012, 101: 253507.
[16] Gunlycke D, White C T. Graphene valley filter using a line defect[J]. Physical Review Letters, 2011, 106(13): 136806.
[17] Liu Yang, Song Juntao, Li Yuxian, et al. Controllable valley polarization using graphene multiple topological line defects[J]. Physical Review B, 2013, 87(19): 195445.
[18] Zhang Qingtian, Chan K S, Lin Zijing. Spin current generation by adiabatic pumping in monolayer graphene[J].Applied Physics Letters, 98: 032106.
[19] Zhang Qingtian, Lin Zijing, Chan K S. Pure spin current generation in monolayer graphene by quantum pumping[J]. Journal of Physics: Condensed Matter, 2012, 24(7): 075302.
[20] Liu Junfeng, Chan K S. Spin-polarized quantum pumping in bilayer graphene[J]. Nanotechnology, 2011, 22: 395201.
[21] Zhang Huan, Ma Zhongshui, Liu Junfeng. Equilibrium spin current in graphene with Rashba spin-orbit coupling[J]. Scientific Reports, 2014, 4: 6464.
[22] Jiang Yongjin, Low T, Chang Kai, et al. Generation of pure Bulk valley current in graphene[J]. Physical Review Letters, 110(4): 046601.
[23] Grichuk E, Manykin E. Adiabatic quantum pumping in graphene with magnetic barriers[J]. The European Physical Journal B, 2013, 86: 210.
[24] Wang Jing, Chan K S, Lin Zijing. Quantum pumping of valley current in strain engineered graphene[J].Applied Physics Letters, 2014, 104: 013105.
[25] Wang Jing, Lin Zijing, Chan K S. Pure valley current generation in graphene with a Dirac gap by quantum pumping[J]. Applied Physics Express,2014, 7: 125102.
[26] Vogt P, de Padova P, Quaresima C, et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon[J]. Physical Review Letters, 2012, 108(15): 155501.
[27] Fleurence A, Friedlein R, Ozaki T, et al. Experimental evidence for epitaxial silicene on diboride thin films[J]. Physical Review Letters, 2012, 108(24): 245501.
[28] Xu Chengyong, Luo Guangfu, Liu Qihang, et al. Giant magnetoresistance in silicene nanoribbons[J]. Nanoscale, 2012, 4(10): 3111.
[29] Houssa M, Pourtois G, Afanasev V V, et al. Electronic properties of two-dimensional hexagonal germanium[J].Applied Physics Letters, 2010, 96: 082111.
[30] Xu Yong, Yan Binghai, Zhang Haijun, et al. Large-gap quantum spin Hall insulators in Tin films[J]. Physical Review Letters, 2013, 111(13): 136804.
[31] Kane C L, Mele E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 2005, 95(22): 226801.
[32] Ezawa M. Valley-polarized metals and quantum anomalous Hall effect in silicene[J]. Physical Review Letters, 2012, 109(5): 055502.
[33] Wang Qinghua, Kalantar-Zadeh K, Kis A, et al.Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2013, 7: 699-712.
[34] Bunch J S, Van der Zande A M, VerbridgeS S, et al. Electro-mechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493.
[35] Garcia-Sanchez D, Van der Zande A M, Paulo A S, et al. Imaging mechanical vibrations in suspended graphene sheets[J]. Nano Letters, 2008, 8(5): 1399-1403.
[36] Chen Changyao, Rosenblatt S, Bolotin K I, et al. Performance of monolayer graphene nanomechanical resonators with electrical readout[J]. Nature Nanotechnology, 2009, 4: 861-867.
[37] Eichler A, Moser J, Chaste J, et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene[J]. Nature Nanotechnology, 2011, 6: 339-342.
[38] Low T, Jiang Yongjin, Katsnelson M, et al. Electron pumping in graphene mechanical resonators[J]. Nature Nanotechnology, 2012, 12: 850.
[39] Brouwer P W. Scattering approach to parametric pumping[J]. Physical Review B, 1998, 58(16): R10135(R).
[40] Zhai Feng, Xu H Q. Symmetry of spin transport in two-terminal waveguides with a spin-orbital interaction and magnetic field modulations[J]. Physical Review Letters, 2005, 94(24): 246601.
[41] Liu Junfeng, Chan K S. Relation between symmetry breaking and the anomalous Josephson effect[J]. Physical Review B, 2010, 82(12): 125305.
【中文責(zé)編:英子;英文責(zé)編:木南】
中圖分類號(hào):O 469
文獻(xiàn)標(biāo)志碼:A
doi:10.3724/SP.J.1249.2016.04352
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(11204187)
作者簡(jiǎn)介:洪盛熙(1990—),男,華南理工大學(xué)碩士研究生.研究方向:介觀系統(tǒng)的電子輸運(yùn).E-mail:1228313900@qq.com
Quantum pumping in strain modulated graphene-like materials
Hong Shengxi1, 2, Deng Wenji1, and Liu Junfeng2?
1) School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641,Guangdong Province, P.R.China 2) Department of Physics, South University of Science and Technology of China, Shenzhen 518055,Guangdong Province, P.R.China
Abstract:We propose a scheme for the pumping of bulk valley current in graphene and graphene-like honeycomb crystals by cyclic modulation of the strain and an electric potential barrier. The strain-induced opposite vector potentials at K and K′ valleys generate a π phase difference between the pumping signals of strain in two valleys, which leads to a pure valley current. In graphene-like honeycomb crystals with spin-orbit coupling, the pumped pure valley current can be accompanied by a pure spin current via the spin-valley locked phase in the presence of a staggered sublattice potential. The charge current, valley-polarized current, and spin-polarized current can also be pumped when an exchange field is applied.
Key words:condensed matter physics; graphene-like material; valley current; spin current; quantum pumping; cyclic modulation
Received:2016-05-18;Accepted:2016-05-24
Foundation:National Natural Science Foundation of China (11204187)
? Corresponding author:Assistant Professor Liu Junfeng.E-mail: liujf@sustc.edu.cn
Citation:Hong Shengxi, Deng Wenji, Liu Junfeng.Quantum pumping in strain modulated graphene-like materials[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(4): 352-358.(in Chinese)
【物理 / Physics】