• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Study of Some Twisted Deformative Schr?dinger Virasoro Algebra

    2016-07-31 23:19:20TANGJiaGAOShoulanGUHaixia
    關(guān)鍵詞:導(dǎo)子理學(xué)院高壽

    TANG Jia,GAO Shoulan,GU Haixia

    (School of Science,Huzhou University,Huzhou 313000,China)

    On the Study of Some Twisted Deformative Schr?dinger Virasoro Algebra

    TANG Jia,GAO Shoulan,GU Haixia

    (School of Science,Huzhou University,Huzhou 313000,China)

    In this paper,we study a kind of twisted deformative Schr?dinger-Virasoro Lie algebra with two parameters.The calculation of all the derivations of certain 1-dimensional center extension of the Lie algebra proves that the Lie algebra has 7 outer derivations.The result will be helpful to further study the representation theory of this Lie algebra.

    Schr?dinger-Virasoro Lie algebra;central extension;derivation

    MSC 2000:17B40

    0 Introduction

    The infinite-dimensional Schr?dinger Lie algebra and Virasoro algebra are of great implications in many fields of mathematics and physics.In 1994,Henkel introduced the Schr?dinger-Virasoro Lie algebra[1].Then many generations and extensions of the Schr?dinger-Virasoro Lie algebra appear and they are studied extensively.The twisted deformative Schr?dinger-Virasoro Lie algebra Lλ,μover the complex field was introduced in[2]as follows:for complex numbersλ,μ,the vector space Lλ,μhas a basis{Ln,Mn,Yn|n∈Z}with the following Lie brackets:

    and others are zero.2-cocycles of all the Lie algebras Lλ,μwere determined in[3].According to Theorem 2.1 in[3],we have the one-dimensional central extension of L,forμ?Z,λ∈C.For simpliciλμty,denote the Lie algebra by S.That is,the Lie algebra S has a basis{ Ln,Mn,Yn,C1n∈Z}equipped with the Lie brackets:

    and others are zero,where m,n∈Z andμ?1Z. 3

    Throught the paper,denote the set of integers,the complex field and the set of nonzero complex numbers by Z,C and C*,respectively.All the vector spaces are assumed over the complex field.

    1 The derivations of S

    Definition 1.1[4]Let g be a Lie algebra,V a g-module.A linear map D:g→V is called a derivation,if for any x,y∈g,we have D[ x,y]=x.D( y)-y.D(x).If there exists some v∈V such that D:x?xv.,then D is called an inner derivation.

    Let g be a Lie algebra,V a module of g.Denote by Der( g,V)the vector space of all derivations,Inn( g,V)the vector space of all inner derivations[4].Set

    Denote by Der(g)the derivation algebra of g,Inn( g)the vector space of all inner derivations of g.

    Definition 1.2[4]Let G be a commutative group,a G-graded Lie algebra.A g module V is called G-graded,if

    In this section,we will determine the derivation algebra of S.

    It is easy to see that S is finitely generated.Define a Z-grading on S by

    By Proposition 1.1 in[4],we have the following lemma.

    Theorem 1.4

    and others are zero.

    Theorem 1.5 H1(S,S).That is,the derivation algebra of S is

    2 Proof of Theorem 1.4

    Proof For any m∈Z,D∈(Der S)m,by Lemma 1.3,we can assume

    where a1(n),a2(n),a3(n),x11,b1(n),b2(n),b3(n),x12,c1(n),c2(n),c3(n),x13,y∈C.

    By D[Li,Mj]=[D(Li),Mj]+[Li,D(Mj)],we can get

    From D[Li,Yj]=[D(Li),Yj]+[Li,D(Yj)],we can obtain

    By D[Yi,Yj]=[D(Yi),Yj]+[Yi,D(Yj)],we have

    Case 1 m=0.Letting i=0 in(1)~(13),we can obtain

    for all j∈Z.

    Let j=-i in(1)and use(17),and then we haveLet j=1,i=2 and j=3,i=2 in(1)respectively.Then we get a1(3)=a1(1)+a1(2)and a1(5)=a1(3)+a1(2).So a1(2)=2a1(1).Leting j=0 in(1)and using induction on i,we have

    Letting j=-i in(4)and(17),we have y=0.Letting j=0 in(30),we get

    Subcase 1.1 If there exists some n0∈Z such that 2μ-n0λ=0.Sinceμ≠0,we have n0≠0.Let j=0 in(6),and then we have(2μ-λi)[b2(i)-a1(i)-b2(0)]=0.Hence

    Letting i=j=n0in(6),we get b2(2n0)=a1(n0)+b2(0).According to(19),we can obtain b2(n0)= n0a1(1)+b2(0).So b2(i)=a1(i)+b2(0)=ia1(1)+b2(0)for all i∈Z.By(18),we have

    Letting j=-i≠0 in(14)and using(20),

    Subcase 1.2 2μ-nλ≠0 for all n∈Z.Letting j=0 in(6),we have b2(i)=ia1(1)+b2(0)for all i∈Z.By(18),we have

    Letting j=-i≠0 in(14)and using(21),we can obtainTherefore,

    Therefore,by Subcase 1.1 and Subcase1.2,we always have Hence

    Thus we obtain

    So Der S()0=Inn S()0⊕CD-1⊕CD-2⊕CD-3.

    Case 2 m≠0.Let i=0 in(1)~(16).Then we have

    ①λ≠0,-1,-2.Let j=0 in(31).Then we get a2(0)=0.Let j=-i in(31).Then we have

    Let j=1,i=-2 in(31).and then we obtain a22()=2a21().Let i=1 in(31)and use induction on j>1,and then we can get that a2j()=ja21()for all j∈Z.Hence,we have D(Mn)=D(C1)=0 and

    ②λ=0.By(32)and(24),we have

    Then(31)becomes

    Let i=1,and then we have(j-1)a2(1+j)=-a2(1)+ja2j().Hence we have

    Let i=-j in(34),and then we get

    Let j=-2 in(35),ang then we obtain a20()=2a21()-a2(0).So

    Thus we have D(Mn)=D(C1)=0 and

    Set a1=a2(1)-a2(0),a2=a2(0).Then we can check.So

    ③λ=-1.By(31)~(33),we have

    Let i=1 in(36).Then we have(j-1)a2(1+j)=-j+1()a2(1)+j+1()a2j().So we can deduce

    Hence D(Mn)=D(C1)=0 and

    ④λ=-2.By(31)~(33),we have

    Let i=1 in(37),and then we have

    Use induction on j>1,and then we can deduce

    Let j=0 in(38),and then we get a2(0)=0.Let j=-i in(38),and then we get a2(-i)=-a2(i)for all i∈Z.Then we canall j∈Z.Hence

    [1]HENKEL M.Schr?dinger invariance and strongly anisotropic critical systems[J].Journal of Statistical Physics,1994,75(5/6):1 023-1 061.

    [2]ROGER C,UNTERBERGER J.The Schr?dinger-Virasoro Lie group and algebra:representation theory and cohomological study[J].Ann Henri Poincare,2006,7(7-8):1 477-1 529.

    [3]LI J.2-cocycles of twisted deformative Schr?dinger-Virasoro algebras[J].Comm Algebra,2012,40(6):1 933-1 950.

    [4]FARNSTEINER R.Derivations and extensions of finitely generated graded Lie algebras[J].J Algebra,1988,118(1):34-35.

    [5]JIANG C,MENGD.The derivations,algebra of the associative algebra Cq[X,Y,X-1,Y-1][J].Comm Algebra,1998,6(2):1 723-1 736.

    [6]BENKART G,MOODY R.Derivations,central extensions and affine Lie algebras[J].Algebras Groups Geom,1986,3(4):456-492.

    一類扭形變Schr?dinger-Virasoro代數(shù)的研究

    唐 佳,高壽蘭,顧海霞
    (湖州師范學(xué)院理學(xué)院,浙江湖州313000)

    研究了一類含有兩個(gè)參數(shù)的扭形變Schr?dinger-Virasoro李代數(shù),計(jì)算了這類李代數(shù)的一維中心擴(kuò)張的所有導(dǎo)子,證明它有7個(gè)外導(dǎo)子.此結(jié)果為繼續(xù)研究這個(gè)李代數(shù)的表示理論提供了依據(jù).

    Schr?dinger-Virasoro李代數(shù);中心擴(kuò)張;導(dǎo)子

    O152.5

    O152.5 Document code:A Article ID:1009-1734(2016)04-0007-07

    [責(zé)任編輯 高俊娥]

    Received date:2016-03-05

    s:Supported by National Nature Science Foundation(11201141,11371134)and Natural Science Foundation of Zhejiang Province(LQ12A01005,LZ14A010001).

    Biography:Gao Shoulan,Doctor,Research Interests:Lie algebra.E-mail:gaoshoulan@hutc.zj.cn

    MSC 2000:17B40

    猜你喜歡
    導(dǎo)子理學(xué)院高壽
    素*-環(huán)上可乘混合斜Lie(Jordan)導(dǎo)子的可加性
    昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
    昆明理工大學(xué)理學(xué)院簡(jiǎn)介
    *-代數(shù)上ξ-*-Jordan-型非線性導(dǎo)子
    擴(kuò)張的圈Schr?dinger-Virasoro代數(shù)的導(dǎo)子
    養(yǎng)生篆刻
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    古代長(zhǎng)壽有哪些雅稱
    多病且可高壽一曾國藩的養(yǎng)生之道
    誰最“高壽”?
    萨迦县| 兴隆县| 安仁县| 遵义市| 共和县| 藁城市| 汶上县| 盐边县| 子长县| 侯马市| 苍南县| 江源县| 宝山区| 集安市| 五常市| 旺苍县| 长宁县| 交口县| 宜兰县| 怀仁县| 曲麻莱县| 集安市| 马尔康县| 中阳县| 亚东县| 巴中市| 南皮县| 曲水县| 北海市| 彭泽县| 同心县| 湘乡市| 辽宁省| 湘西| 英山县| 读书| 项城市| 金秀| 栾川县| 昌吉市| 响水县|