LUO Shuanghua,ZHANG Yafei
(School of Science,Xi′an Polytechnic University, Xi′an 710048,China)
?
Asymptotic property of two stage estimator under missing response data
LUO Shuanghua,ZHANG Yafei
(School of Science,Xi′an Polytechnic University, Xi′an 710048,China)
Abstract:Under missing response data, the semiparametric regression model Y=X′β+g(T)+ε is considered to establish the two stage estimators ofn(t) and 2 of β, g(t) and σ2. Then the mean of Y is derived by the imputed every missing Yi. It is shown that these estimators have asymptotic normality andn(t) has the better convergence rate.
Key words:semiparametric regression model; two stage estimator; missing response data; asymptotic normality; best convergence rate
0Introduction
In this paper, we consider the following semiparametric regression model
(1)
In the semiparametric regression analysis setting up, the basic inference begins by considering the random sample
(Xi,Yi,Ti,δi),
(2)
By a purely semiparametric approach to discussing the missing data (2), the MAR assumption would require that there exists a chance mechanism denoted byp(Xi,Ti), such that
P(δ=1|Xi,Yi,Ti)=P(δ=1|Xi,Ti)=p(Xi,Ti)
(3)
holds almost surely. In practice, (3) is a common assumption for statistical analysis with missing data and is reasonable in many practical applications, see reference[14].
1The two stage estimator
In this section we define the estimators that we will analyze in this paper. We describe how to estimate the regression function.
Letα=Eg(Ti),ei=g(Ti)-α+εi,i=1,…,n, the model (1) turn into following
(4)
Where thee1,…,enare independent identically distributed random variables with Ee1=0 and 0<σ2=Ee12=Eε12+Var(g(Ti))=σ02+σ12<∞. The model (4) can be changed into the following form
(5)
Inordertoobtainthesolutionofthefollowingleastsquaresproblem(5),wehavetofindαandβtominimize
Wn=(Yn-Xnβ-1nα)′Qn(Yn-Xnβ-1nβ).
(6)
Byoptimizationtheory,wehavethat
andthus
(7)
(8)
Now,wedefinedthenonparametricestimatorofg(t)that
(9)
(10)
Usingthegeneralizedleastsquaresforthemodel(10),wecanfindβtominimize
(11)
andobtainestimatorofβthat
Sowenowcanobtaintheestimationofθ=E(Y).Theregressionimputationestimatorofθcanbedenotedby
(12)
Thus,wehavethepropensityscoreweightedestimator
(13)
(14)
withW(·,·)istheweightingfunctionandhnisthebandwidthsequence.
2The asymptotic properties and consistencies
We explore the asymptotic distribution and consistency of the all estimators. The following notation and assumptions are needed.
(ⅰ) TheT1,T2…Tnare independent identically distributed random variables and the {Ti} is independent of the {ei}.
(ⅱ) The rank(Xn)=p (ⅳ) E[g(T1)]2<∞. (ⅴ) Existence 0 (ⅵ) The probability density function ofTiisr(t) and In what follows the main results will be established for the asymptotic distribution and consistency of the semiparametric regression model. Theorem 1Under conditions (ⅰ)~(ⅴ), we have that Theorem 4Under conditions (i)~(vi), we have (15) 3Sketches of the proofs In this section, we will give the proof of Theorem 1~3.The following lemmas are needed for our technical proofs. (6)動物園對于特殊需要的人群是否有做出詳細(xì)的方案。例如:對于行動不便的老年人在遇到緊急情況時(shí)是否能夠接收到及時(shí)有效的幫助;對于年幼的兒童,是否有注意到動物園護(hù)欄間距的設(shè)置與安排;對于患有突發(fā)性疾病的人群,是否能做到及時(shí)的突發(fā)的疾病進(jìn)行第一時(shí)間的處理與治療;對于殘疾人群體,是否有做到設(shè)立殘疾人專用設(shè)施,殘疾人專用路線等,保證他們游園的安全性與便捷性等。 ProofSimilar to the theorem in reference[15]. Proof the Theorem 1Similar to the Lemma 2.1 in reference [16]. Proof the Theorem 2 (2)Firstly,weprovetheconclusion(ⅰ)of(2). ByLemma1inreference[17],inordertoobtaintheproofof(i),weonlyprove and ItfollowsfromLinderbergtheoremthat Theorem 3 (1) LetWn(t)=(Wn1(t),…,Wnn(t))′, whereti∈Cf∧{Ti,f(ti)>0}.Since Let (16) whenn>p.TheCauchy-Schwarzinequalityyields whenn≥p.Therefore, (17) (16)and(17)showJ2→0,a.s.Thiscompletestheproof(1)ofTheorem3. (2)Itisnotdifficulttoobtain and Ithasbeenprovedthat (18) and (19) Usingthesamemethodoftheprooffor(1)ofTheorem3,itfollowsfromLemma3inreference[17]that (20) Bytheconditions(Ⅴ)weknowthat and (21) References: [1]ENGLE R F,GRANGER C W J,RICE J,et al.Semiparametric estimates of the relation between weather and electricity scales[J].Journal of the American Statistical Association,1986,81(394):310-320. [2]SPECHMAN P.Kernel smoothing in partial linear models[J].J Roy Statist Soc Ser B,1988,50(3):413-436. [3]HECHMAN N.Spline smoothing in a partly linear model[J].J Roy Statist Soc Ser B,1986,48(2):244-248. [4]HAMILTON S A,TRUONG Y K.Local linear estimation in partly linear models[J].J Multivariate Anal,1997,60(1):1-19. [5]WAMG Qihua,SUN Zhihua.Estimation in partially linear models with missing responses at random[J].J Multivariate Anal,2007,98(7):1470-1493. [6]FANJ,HECKMANNE,WANGMP.Localpolynomialkernelregressionforgeneralizedlinearmodelsandquasilikelihoodfunctions[J].JournaloftheAmericanStatisticalAssociation,1995,90(47):663-685. [7]WANGQihua,LINTONOliver,HARDLEWolfgang.Semiparametricregressionanalysiswithmissingresponseatrandom[J].JournaloftheAmericanStatisticalAssociation,2004,99(466):334-345. [8]LIANGH.Generalizedpartiallylinearmodelswithmissingcovariates[J].JMultivariateAnal,2008,99(5):880-895. [9]CARROLLRJ,GUTIERREZRG,WANGCY,etal.Locallinearregressionforgeneralizedlinearmodelswithmissingdata[J].TheAnnalsofStatistics,1998,26(3):1028-1050. [10]CHENGPE.Nonparametricestimationofmeanfunctionalswithdatamissingatrandom[J].JournaloftheAmericanStatisticalAssociation,1994,89(425):81-87. [11]WANGQ,RAONK.Empiricallikelihood-basedinferenceunderimputationformissingresponsedata[J].AnnalsofStatistics,2002,30(3):896-924. [12]XUEL.Empiricallikelihoodconfidenceintervalsforresponsemeanwithdatamissingatrandom[J].ScandinavianJournalofStatistics,2009,36(4):671-685. [13]XUEL.Empiricallikelihoodforlinearmodelswithmissingresponses[J].JournalofMultivariateAnalysis,2009,100(7):1353-1366. [14]LITTLERJA,RUBLINDB.Statisticalanalysiswithmissingdata[M].NewYork:JohnWiley,1987. [15]FANGZhaoben,ZHAOLincheng.Strongconsistencyofthekernelestimatesofnonparametricregressionfunctions[J].ActaMathematicalApplicateSinica,1985(3):268-276. [16]CAIGengxiang.Twostageestimatorinsemiparametricmodel[J].ActaMathematicalApplicateSinica,1995,18:353-363. [17]LUOShuanghua,XUANHaiyan,WANGYaqing.AsymptotictosemiparametricEVmodelundermissingresponsedata(inChinese)[J].JournalofHenanNormalUniversity:NaturalScience,2007,35(1):12-15. 編輯、校對:師瑯 DOI:10.13338/j.issn.1006-8341.2016.02.011 Received date:2015-10-30 Foundation item:The National Natural Science Foundations(11201362);the Science Foundation of the Education Department of Shaanxi Province(14JK1305);the Natural Science Foundations of Shaanxi Province(2016JM1009) Corresponding author:LUO Shuanghua(1976—),female,native of Suining city,Sichuan province,research area is quantile regression,missing data analysis and processing nonparametric estimations.E-mail: iwantflyluo@163.com CLC number:O 212.7 Document code:A 缺失響應(yīng)數(shù)據(jù)下二階段估計(jì)的漸近性質(zhì) 羅雙華,張亞飛 (西安工程大學(xué) 理學(xué)院,陜西 西安 710048) 摘要:在缺失響應(yīng)數(shù)據(jù)下考慮半?yún)?shù)回歸模型Y=X′β+g(T)+ε,建立該模型參數(shù)β,g(t)和σ2的二階段估計(jì)n(t)和2,并通過對每個缺失響應(yīng)數(shù)據(jù)Yi進(jìn)行插值,得到了響應(yīng)數(shù)據(jù)的均值.研究表明,這些參數(shù)的估計(jì)具有漸近正態(tài)性,并且n(t)具有較好的收斂速度. 關(guān)鍵詞:半?yún)?shù)回歸模型;二階段估計(jì);缺失響應(yīng)數(shù)據(jù);漸近正態(tài)性;最佳收斂速度 Article ID:1006-8341(2016)02-0197-07 Citation format:LUO Shuanghua,ZHANG Yafei.Asymptotic property of two stage estimator under missing response data[J].紡織高?;A(chǔ)科學(xué)學(xué)報(bào),2016,29(2):197-203. LUO Shuanghua,ZHANG Yafei.Asymptotic property of two stage estimator under missing response data[J].Basic Sciences Journal of Textile Universities,2016,29(2):197-203.