賈美多,蘇亞坤,熱貝嘉措
(1.錦州醫(yī)科大學 公共基礎(chǔ)學院,遼寧 錦州 121000; 2.渤海大學 數(shù)理學院,遼寧 錦州 121013)
?
時滯依賴的中立型隨機模糊系統(tǒng)的H∞控制問題
賈美多1,蘇亞坤*,2,熱貝嘉措2
(1.錦州醫(yī)科大學 公共基礎(chǔ)學院,遼寧 錦州 121000; 2.渤海大學 數(shù)理學院,遼寧 錦州 121013)
摘要:研究了基于T-S模糊模型的中立型隨機時滯系統(tǒng)的H∞控制問題.利用Lyapunov-Krasovskii泛函方法、Schur補引理和公式及并行分布補償法(PDC),以線性矩陣不等式(LMI)形式給出了閉環(huán)系統(tǒng)H∞控制的新方法.最后,數(shù)值算例說明了該方法的有效性.
關(guān)鍵詞:H∞控制;線性矩陣不等式(LMI);中立型隨機模糊系統(tǒng);輸入時滯
0引言
模糊系統(tǒng)和隨機系統(tǒng)的控制問題被學者們廣泛關(guān)注,過去的十多年中,關(guān)于這兩個問題的結(jié)果已有很多文獻報道.例如,隨機系統(tǒng)控制理論與控制器設計得到了許多專家學者的關(guān)注〔1,2〕.文獻〔3〕研究了時滯相關(guān)的隨機系統(tǒng)的魯棒鎮(zhèn)定和H∞控制問題.狀態(tài)時滯和濾波器設計問題已被文獻〔4-5〕研究,文獻〔6-9〕研究了常時滯和時變時滯的中立型隨機系統(tǒng)的H∞控制問題.
1問題描述
考慮一類中立型T-S隨機模糊時滯系統(tǒng),定義模糊規(guī)則 如下:
IFθ1(t) is Ni1and … andθp(t) is Nip,THEN
d[x(t)-Dx(t-τ(t))]=[Ai(t)x(t)+Adi(t)x(t-τ(t))+B1i(t)u(t)+B1di(t)u(t-τ(t))
+Ev(t)]dt+[Hi(t)x(t)+Hdi(t)x(t-τ(t))+B2i(t)u(t)
+B2di(t)u(t-τ(t))]dω(t),
z(t)=Cix(t)+Cdix(t-τ(t))+B3iu(t)+B3diu(t-τ(t)),
x(t)=φ(t),?t∈[-τ,0]
(1)
Ai(t)=Ai+ΔAi(t),Adi(t)=Adi+ΔAdi(t),B1i(t)=B1i+ΔB1i(t),B1di(t)=B1di+ΔB1di(t),
Hi(t)=Hi+ΔHi(t),Hdi(t)=Hdi+ΔHdi(t),B2i(t)=B2i+ΔB2i(t),B2di(t)=B2di+ΔB2di(t).
(2)
這里,i=1,2,…,N,M1,M2,N1i,N2i,N3i和N4i是適當維數(shù)的常矩陣;而F(·):R→Rk×l是不確定矩陣滿足FT(t)F(t)≤I.
最終中立型隨機模糊系統(tǒng)可寫為如下形式:
B1di(t)u(t-τ(t))+Ev(t)]dt+[Hi(t)x(t)+Hdi(t)x(t-τ(t))+
B2i(t)u(t)+B2di(t)u(t-τ(t))]dω(t)},
x(t)=φ(t),?t∈[-τ,0]
(3)
引理〔10〕如果D和S是適當維數(shù)的實矩陣且W>0,對任意適當維數(shù)的矩陣x和y則有
2xTDSy≤xTDWDTx+yTSTW-1Sy
2主要結(jié)果
定理考慮中立型隨機模糊時滯系統(tǒng)(3),當v(t)≠0時,給定一個標量γ>0,如果存在矩陣Q>0,X>0,Yj和標量λ>0,使得下面線性矩陣不等式(LMI)成立,其中i,j=1,2,…,N,說明該系統(tǒng)在擾動衰減γ下是魯棒隨機穩(wěn)定的.
(4)
其中
隨機模糊控制器設計為
(5)
證明構(gòu)造如下形式的Lyapunov-Krasovskii泛函
(6)
B2i(t)u(t)+B2di(t)u(t-τ(t))]dω(t)}
(7)
B2di(t)u(t-τ(t))]TP[Hi(t)x(t)+Hdi(t)x(t-τ(t))+B2i(t)u(t)+B2di(t)u(t-τ(t))]}+
(8)
通過引理,得到
-2xT(t-τ(t))DTP[Ai(t)x(t)+Adi(t)x(t-τ(t))+B1i(t)u(t)+B1di(t)u(t-τ(t))+Ev(t)]
≤xT(t-τ(t))DTPDx(t-τ(t))+[Ai(t)x(t)+Adi(t)x(t-τ(t))+B1i(t)u(t)+
B1di(t)u(t-τ(t))+Ev(t)]TP[Ai(t)x(t)+Adi(t)x(t-τ(t))+B1i(t)u(t)+
B1di(t)u(t-τ(t))+Ev(t)]
(9)
通過(8-9)可以推斷出
其中
(10)
Aki(t)=Ai+B1iKj+ΔAki(t),Hki(t)=Hi+B2iKj+ΔHki(t),ΔAki(t)=ΔAi(t)+ΔB1i(t)Ki
ΔAki(t)=ΔAi(t)+ΔB1i(t)Kj,ΔHki(t)=ΔHi(t)+ΔB2i(t)Kj,Adki(t)=Adi+B1kiKj+ΔAdki(t),
Hdki(t)=Hdi+B2diKj+ΔHdki(t),ΔAdki(t)=ΔAdi(t)+ΔB1di(t)Kj,
ΔHdki(t)=ΔHdi(t)+ΔB2di(t)Kj
對(10)應用Schur補引理及引理得
(11)
Υ1=Ai+B1iKj,Υ2=Hi+B2iKj,Υ3=Adi+B1diKj,Υ4=Hdi+B2diKj
對式(11)前乘,后乘diag{P-1,P-1,I,I,I,I,I,I}
當t>0時定義
(12)
對(7)從0到t>0兩邊同時積分并取期望則有
(11)
把(13)代入(12)得
其中
很容易得到Φ(s)<0,所以J(t)<0,定理得證.
3數(shù)值算例
考慮中立型隨機模糊系統(tǒng)(3)所給參數(shù)如下:
當γ=0.5時,運用LMI工具箱求解定理中的不等式,得到下面的解決方案
此時狀態(tài)反饋控制器為
4結(jié)論
參考文獻:
〔1〕蔡尚峰.隨機控制理論〔M〕.上海: 上海交通大學出版社,1987.
〔2〕馮贊剛,郭治.隨機控制〔M〕.北京: 國防工業(yè)出版社,1988.
〔3〕CHEN W H,GUAN Z H,LU X.Delay-dependent robust stabilization and H∞control of uncertain stochastic systems with time-varying delay〔J〕.IMA Journal Mathematical Control and Information,2004,21(3): 345-358.
〔4〕XU S,CHEN.T.Robust H∞control for uncertain stochastic systems with state delay〔J〕.IEEE Transactions on Automatic Control,2002,47(12): 2089-2094.
〔5〕CHEN B,CHEN W,WU H.Robust H2/H∞Global linearization filter design for nonlinear stochastic systems〔J〕,IEEE Transactions on Automatic Control,2009,56(7): 1441-1454.
〔6〕XU S Y,SHI P,CHU Y M.Robust stochastic stabilization and H∞control of uncertain neutral stochastic time-delay systems〔J〕.Journal of Mathematical of Analysis and Applications,2006,314(1): 1-16.
〔7〕CHEN G C,Wang X P.Robust H∞control for neutral stochastic uncertain systems with time-varying delay〔J〕.Journal of Systems Engineering and Electronics,2010,21(4): 658-665.
〔8〕XU S Y,Lam J,Yang C W.Robust H∞control for uncertain linear neutral delay systems〔J〕.Optimal Control Application Methods,2002,23(3): 113-123.
〔9〕蘇亞坤,熱貝嘉措.帶有時變時滯的中立型隨機系統(tǒng)的魯棒鎮(zhèn)定和H∞控制,渤海大學學報,2015,36(1): 24-31.
〔10〕WANG Y,XIE L,SOUZA C E D.Robust control of a class of uncertain nonlinear systems〔J〕.Systems and Control Letters,1992,19(2): 139-149.
Delay dependent H∞control for neutral stochastic fuzzy systems
JIA Mei-duo,SU Ya-kun,RE BEI Jia-cuo
(1.College Of Basic Science,Liaoning Medical University,Jinzhou 121000,China;2.School Of Mathematics And Physics,Bohai University,Jinzhou 121000,China)
Abstract:The problem of H∞control for neutral T-S stochastic fuzzy time-delay systems is discussed.By using the Lyapunov functional method,Schur complement lemma, formula and parallel distributed compensation(PDC),the closed loop system of H∞control is given by linear matrix inequality(LMI).Finally,numerical example shows that our method is efficient.
Key words:H∞control; Linear matrix inequality(LMI); neutral stochastic fuzzy systems with time-delay
收稿日期:2015-09-10.
基金項目:國家自然科學基金項目(No: 61403043).
作者簡介:賈美多(1989-) ,女,助教,主要從事控制理論方面的研究.
通訊作者:jc335@qq.com.
中圖分類號:TP13
文獻標志碼:A
文章編號:1673-0569(2016)02-0166-06