• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hyperspectral Models and Forcasting of Physico-Chemical Properties for Salinized Soils in Northwest China

    2016-07-12 12:45:12XIAOZhenzhenLIYiFENGHao
    光譜學與光譜分析 2016年5期
    關(guān)鍵詞:西北農(nóng)林科技大學楊凌方根

    XIAO Zhen-zhen, LI Yi,2*, FENG Hao

    1.College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling 712100, China 2.Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, China 3.National Engineering Research Center for Water Saving Irrigation at Yangling,Northwest A&F University, Yangling 712100, China

    Hyperspectral Models and Forcasting of Physico-Chemical Properties for Salinized Soils in Northwest China

    XIAO Zhen-zhen1, LI Yi1,2*, FENG Hao2,3

    1.College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling 712100, China 2.Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, China 3.National Engineering Research Center for Water Saving Irrigation at Yangling,Northwest A&F University, Yangling 712100, China

    Hyperspectral remote sensing data have special advantages, i.e., they have high spectral resolution and strong band continuity, and a great number of spectral information could be widely used in soil properties monitoring research.Using hyperspectral remote sensing technique to analyze saline soil properties makes great significance for the crop growth in the irrigation district and agricultural sustainable development.221 soil samples were collected from Manasi River Basin to measure soil electrical conductivity (EC), soil organic matter (SOM) and 3 kinds of cation concentrations including Na+, Ca2+and Mg2+, which were used to obtain sodium adsorption ration value (SAR).The soil hyperspectral curves were also measured.EC, SOM and SAR models were established based on the six spectral-related indices, including raw reflectance (R), standard normal variable (SNV), normalized difference vegetation index (NDVI), logarithm of the reciprocal (LR), the first derivative reflectance (FDR) and continuum-removal reflectance (CR) by the stepwise linear regression method.The results showed that, compared to the other five models, the model of log (EC)~Rhad the highest accuracy withrvalue of 0.782 and RMSE value of 0.256.The model of SOM vs.NDVI had the highest accuracy withrvalue of 0.670 and RMSE value of 5.352.The model of SAR vs.FDR had the highest accuracy withrvalue of 0.647 and RMSE value of 1.932.As to the model accuracy of the studied soil physico-chemical properties, the log(Ec) model was the most effective one, followed by the SOM model, the SAR model was the most inaccurate.The sensitive wavelengths for EC, SOM and SAR distributed in 395~1 801 nm, 352~1 144 nm and 394~1 011 nm, respectively.Since soil physico-chemical properties were highly spatially variable, there were large differences for the model establishment and validation of the soil properties.This research could be a reference of hyperspectral remote sensing monitoring of salinized soils.

    Soil electrical conductivity; Soil organic matter; Sodium adsorption ration; Hyperspectral model

    Introduction

    Soil salinization is a typical phenomenon of land degradation.It reduces soil permeability, constrains crop growth and production and restricts agricultural sustainable development[1].In Xinjiang Uygur Autonomous Region, northwest of China, the area of arable saline soil land account for 31.1% of the total arable land[2].Among the related indices to denoting soil salinization, soil electrical conductivity (EC) is an important soil quality assessment parameter[3-4].Besides, sodium adsorption ratio (SAR) reflects differences in salt ions and is an important parameter to characterize the degree of soil alkalization.On the other hand, soil organic matter (SOM) is not only an important material basis for soil fertility, but also an important part of the global carbon pool, it is a main source of plant nutrients.Although SOM occupies only a small part of total soils, it exerts significant influence on improving soil structure and texture, contributes much to harmonizing soil physical properties, such as soil water, temperature, nutrient and air[5].However, traditional methods of measuring soil physic-chemical properties are slowly in detection with pollution and poor real-time capability, and the sampling number is limited by human and material resources and other factors.Therefore, they cannot be applied to a large area of real-time dynamic monitoring and do not qualify the development of precision agriculture.Hyperspectral data are fast, time-saving with no pollution, and not limited by space-time and topography, so they have been applied widely to the monitoring of soil properties[6].

    So far, many scholars have established a quantitative relationship between soil spectral reflectance and soil properties, such as soil moisture, pH, salinity (or EC) and SOM.The results showed that the established models between soil properties and spectral reflectance-related indices can be applied to estimate soil properties well[7-11].For the Manasi River basin, Liu et al.investigated Beiwucha town in north Manasi county, and they found that the models established for soil salinity vs.continuum-removal index and for SOM vs.reciprocal index were the best, and spectrum bands of red light, purple light and near-infrared light played very important roles in the prediction of soil salinity and SOM[12].

    Although there were many researches on the spectral characteristics of soil physical and chemical properties, the criteria and parameters of soil spectrometry were not uniform, thus there were differences between spectral data even in the same study area.In addition, soil spectral reflectance was comprehensively affected by soil physical and chemical properties.Former research that studied the characteristics of hyperspectral characteristics of salinized soils had its regional limitations.The established model may have good ability to predict soil properties in a certain region, but its accuracy would be greatly reduced for the other regions, even weak modeling accuracy could be obtained when sampling in the same area but at different dates or when different number of samples were taken.Hyperspectral models for SAR are still rare.Manasi River basin is the largest artificial oasis in Xinjiang and the fourth largest irrigated area in China.In this paper, saline-alkaline soils in Manasi River basin were taken as the research subject.Based on the measured spectral reflectance data and its multi-shapes of transformations, the models of log(Ec), SOM and SAR with the obtained spectral indices will be established using stepwise linear regression (SLR) method, and the best spectral models for predicting the studied soil physico-chemical properties will be selected.This results will provide references for estimating physico-chemical properties of salinized soils.

    1 Materials and Methods

    1.1 Study area

    Manasi River basin is located within 43°27′N—45°21′N and 85°01′E—86°32′E with a total area of about 3.14×104km2.It is located in the southwest of Junggar Basin in Xinjiang.Its western part is the edge of the Junggar Basin, and its south edge is the Tianshan Mountain.In topography, the south of is higher than the north part, and the area of plain take half of the total area, which is similar to the area of mountain.With the annual precipitation here is 110~200 mm, annual evaporation is 1 500~2 100 mm, and average annual temperature is 5.2 ℃[13].

    1.2 Sampling collection and laboratory analysis

    A total 221 soils were randomly collected with general interval of 2~3 km in seven irrigation areas including Mosuowan, Manasi county, Anjihai, Shihezi, 121 Regiment, 136 Regiment and 132 Regiment.Samples were air dried after the debris like gravels and grass roots were moved.And then they were ground to pass a 2mm-in-diameter sieve for the later use.

    Soil water slurry was obtained by mixing 10 g soil and 50 mL distilled water.Samples were shaken for 5 min and settled for 24 h.EC was measured by a DDB-303A EC-meter.SOM was determined by the potassium dichromate heating method[18].Concentration of Na+, Ca2+and Mg2+were all measured by The Atomic Absorption Spectrophotometric method.SAR was calculated by the following equation[14]

    (1)

    Where SAR denotes the sodium adsorption ratio (mmol·L-1)1/2, [Na+], [Ca2+] and [Mg2+] denotes concentration of Na+, Ca2+and Mg2+(mmol·L-1), respectively.

    1.3 Measurement of spectral reflectance and pretreatments

    Soil spectral reflectance was measured for each soil sample by using an analytical spectral device (ASD FieldSpec FR Spectroradiometer) at wavelength scopes from 350 to 1 830 nm with a spectral sampling intervals of 1.4 and 2 nm in the wavelength ranges of 350~1 000 and 1 000~1 830 nm, respectively.The measurement was conducted outdoor at 10:00—14:00 in sunny cloudless days.The field of view angle of the transducer probe was 30°, and held vertically to the soil sample with a height of 5 cm to the soil surface.The soil samples were placed in the aluminum containers with 6 cm in diameter and 4 cm in depth.The dark current effects were removed and the white panel calibration was done before the measurements.After measuring 30 soil samples, the white panel calibration was conducted again.Each sample was scanned 10 times to obtain an actual spectral curve after the data were averaged arithmetically.

    Spectral curves near 1 400 and 1 900 nm were affected by water absorption valley, which resulted to a big fluctuation.Thus these two water vapor absorption bands were excluded, and a parabolic splice was used to correct the gaps in 1 000 nm between detectors via ViewSpec Pro Version 6.0 software.

    Spectral data pretreatment is essential to spectral analysis, which directly affects the prediction accuracy and stability of the established model.Thus, in addition to the original spectral reflectance index(R), standard normal variable (SNV) was obtained by standard normal transformation, spectral index normalized difference vegetation index (NDVI) was calculated by borrowing a mathematical algorithm from remote sensing data processing, index of continuum-removal (CR) was obtained by using the module Spectral in ENVI 4.7 software, in addition, logarithm of the reciprocal (LR) and the first derivative reflectance (FDR) were also calculated.Total six spectral indices including R were obtained to be used for the later model establishment.

    1.4 Model establishment and performance assessment

    2 Results and discussion

    2.1 Descriptive statistical analysis of soil physico-chemical properties

    Statistical analysis of physico-chemical properties of the soil samples in the total, the modeling subset and the validation subset are presented in Table 1.CV denotes coefficient of variation.

    Table 1 shows that the soil physico-chemical properties ranged with a similar manner in the total, the modeling subset and the validation subset.As toCvvalues,Cvof EC for the modeling subset was largest and reached 1.1,Cvof SAR for both the modeling and validation subsets followed it and were both 1.0.Cvof SOM in the modeling subset was the smallest, i.e.0.6.In general, for all of the three soil properties-EC, SOM and SAR, the statistical parameters of the modeling subset were close to those of the validate subset, so the divided subsets can be used to establish spectral models.

    Table 1 Statistics of soil physico-chemical properties in the total, the modeling subset and the validation subset

    2.2 Analysis of soil spectral reflectance

    Fig.re 1 demonstrates 10 typical soil spectral reflectance curves, of which the water vapor absorption band was removed.

    In Figure 1, the spectral reflectance curves of the soil samples were basically similar as the wavelength changed, and there was no significant difference in their shapes.In the visible light band (350~760 nm), the reflectance increased significantly with a quick increase in wavelength especially within 350~577 nm.The highest soil sample reflectance curve corresponded to EC of 44.8 μs·cm-1, SOM of 5.06 g·kg-1and SAR of 0.83 (mmol·L-1)1/2, respectively.Followed by the curve with 62.5 μs·cm-1of EC, 11.08 g·kg-1of SOM, and 6.65 (mmol·L-1)1/2of SAR.The lowest soil sample spectral curve corresponded to 99.2 μs·cm-1of EC, 7.22 g·kg-1of SOM and 0.63 (mmol·L-1)1/2of SAR, respectively.

    Fig.1 Spectral reflectance curves of ten soil samples

    2.3 Spectral model of soil physico-chemical properties

    Based on the modeling subsets, six spectral indices including R, SNV, NDVI, CR, LR, and FDR were used for establishing models of soil EC, SOM and SAR, respectively.Then the established models were validated by the validate subset, combining with the comparisons of the predicted and measured values to select the best model for the studied soil properties.The selection of best model of each soil property was described below.

    2.3.1 Hyperspectral model of soil EC

    Since the statistical test indicated the EC values were logarithmic normal distributed, logarithmic transformation was applied to obtain normal distributed EC data.Then the SLR analysis was conducted to establish models between logarithmic transformed EC values and the studied six spectral indices including R, SNV, NDVI, CR, LR and FDR at the 350~1 830 nm band where the water vapor absorption band were removed.The calibration and validation parameters for the established logarithmic models of EC using different spectral indices are shown in Table 2.

    Table 2 Calibration parameters and validation results for the established models of logarithmic EC using different R-related indices

    From the validation results,rvalues of the log(EC) models as functions ofRand FDR are both above 0.7, of whichrvalue of log (EC)~Rmodel was 0.782 and reached the highest, followed by the log (EC)~FDR model withrvalue of 0.723.While thervalues of the log (EC) models based on other four indices were lower than 0.54 with poor availability, and they cannot be the best model.In the two available models, RMSE values of the log(EC)~Rand the log(EC)~FDR models were 0.256 and 0.260, respectively.All of the established log(EC) models based on the sixR-related indices passedt-test.Combining with the comparisons ofr, RMSE andt-test values, the log(EC)~Rmodel was generally good.To further choose the best model for describing relationship between EC andR, direct comparison of the predicted and the measured log(EC) values are plotted in Figure 2.

    Fig.re 2 shows that scatter plot of log(EC)~Rmodel concentrated more to 1∶1 line than that of the log(EC)~FDR model.TheR2value of the log(EC)~Rmodel was 0.772 and larger, therefore, log(EC)~Rmodel was selected as the best model in Manasi river basin.log(EC) value should be transformed to EC when the model is applied in practice.

    2.3.2 Hyperspectral models of SOM

    Similarly with the model establishment procedure of EC, SOM models were set up based onR, SNV, NDVI, CR, LR and FDR using the SLR method.The best SOM model was selected.The calibrated parameters and the validation results are shown in Table 3.

    Fig.2 Comparison of the measured and the predicted log (EC) values for two models

    Table 3 Calibration parameters and validation results for the established models of SOM using different R-related indices

    In Figure 3, scatter plot based on the SOM~NDVI model was more close to 1∶1 line than that of the SOM~FDR model.R2of SOM~NDVI model was larger (0.709).Therefore the SOM~NDVI model was selected as the best spectral model to predict SOM in the Manasi River basin.

    2.3.3 Hyperspectral model of SAR

    Similar to the modeling procedure of EC and SOM, models were established between SAR and the spectral-related indices includingR, SNV, NDVI, CR, LR and FDR using the SLR method.The best performance of SAR model was selected, and the calibration and validation results are demonstrated in Table 4.

    Fig.3 Comparison of the measured and predicted SOM values

    Table 4 Calibration parameters and validation results for the established models of SAR using different R-related indices

    From the validation results, models of SAR vs.R, NDVI and LR did not pass thet-test, thus these three models cannot be selected as the best model because of their weak availability.In the other three models, the SAR~FDR model had the highestrvalue of 0.647, followed by the SAR~SNV model withrvalue of 0.621 and the SAR~CR model withrvalue of 0.445, which was the smallest one and couldn’t be the best model.By comparingrvalues, RMSE values andt-test parameters of the established models comprehensively, the models of SAR~FDR and SAR~SNV both performed well, while SAR~FDR was better.In order to choose the best SAR model based on the six spectral reflectance indices, the predicted SAR values using SAR~FDR and SAR~SNV models and the measured values are plotted in Figure 4.

    Fig.re 4 showed that the scatter plot of SAR~FDR model was more close to the 1∶1 line than that of SAR~SNV model.R2of SAR~FDR model was 0.557 and larger than that of SAR~SNV model.Therefore, the SAR~FDR model was chosen as the best model to predict SAR in the Manasi River basin.

    3 Discussions

    In this study, the models between log(EC) and the six spectral indices was established with sensitive wavelengths distributed in 350~1 801 nm.Currently, many scholars have done research on soil salinity improvement using hyperspectral remote sensing technology and they achieved good results[7-8,10-12,15-16].Nevertheless, for the spectral characteristics and sensitive bands of EC, there was no unified conclusion.Many studies showed that sensitive bands of SOM distributed in 400~1 100 nm and particularly focus on the 600~800 nm[17].Liu et al.suggested that sensitive wavelengths of SOM are 474, 636 and 1 632 nm, respectively[18].In this study, the most sensitive bands of SOM distributed in the visible and the near-infrared light bands, which was consistent with previous studies.Sensitivity wavelengths of SAR models vs.various indicators generally distributed in the visible light band.

    4 Conclusions

    (1)Statistical characteristics of the modeling subset for EC, SOM and SAR are close to those of the validate subset and total, so the divided subsets can be applied for the calibration and the validation of the established models and further prediction.

    (3)By comparing the best hyperspectral models established for the three studied soil properties, the models for soil EC had the highest accuracy, the next was the SOM model, while the SAR model was of the most inaccurate.

    [1] Mettemicht G I, Zinck J A.Remote Sensing of Environment, 2003, 85(1): 1.

    [2] Tian C Y, Zhou H F, Liu G Q, et al.Arid Land Geography, 2000, 23(2): 177.

    [3] Karlen D L, Tomer M D, Neppel J, et al.Soil Tillage Research, 2008, 99(2): 291.

    [4] Meternicht G,Alfred Zinck J.Remote Sensing of Soil Salinization Impact on Land Management.New York: CRC Press, 2009.63.

    [5] Manna M C, Swarup A.Soil and Tillage Research, 2007, 94(2): 397.

    [6] Cambule A H, Rossiter D G, Stoorvogel J J, et al.Geoderma, 2012, 183-184: 41.

    [7] Weng Y L.Pedosphere, 2010, 20(3): 378.

    [8] Li Y, Liu S B, Liao Z H, et al.Canadian Journal of Soil Science, 2012, 92(6): 845.

    [9] Marco N, Antoine S.Soil Biology and Biochemistry 2014, 68: 337.

    [10] Aldabaa A A A, Weindorf D C, Chakraborty S, et al.Geoderma, 2015, 239: 34.

    [11] Fan X W, Liu Y B, Tao J M, et al.Remote Sensing, 2015, 7: 488.

    [12] Liu S B, Li Y, He C S.Soil Science, 2013, 178(3): 138.

    [13] Feng Y, Luo G P, Zhou D C, et al.Acta Ecologica Sinica, 2010, 30(16): 4295.

    [14] Hasheminejhad Y, Ghane F, Mazloom N.Communications in Soil Science and Plant Analysis, 2013, 44(18): 2666.

    [15] Pang G, Wang T, Liao J, et al.Soil Science Society of American Journal.2014, 78: 546.

    [16] Wang Q,Li P H,Maina J N, et al.Soil Science and Plant Analysis, 2013, 44(9): 1503.

    [17] Takata Y, Funakawa S, Akshalov K, et al.Soil Science and Plant Nutrition, 2007, 53(3): 289.

    [18] Liu Jiao, Li Yi, Liu Shibin.Spectroscopy and Spectral Analysis, 2013, 33(12): 3354.

    [19] Zhang H, Li Y, Deng H W, et al.Journal of Northwest A&F University, 2013, 41(3): 153.

    [20] Lü Z Z, Liu G M, Yang J S.Acta Pedologica Sinica, 2013, 50(2): 289.

    [21] Mevik B H, Wehrens R.Journal of Statistical Software,2007, 18(2): 1.

    *通訊聯(lián)系人

    S127

    A

    西北鹽堿土理化性質(zhì)的高光譜建模及預測

    肖珍珍1,李 毅1,2*, 馮 浩2,3

    1.西北農(nóng)林科技大學水利與建筑工程學院,陜西 楊凌 712100 2.西北農(nóng)林科技大學中國旱區(qū)節(jié)水農(nóng)業(yè)研究院,陜西 楊凌 712100 3.西北農(nóng)林科技大學國家節(jié)水灌溉楊凌工程技術(shù)研究中心,陜西 楊凌 712100

    高光譜數(shù)據(jù)具有光譜分辨率高、波段連續(xù)性強、信息豐富等特點,在土壤信息的監(jiān)測中得到廣泛應用。利用高光譜遙感技術(shù)測定鹽漬化土壤屬性對灌區(qū)農(nóng)作物的生長和農(nóng)業(yè)可持續(xù)發(fā)展具有重要意義。采集瑪納斯河流域221個土壤樣品,分別測定土壤電導率(EC)、有機質(zhì)(SOM)和Na+, Ca2+, Mg2+三種離子濃度含量等土壤理化性質(zhì)和光譜反射率曲線,并由三種離子含量得出鈉吸附比值(SAR),采用逐步線性回歸方法建立EC,SOM和SAR與原始光譜反射率(R)、標準正態(tài)變量(SNV)、歸一化差異植被指數(shù)(NDVI)、倒數(shù)的對數(shù)(LR)、一階微分(FDR)和去包絡線(CR)等六種指標的模型。模型驗證結(jié)果表明,相較其他五種變量的模型,以R為自變量的EC對數(shù)模型精度最高,相關(guān)系數(shù)為0.782,均方根誤差為0.256。以NDVI為自變量的土SOM預測模型精度最高,相關(guān)系數(shù)為0.670,均方根誤差為5.352。以FDR為自變量的SAR預測模型精度最高,相關(guān)系數(shù)為0.647,均方根誤差為1.932。EC預測模型效果最好,SOM預測模型次之,SAR預測模型精度最低。最優(yōu)模型中EC,SOM和SAR的敏感波長分別分布于395~1 801,352~1 144和394~1 011 nm波段。由于土壤中各屬性的差異和不同成分空間分布的變異性,對于不同土壤性質(zhì)的建模和驗證結(jié)果差異較大。本研究可為鹽漬化土壤的高光譜遙感監(jiān)測提供依據(jù)。

    電導率; 有機質(zhì); 鈉吸附比; 高光譜模型

    Foundation item:National High Technology Research and Development Program of China (SS2013AA100904), Natural Science Foundation of China (51579213), the China 111 Project (B12007), and China Scholarship Council for Studying Abroad (201506305014)

    10.3964/j.issn.1000-0593(2016)05-1615-08

    Received:2015-03-06; accepted:2015-07-10

    Biography:XIAO Zhen-zhen, (1992—), Master Degree in College Water Resources and Architecture Engineering, Northwest A&F University e-mail: xiaozz0212@163.com *Corresponding author e-mail: liyikitty@126.com

    猜你喜歡
    西北農(nóng)林科技大學楊凌方根
    方根拓展探究
    歡迎訂閱《西北農(nóng)林科技大學學報(自然科學版)》
    楊凌推出穩(wěn)農(nóng)助農(nóng)“定心丸”
    歡迎訂閱《西北農(nóng)林科技大學學報(自然科學版)》
    歡迎訂閱《西北農(nóng)林科技大學學報(自然科學版)》
    歡迎訂閱《西北農(nóng)林科技大學學報(自然科學版)》
    解碼楊凌:不老的農(nóng)業(yè)
    當代陜西(2020年14期)2021-01-08 09:30:32
    楊凌深耕服務“田園”
    當代陜西(2019年12期)2019-07-12 09:12:08
    陜西青年作家采風團走進陜西楊凌
    均方根嵌入式容積粒子PHD 多目標跟蹤方法
    自動化學報(2017年2期)2017-04-04 05:14:28
    国产有黄有色有爽视频| eeuss影院久久| 91久久精品电影网| 国产亚洲5aaaaa淫片| 免费看a级黄色片| 黄片无遮挡物在线观看| 少妇人妻久久综合中文| 国产av不卡久久| 国产高清国产精品国产三级 | 欧美一级a爱片免费观看看| 好男人视频免费观看在线| 一区二区三区乱码不卡18| 插阴视频在线观看视频| 成年免费大片在线观看| 国产日韩欧美亚洲二区| 国产成人一区二区在线| 亚洲欧美一区二区三区黑人 | 日韩中字成人| 午夜激情久久久久久久| 69av精品久久久久久| 欧美日韩国产mv在线观看视频 | 国产亚洲精品久久久com| 九色成人免费人妻av| 在线看a的网站| 美女被艹到高潮喷水动态| videossex国产| 99久久中文字幕三级久久日本| 又爽又黄a免费视频| 欧美丝袜亚洲另类| 日本免费在线观看一区| 亚洲av一区综合| 国产精品福利在线免费观看| 日韩国内少妇激情av| 久久ye,这里只有精品| 亚洲精品aⅴ在线观看| 欧美高清性xxxxhd video| 国产高清有码在线观看视频| 综合色av麻豆| 五月伊人婷婷丁香| 国产成人精品久久久久久| 欧美+日韩+精品| a级一级毛片免费在线观看| 欧美丝袜亚洲另类| 久久久久网色| 丝袜美腿在线中文| 亚洲av福利一区| 精品午夜福利在线看| 中国国产av一级| 日韩av免费高清视频| 91久久精品电影网| 永久网站在线| 插逼视频在线观看| 赤兔流量卡办理| 国产在线一区二区三区精| 欧美一区二区亚洲| 麻豆国产97在线/欧美| 国产白丝娇喘喷水9色精品| 久久久色成人| 欧美精品一区二区大全| 日韩一区二区三区影片| 国产精品爽爽va在线观看网站| 国产淫语在线视频| 日韩大片免费观看网站| 中文乱码字字幕精品一区二区三区| 日韩不卡一区二区三区视频在线| 波多野结衣巨乳人妻| 亚洲怡红院男人天堂| 国产伦在线观看视频一区| 美女视频免费永久观看网站| 美女高潮的动态| 18禁在线无遮挡免费观看视频| 国产精品一及| 99热国产这里只有精品6| 2022亚洲国产成人精品| 男女边摸边吃奶| 成人亚洲欧美一区二区av| 成人免费观看视频高清| 亚洲精品自拍成人| 亚洲国产精品专区欧美| 亚洲国产av新网站| 国产探花在线观看一区二区| 日日撸夜夜添| 波野结衣二区三区在线| 另类亚洲欧美激情| 欧美潮喷喷水| 中文在线观看免费www的网站| 日韩亚洲欧美综合| 少妇被粗大猛烈的视频| 特级一级黄色大片| 欧美极品一区二区三区四区| 建设人人有责人人尽责人人享有的 | 26uuu在线亚洲综合色| 永久免费av网站大全| .国产精品久久| 赤兔流量卡办理| 亚洲人成网站高清观看| 在线免费观看不下载黄p国产| 青春草国产在线视频| 少妇 在线观看| 国产 一区 欧美 日韩| 欧美+日韩+精品| 中文天堂在线官网| 亚洲国产欧美在线一区| 国产免费一区二区三区四区乱码| 色视频www国产| 观看免费一级毛片| 久久久久国产网址| 免费高清在线观看视频在线观看| xxx大片免费视频| 国产极品天堂在线| 两个人的视频大全免费| 一区二区av电影网| 欧美日韩视频高清一区二区三区二| 激情五月婷婷亚洲| 嫩草影院精品99| 好男人在线观看高清免费视频| 日韩,欧美,国产一区二区三区| 亚洲成人中文字幕在线播放| 日韩免费高清中文字幕av| 观看免费一级毛片| 久久久久久九九精品二区国产| 欧美另类一区| 亚洲不卡免费看| 国产熟女欧美一区二区| 在线观看国产h片| 极品教师在线视频| 三级国产精品欧美在线观看| 偷拍熟女少妇极品色| 特大巨黑吊av在线直播| 国产精品一区二区性色av| 一级a做视频免费观看| 欧美成人一区二区免费高清观看| 国产精品久久久久久久久免| 亚洲精品一二三| 美女脱内裤让男人舔精品视频| 日韩av在线免费看完整版不卡| 少妇丰满av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 大片免费播放器 马上看| 国产在视频线精品| 女的被弄到高潮叫床怎么办| 尾随美女入室| 久久久亚洲精品成人影院| 久久久久精品久久久久真实原创| 乱系列少妇在线播放| 18禁动态无遮挡网站| 久久精品熟女亚洲av麻豆精品| 天天一区二区日本电影三级| av在线蜜桃| 国产精品福利在线免费观看| 波多野结衣巨乳人妻| 久久久久久久国产电影| 大又大粗又爽又黄少妇毛片口| 人人妻人人看人人澡| 久久鲁丝午夜福利片| 国产乱人视频| 亚州av有码| 国产亚洲91精品色在线| 青春草亚洲视频在线观看| 日韩欧美精品免费久久| 男人爽女人下面视频在线观看| 热99国产精品久久久久久7| 少妇人妻精品综合一区二区| 水蜜桃什么品种好| 蜜桃久久精品国产亚洲av| 欧美高清性xxxxhd video| 新久久久久国产一级毛片| 国语对白做爰xxxⅹ性视频网站| 成人漫画全彩无遮挡| 777米奇影视久久| 我的女老师完整版在线观看| 国产精品av视频在线免费观看| 亚洲av国产av综合av卡| 亚洲精品aⅴ在线观看| 国产永久视频网站| 亚洲成人中文字幕在线播放| 国产极品天堂在线| 精品人妻视频免费看| 亚洲欧美日韩无卡精品| 国产 一区精品| 大码成人一级视频| 亚洲av福利一区| 国产视频首页在线观看| 一级毛片电影观看| 少妇裸体淫交视频免费看高清| 搡老乐熟女国产| 舔av片在线| 亚洲成人久久爱视频| 成年女人在线观看亚洲视频 | 久久久久久久午夜电影| 久久久久国产精品人妻一区二区| 久久久欧美国产精品| 91午夜精品亚洲一区二区三区| 精品久久久久久久久av| 亚洲欧美一区二区三区国产| 高清视频免费观看一区二区| 国产午夜精品久久久久久一区二区三区| 在线观看国产h片| 美女高潮的动态| 国产成人freesex在线| 精华霜和精华液先用哪个| 青春草亚洲视频在线观看| 啦啦啦啦在线视频资源| 搞女人的毛片| 亚洲国产av新网站| 亚洲欧美清纯卡通| 精品视频人人做人人爽| 亚洲真实伦在线观看| 国产精品爽爽va在线观看网站| 人妻系列 视频| 亚洲欧美成人精品一区二区| 又大又黄又爽视频免费| 一个人观看的视频www高清免费观看| 超碰97精品在线观看| 一个人看视频在线观看www免费| 精品国产三级普通话版| 中文乱码字字幕精品一区二区三区| 午夜视频国产福利| 精品久久久久久久久亚洲| 一本久久精品| 赤兔流量卡办理| 26uuu在线亚洲综合色| 王馨瑶露胸无遮挡在线观看| 熟妇人妻不卡中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 七月丁香在线播放| 建设人人有责人人尽责人人享有的 | 又爽又黄无遮挡网站| 伊人久久精品亚洲午夜| 久久久精品94久久精品| 丝瓜视频免费看黄片| 国产黄片视频在线免费观看| 久久久久久久久久久丰满| 中文字幕av成人在线电影| 久久午夜福利片| 免费看不卡的av| 美女国产视频在线观看| 国产精品伦人一区二区| 永久免费av网站大全| av在线天堂中文字幕| 国产精品蜜桃在线观看| 你懂的网址亚洲精品在线观看| 中国三级夫妇交换| 黄色视频在线播放观看不卡| 内射极品少妇av片p| 免费av毛片视频| 国产亚洲精品久久久com| 欧美97在线视频| 国产爱豆传媒在线观看| 亚洲婷婷狠狠爱综合网| 国产精品一区二区三区四区免费观看| 国产一区亚洲一区在线观看| 一级av片app| 久久久久久久久久久免费av| 男女下面进入的视频免费午夜| 精品一区在线观看国产| 麻豆成人午夜福利视频| 亚洲人成网站在线观看播放| 国产男女超爽视频在线观看| 中国三级夫妇交换| 少妇 在线观看| 亚洲欧美日韩东京热| 少妇人妻久久综合中文| 人妻少妇偷人精品九色| 91狼人影院| 亚洲综合色惰| 又爽又黄无遮挡网站| av天堂中文字幕网| av在线天堂中文字幕| 99久久人妻综合| 汤姆久久久久久久影院中文字幕| 亚洲综合精品二区| 99re6热这里在线精品视频| 777米奇影视久久| 色视频www国产| 交换朋友夫妻互换小说| 99久久精品国产国产毛片| 女人久久www免费人成看片| 亚洲精品色激情综合| 欧美成人精品欧美一级黄| 一个人看的www免费观看视频| 精品久久久久久久久av| 久久精品国产a三级三级三级| 国产av码专区亚洲av| 久久久国产一区二区| 丝瓜视频免费看黄片| 男的添女的下面高潮视频| av国产精品久久久久影院| 亚洲成人一二三区av| 日本一本二区三区精品| 禁无遮挡网站| 精品人妻熟女av久视频| 成年女人在线观看亚洲视频 | 肉色欧美久久久久久久蜜桃 | 久久综合国产亚洲精品| 国产人妻一区二区三区在| videos熟女内射| 亚洲国产日韩一区二区| 只有这里有精品99| 久久久精品94久久精品| 毛片女人毛片| 亚洲av在线观看美女高潮| 久久精品国产亚洲av涩爱| 2021天堂中文幕一二区在线观| 高清av免费在线| 亚洲av免费高清在线观看| 别揉我奶头 嗯啊视频| 国产一区二区三区综合在线观看 | 国产欧美另类精品又又久久亚洲欧美| 午夜免费鲁丝| 国产色婷婷99| eeuss影院久久| 亚洲精品日本国产第一区| 在线精品无人区一区二区三 | 免费看a级黄色片| 丰满少妇做爰视频| 免费看不卡的av| 精品国产三级普通话版| 亚洲国产精品成人久久小说| 不卡视频在线观看欧美| 久久ye,这里只有精品| av黄色大香蕉| 亚洲电影在线观看av| 亚洲伊人久久精品综合| 少妇的逼好多水| 日本爱情动作片www.在线观看| 中文字幕亚洲精品专区| 熟女电影av网| 最近最新中文字幕免费大全7| 国产成人免费无遮挡视频| 超碰97精品在线观看| 真实男女啪啪啪动态图| 天天一区二区日本电影三级| 亚洲精品乱码久久久久久按摩| 国产成人福利小说| 久久国内精品自在自线图片| 国产乱人偷精品视频| 看黄色毛片网站| 日韩一本色道免费dvd| 国产亚洲午夜精品一区二区久久 | 国产亚洲av片在线观看秒播厂| 黄色日韩在线| 亚洲成人中文字幕在线播放| 精品一区在线观看国产| 日韩欧美精品免费久久| 男人狂女人下面高潮的视频| 欧美人与善性xxx| 亚洲怡红院男人天堂| 插阴视频在线观看视频| 天天一区二区日本电影三级| 观看美女的网站| 久久精品国产a三级三级三级| 国内揄拍国产精品人妻在线| 又爽又黄无遮挡网站| 中文欧美无线码| 亚洲国产精品成人久久小说| 亚洲精品亚洲一区二区| 色视频www国产| 国产免费一级a男人的天堂| 高清欧美精品videossex| 黄色配什么色好看| 一区二区三区四区激情视频| 国产毛片在线视频| 黑人高潮一二区| 日本三级黄在线观看| 只有这里有精品99| 99热全是精品| 成年女人看的毛片在线观看| 欧美性猛交╳xxx乱大交人| 成年av动漫网址| 视频区图区小说| 三级国产精品片| 美女脱内裤让男人舔精品视频| 日日摸夜夜添夜夜爱| 中文字幕免费在线视频6| 久久精品国产自在天天线| 午夜激情福利司机影院| 亚洲第一区二区三区不卡| 性色avwww在线观看| 免费大片黄手机在线观看| 深爱激情五月婷婷| 波多野结衣巨乳人妻| 久久久久久国产a免费观看| 99久久人妻综合| 亚洲综合色惰| 高清毛片免费看| 少妇人妻久久综合中文| 国产欧美日韩一区二区三区在线 | 国产精品国产三级国产av玫瑰| a级毛色黄片| 熟女电影av网| 在线观看免费高清a一片| 波多野结衣巨乳人妻| 亚洲自偷自拍三级| 18禁动态无遮挡网站| 精品国产三级普通话版| 热re99久久精品国产66热6| 亚洲天堂av无毛| 麻豆乱淫一区二区| 日本色播在线视频| 国产亚洲一区二区精品| 黄片无遮挡物在线观看| 韩国av在线不卡| 天堂中文最新版在线下载 | 精品视频人人做人人爽| 18禁裸乳无遮挡动漫免费视频 | 99久久精品热视频| 国产v大片淫在线免费观看| 欧美日韩精品成人综合77777| 一级黄片播放器| 制服丝袜香蕉在线| 美女cb高潮喷水在线观看| 黄色配什么色好看| 欧美日韩视频高清一区二区三区二| 91狼人影院| 精品久久久久久久久av| 国产探花在线观看一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品.久久久| 久久久精品欧美日韩精品| 日韩一区二区视频免费看| 成人国产av品久久久| 亚洲欧美日韩卡通动漫| 精品人妻一区二区三区麻豆| 高清av免费在线| 久久精品国产鲁丝片午夜精品| 欧美日韩在线观看h| 熟女人妻精品中文字幕| 日本-黄色视频高清免费观看| 卡戴珊不雅视频在线播放| 亚洲性久久影院| 久久久精品94久久精品| 中文字幕久久专区| 一本色道久久久久久精品综合| 久久久久久久国产电影| 日本色播在线视频| 女人被狂操c到高潮| 国产精品国产三级专区第一集| 中文乱码字字幕精品一区二区三区| 你懂的网址亚洲精品在线观看| 91精品伊人久久大香线蕉| 91精品一卡2卡3卡4卡| 又粗又硬又长又爽又黄的视频| 高清在线视频一区二区三区| 国产精品av视频在线免费观看| 直男gayav资源| 久久精品久久久久久噜噜老黄| 99热这里只有是精品在线观看| 日韩一本色道免费dvd| 国产精品久久久久久精品电影小说 | 亚洲av中文字字幕乱码综合| 777米奇影视久久| 国产精品麻豆人妻色哟哟久久| 26uuu在线亚洲综合色| 91精品国产九色| 国产精品无大码| 少妇熟女欧美另类| 日日啪夜夜撸| 少妇熟女欧美另类| 亚洲av国产av综合av卡| 精品人妻熟女av久视频| av女优亚洲男人天堂| 波野结衣二区三区在线| 天天躁日日操中文字幕| 成人亚洲精品一区在线观看 | a级一级毛片免费在线观看| 国产欧美另类精品又又久久亚洲欧美| 夜夜爽夜夜爽视频| 一级片'在线观看视频| 国产探花在线观看一区二区| 国产av不卡久久| 夜夜爽夜夜爽视频| 国产男女内射视频| 又黄又爽又刺激的免费视频.| 99热网站在线观看| 日日啪夜夜爽| 少妇丰满av| 国产黄色视频一区二区在线观看| 只有这里有精品99| 久久精品久久久久久久性| 婷婷色综合大香蕉| 国产高清三级在线| 亚洲最大成人av| 亚洲国产日韩一区二区| 热99国产精品久久久久久7| 亚洲av中文av极速乱| 91精品国产九色| 国产精品国产三级国产av玫瑰| 人妻 亚洲 视频| 午夜亚洲福利在线播放| 人人妻人人澡人人爽人人夜夜| 亚洲av免费高清在线观看| freevideosex欧美| 久久久久久久久久久丰满| 有码 亚洲区| 在线精品无人区一区二区三 | 亚洲不卡免费看| xxx大片免费视频| 亚洲欧美成人精品一区二区| 欧美xxxx黑人xx丫x性爽| 国产女主播在线喷水免费视频网站| 亚洲成人一二三区av| 色吧在线观看| 免费av观看视频| 久久精品久久精品一区二区三区| 国产精品久久久久久久电影| 国产精品国产三级国产专区5o| 菩萨蛮人人尽说江南好唐韦庄| 精品视频人人做人人爽| 亚洲,一卡二卡三卡| 亚洲国产高清在线一区二区三| 黄色视频在线播放观看不卡| 最新中文字幕久久久久| 联通29元200g的流量卡| 有码 亚洲区| 伊人久久精品亚洲午夜| 六月丁香七月| 国产精品.久久久| 丝袜脚勾引网站| 国产爱豆传媒在线观看| 爱豆传媒免费全集在线观看| 国产伦在线观看视频一区| 插阴视频在线观看视频| 在线看a的网站| 免费观看的影片在线观看| 汤姆久久久久久久影院中文字幕| 美女视频免费永久观看网站| 欧美bdsm另类| 日韩电影二区| 一级毛片电影观看| 91狼人影院| 国产av国产精品国产| 免费看光身美女| 国内精品宾馆在线| 天天躁夜夜躁狠狠久久av| 在线免费观看不下载黄p国产| 男女啪啪激烈高潮av片| 别揉我奶头 嗯啊视频| 丰满人妻一区二区三区视频av| 男女无遮挡免费网站观看| av一本久久久久| 搞女人的毛片| 性插视频无遮挡在线免费观看| 全区人妻精品视频| 插阴视频在线观看视频| 国产免费一级a男人的天堂| 女的被弄到高潮叫床怎么办| 日韩制服骚丝袜av| 国产精品麻豆人妻色哟哟久久| 国产男女内射视频| 亚洲国产精品999| 久久综合国产亚洲精品| 久热这里只有精品99| 久久韩国三级中文字幕| 全区人妻精品视频| 亚洲va在线va天堂va国产| 少妇高潮的动态图| 国精品久久久久久国模美| 久久久久久久久久人人人人人人| 欧美激情在线99| 高清视频免费观看一区二区| 午夜免费鲁丝| 久久久久久久久久人人人人人人| 国产精品嫩草影院av在线观看| 91久久精品电影网| 超碰97精品在线观看| 九九久久精品国产亚洲av麻豆| 真实男女啪啪啪动态图| 舔av片在线| 99久久九九国产精品国产免费| 久久午夜福利片| 2021天堂中文幕一二区在线观| 国产欧美日韩一区二区三区在线 | 人妻 亚洲 视频| 黑人高潮一二区| 欧美性感艳星| 日韩强制内射视频| 午夜免费观看性视频| 日韩人妻高清精品专区| 美女cb高潮喷水在线观看| 中文资源天堂在线| 国产欧美另类精品又又久久亚洲欧美| 特大巨黑吊av在线直播| 久久99精品国语久久久| 狂野欧美白嫩少妇大欣赏| 99视频精品全部免费 在线| 草草在线视频免费看| av卡一久久| 国产白丝娇喘喷水9色精品| 啦啦啦中文免费视频观看日本| 97超碰精品成人国产| 一级毛片电影观看| 男人添女人高潮全过程视频| 色吧在线观看| 国产乱人偷精品视频| 日本午夜av视频| 日本一二三区视频观看| 久久这里有精品视频免费| 色吧在线观看| 欧美成人午夜免费资源| 少妇人妻一区二区三区视频| 乱系列少妇在线播放| 麻豆成人av视频| 高清av免费在线| 欧美97在线视频| 日韩三级伦理在线观看| 亚洲精品一区蜜桃| 免费播放大片免费观看视频在线观看| 国产亚洲一区二区精品| 99精国产麻豆久久婷婷| 国产成人a∨麻豆精品| 国产成人freesex在线| 久久久久久久精品精品| 亚洲国产精品999| 搡老乐熟女国产|