劉天池
摘要:提出一種基于HOG特征結(jié)合稀疏外觀模型(HOG-SPAM)的目標(biāo)跟蹤算法。提取目標(biāo)模版和候選目標(biāo)的HOG特征,HOG特征對圖像的幾何形變、光照以及陰影變化具有較強(qiáng)的魯棒性;使用提取的HOG特征構(gòu)建目標(biāo)的稀疏外觀模型,稀疏外觀模型對目標(biāo)外觀變化具有魯棒性,采用對齊匯聚方法度量候選目標(biāo)與目標(biāo)之間的相似性。在多個基準(zhǔn)圖像序列中,與已有流行方法相比,HOG-SPAM算法在目標(biāo)外觀變化和光照變化情況下有較好的魯棒性,同時在復(fù)雜背景情況下也具有一定魯棒性。
關(guān)鍵詞:稀疏表示;HOG特征;稀疏外觀模型
DOIDOI:10.11907/rjdk.161559
中圖分類號:TP301文獻(xiàn)標(biāo)識碼:A文章編號:1672-7800(2016)006-0013-03
參考文獻(xiàn):
[1]AVIDAN S. Ensemble tracking[J].Pattern Analysis and Machine Intelligence,2007, 29(2): 261-271.
[2]COLLINS R T, LIU Y, LEORDEANU M.Online selection of discriminative tracking features[J].Pattern Analysis and Machine Intelligence,2005, 27(10): 1631-1643.
[3]GRABNER H, GRABNER M, BISCHOF H.Real-time tracking via on-line boosting[C].BMVC,2006:6.
[4]GRABNER H, LEISTNER C, BISCHOF H.Semi-supervised on-line boosting for robust tracking[M].Computer Vision-ECCV 2008.Springer Berlin Heidelberg, 2008: 234-247.
[5]BABENKO B, YANG M H, BELONGIE S.Visual tracking with online multiple instance learning[C].Computer Vision and Pattern Recognition, 2009.CVPR 2009.IEEE Conference on.IEEE, 2009: 983-990.
[6]KALAL Z, MATAS J, MIKOLAJCZYK K.PN learning:bootstrapping binary classifiers by structural constraints[C].Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on.IEEE, 2010: 49-56.
[7]ROSS D A, LIM J, LIN R S, et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision, 2008, 77(1-3): 125-141.
[8]KWON J, LEE K M.Visual tracking decomposition[C].Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on.IEEE, 2010: 1269-1276.
[9]YANG M, WU Y, HUA G.Context-aware visual tracking[J].Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2009, 31(7): 1195-1209.
[10]MEI X, LING H.Robust visual tracking using L-1 minimization[C].Computer Vision, 2009 IEEE 12th International Conference on.IEEE, 2009: 1436-1443.
[11]MEI X, LING H, WU Y, et al.Minimum error bounded efficient L1 tracker with occlusion detection[C].Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on.IEEE, 2011: 1257-1264.
[12]LIU B, YANG L, HUANG J, et al.Robust and fast collaborative tracking with two stage sparse optimization[M].Computer Vision–ECCV 2010.Springer Berlin Heidelberg, 2010: 624-637.
[13]LIU B, HUANG J, YANG L, et al.Robust tracking using local sparse appearance model and k-selection[C].Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on.IEEE, 2011: 1313-1320.
[14]JIA X, LU H, YANG M H.Visual tracking via adaptive structural local sparse appearance model[C].Computer vision and pattern recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 1822-1829.
[15]ZHANG T, LIU S, XU C, et al. Structural sparse tracking[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 150-158.
[16]ZHONG W, LU H, YANG M H. Robust object tracking via sparsity-based collaborative model[C].IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2012:1838-1845.