曹華文,裴秋明,張壽庭,向 輝,張林奎,唐 利
(1.中國地質(zhì)調(diào)查局 成都地質(zhì)調(diào)查中心,四川 成都 610081;2.中國地質(zhì)大學(xué) 地球科學(xué)與資源學(xué)院,北京 100083;3.四川省地質(zhì)礦產(chǎn)勘查開發(fā)局 一〇六地質(zhì)隊,四川 成都 610030)
豫西欒川地區(qū)礦產(chǎn)資源豐富,是東秦嶺多金屬成礦帶的重要組成部分,該礦集區(qū)北部為南泥湖-三道莊礦田,南部為近10年探明的魚庫-石寶溝礦田[1]。目前,該地區(qū)鉬鎢礦床(147~139 Ma)的成因[2–6]、晚中生代(157~135 Ma)花崗巖的成巖過程[7–10]和區(qū)域大地構(gòu)造背景[11–13]的研究較詳細(xì);但區(qū)域內(nèi)的鉛鋅銀多金屬礦床的研究較少,且礦床成因爭議較大。部分學(xué)者認(rèn)為區(qū)內(nèi)薄脈狀鉛鋅銀礦床為造山型鉛鋅銀礦床[14–16],與造山型金礦床特征相似,成礦機(jī)理可由碰撞造山成巖成礦與流體作用模型(即 CMF模式[14])解釋;與此同時,部分學(xué)者認(rèn)為其具有層控特征,屬M(fèi)VT型[17]、SEDEX型[18]或者同沉積改造成因型礦床[19];然而,也有部分學(xué)者研究指出其屬熱液脈型礦床,受層間斷裂控制,并與研究區(qū)內(nèi)晚中生代巖漿活動關(guān)系密切[1,20–22]。
三道溝鉛鋅銀礦床位于欒川礦集區(qū)西部(圖 1),前人研究較為薄弱,前人僅做過部分流體包裹體和H-O同位素研究[23],初步認(rèn)為其屬于中溫?zé)嵋好}型鉛鋅銀礦床,是燕山期巖漿期后含礦熱液充填成礦作用的產(chǎn)物,但其成礦時代及成礦機(jī)理尚需進(jìn)一步研究。
方解石是鉛鋅銀多金屬礦床中常見的熱液成因的脈石礦物,熱液方解石常與方鉛礦和閃鋅礦共伴生,廣泛出現(xiàn)于熱液成礦期的多個階段,能為探討礦床成礦機(jī)理提供重要信息[24]。近年來,熱液方解石微量(稀土)元素被廣泛應(yīng)用于示蹤成礦流體來源,探討成礦流體性質(zhì)及演化特征等[25–32]。同時,方解石作為熱液礦床的含鈣礦物,是進(jìn)行Sm-Nd同位素年代學(xué)研究的理想對象;且Sm-Nd同位素體系本身抗風(fēng)化、抗蝕變能力較強(qiáng),易保持封閉[33],方解石Sm-Nd定年已成為厘定熱液礦床成礦時代的一種有效手段,目前已有大量學(xué)者對不同類型礦床的熱液方解石進(jìn)行了Sm-Nd同位素定年研究,獲得了可靠的年代學(xué)數(shù)據(jù)[34–40]。
圖1 欒川三道溝鉛鋅銀礦床地質(zhì)簡圖Fig.1 Geological map of the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district
本文擬在三道溝鉛鋅銀礦床地質(zhì)特征研究的基礎(chǔ)上,分析熱液方解石微量元素地球化學(xué)特征,利用方解石Sm-Nd同位素定年的方法厘定該礦床的成礦時代;并與欒川礦集區(qū)內(nèi)晚中生代花崗巖成巖時代、斑巖-夕卡巖型鉬鎢礦床成礦時代進(jìn)行對比,初步探討三道溝鉛鋅銀礦床的成因和構(gòu)造背景。
秦嶺造山帶包括華北板塊南緣(即華熊地體),北秦嶺造山帶、南秦嶺造山帶和揚(yáng)子板塊北緣;分別被欒川斷裂、商丹縫合帶和勉略縫合帶分隔。三道溝鉛鋅銀礦床地理位置位于洛陽市欒川縣三川鎮(zhèn)東南部,屬豫西鉬鎢鉛鋅銀多金屬礦集區(qū)的西部,大地構(gòu)造位置上屬于華北克拉通南緣,毗鄰北秦嶺造山帶[1](圖1a)。
區(qū)域地層具有明顯的由結(jié)晶基底和蓋層組成的雙層結(jié)構(gòu),結(jié)晶基底為元古宇-太古宇太華群,主要是一套以片麻巖為主的深變質(zhì)巖系;蓋層不整合于太華群之上,主要包括中元古界熊耳群、薊縣系官道口群、新元古界欒川群和下古生界陶灣群(圖1b)。其中,官道口群白術(shù)溝組,欒川群三川組、煤窯溝組地層為區(qū)內(nèi)多金屬礦床的主要賦礦層位[1]。
區(qū)內(nèi)構(gòu)造格局的形成主要受控于華北板塊與揚(yáng)子板塊的碰撞,以及太平洋板塊向歐亞板塊的俯沖。整體構(gòu)造線以 NWW-NW 向?yàn)橹?并疊加了NNE-NE以及近SN向構(gòu)造(圖1b),這些不同方向的構(gòu)造共同構(gòu)成了該區(qū)典型的棋盤狀構(gòu)造格局,不僅控制了區(qū)域巖漿巖的展布,也決定了區(qū)內(nèi)多金屬礦產(chǎn)的分布。礦集區(qū)內(nèi)巖漿活動頻繁而強(qiáng)烈,巖漿巖比較發(fā)育。主要有新元古代前加里東期變正長斑巖、變輝長巖(830 Ma[12])和中生代燕山期花崗巖(158~136 Ma[1,7])(圖1)。其中,以燕山早期的上房溝、南泥湖、黃背嶺、魚庫、石寶溝、火神廟及大坪等中酸性小巖體與成礦作用最為密切[7–8]。
欒川礦集區(qū)內(nèi)一系列多金屬礦床圍繞中酸性小巖體呈規(guī)律性分布,構(gòu)成了一個從中心到外圍的斑巖型-夕卡巖型 Mo-W 礦床(內(nèi)帶: 如三道莊、南泥湖、上房溝和東魚庫礦床等)→夕卡巖型 Mo-Pb-Zn礦床(過渡帶: 如駱駝山、銀河溝和中魚庫礦床)→中-低溫?zé)嵋好}型 Pb-Zn-Ag多金屬礦床(外帶: 如核桃岔、洪洞溝、百爐溝和赤土店礦床)的成礦系列[1,41](圖1b)。近10年來,在斑巖體外圍的礦產(chǎn)勘查工作取得了較大的進(jìn)展,先后發(fā)現(xiàn)了百爐溝、赤土店、冷水北溝、楊樹凹、銀河溝等10余處薄脈狀鉛鋅銀多金屬礦脈群[16,42],規(guī)??捎^。其中三道溝鉛鋅銀礦床是礦區(qū)內(nèi)中-低溫?zé)嵋好}性礦床的典型代表。
三道溝鉛鋅銀礦床位于河南省欒川縣三川鎮(zhèn),其中心坐標(biāo)為 111°24′59″E,33°54′52″N。研究區(qū)主要出露新元古界欒川群南泥湖組、煤窯溝組、大紅口組和魚庫組地層(圖 1c)。南泥湖組為研究區(qū)的主要的賦礦層位,主要由鈣質(zhì)砂巖、變石英砂巖,石英片巖和大理巖組成;煤窯溝組中也有部分礦體產(chǎn)出,主要為變質(zhì)細(xì)砂巖、大理巖和片巖,夾石煤層。大紅口組為片巖、粗面巖夾少量大理巖;魚庫組則主要由白云質(zhì)大理巖組成。礦區(qū)內(nèi)斷裂構(gòu)造極其發(fā)育,研究區(qū)主體構(gòu)造線與區(qū)域構(gòu)造走向一致,礦體主要受近NNE向斷裂控制。研究區(qū)西南部出露前加里東期變正長斑巖和輝長巖(圖1c)。
三道溝礦床鉛鋅銀礦(化)體呈脈狀、透鏡狀產(chǎn)于南泥湖組、煤窯溝組地層中(圖 1c)。目前三道溝礦床已探明兩條較大規(guī)模的礦體,分布于研究區(qū)東北部。兩個礦體近平行展布,主體走向?yàn)镹E向,其中S021礦帶走向長 1000余 m,寬 1.00~4.14 m;S020礦帶走向長1300 m,寬0.15~3.70 m。礦床的Pb品位為 0.55%~2.02%,平均為 1.21%;Zn為 0.75%~1.89%,平均為 1.74%;Ag為 7.75~27.02 g/t,平均為20.33 g/t[19]。研究區(qū)西南部的核桃岔地區(qū),已探明兩條礦化體(S023和 S024),走向則以近南北向?yàn)橹?近平行產(chǎn)出,規(guī)模較大,賦礦圍巖主要為新元古代前加里東期變正長斑巖和變輝長巖。
礦區(qū)礦石成分主要為一套中-低溫?zé)嵋撼梢虻牡V物組合。其中礦石礦物主要有黃鐵礦、方鉛礦、閃鋅礦,少量黃銅礦,脈石礦物主要有石英、方解石和絹云母等。根據(jù)礦物共生組合關(guān)系及礦物組構(gòu)特征,將三道溝鉛鋅銀礦床成礦作用過程劃分為早、中、晚3個階段。早階段的石英-黃鐵礦階段(Ⅰ),主要形成石英、黃鐵礦等礦物;中階段的石英-鉛鋅銀硫化物階段(Ⅱ),主要形成石英、方解石、方鉛礦、閃鋅礦、黃銅礦、黃鐵礦等礦物,是主成礦階段;晚階段的石英-碳酸鹽巖階段(Ⅲ),主要形成石英、方解石及少量鉛鋅銀硫化物,表現(xiàn)為大量的團(tuán)塊狀含礦方解石(Ⅲ1)(圖 2b/e)和不含礦脈狀方解石(Ⅲ2)(圖2c/f)切穿中階段(Ⅱ)的石英-鉛鋅銀礦脈。
圖2 欒川三道溝鉛鋅銀礦床礦石典型結(jié)構(gòu)構(gòu)造特征Fig.2 Typical structures and textures of sulfide ores from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district
礦石結(jié)構(gòu)主要為自形粒狀結(jié)構(gòu),少量殘余結(jié)構(gòu)、半自形粒狀結(jié)構(gòu),他形粒狀結(jié)構(gòu);礦石構(gòu)造有塊狀構(gòu)造、條帶狀構(gòu)造、團(tuán)塊狀構(gòu)造、角礫狀構(gòu)造、(細(xì))脈狀構(gòu)造及浸染狀構(gòu)造等。圍巖蝕變則主要發(fā)育碳酸鹽化、硅化、絹云母化和黃鐵礦化等熱液蝕變。
本文主要針對三道溝鉛鋅銀礦床 S020礦帶開展研究,9個分析樣品采集于礦體坑道內(nèi)。其中,中階段(Ⅱ)細(xì)粒含礦方解石樣品 2個(SDG-28和、SDG-34);晚階段(Ⅲ1)團(tuán)塊狀方解石樣品 4個(SDG-22、SDG-25、SDG-27 和 SDG-31);晚階段(Ⅲ2)脈狀方解石樣品 3個(SDG-21、SDG-24和SDG-30)。樣品單礦物分選由河北廊坊誠信地質(zhì)服務(wù)有限公司完成。首先在顯微鏡下挑選方解石單礦物樣品,純度達(dá) 99%以上,然后用蒸餾水清洗方解石單礦物,低溫蒸干,在瑪瑙研缽中磨制成 200目粉末樣品。
方解石單礦物微量元素含量測定在中國地質(zhì)大學(xué)(北京)科學(xué)研究院 X射線熒光光譜和激光燒蝕等離子質(zhì)譜(XRF&LA-ICPMS)實(shí)驗(yàn)室完成。采用等離子質(zhì)譜法(ICP-MS)分析,儀器為美國Thermo Scientific X SeriesⅡ型四級桿等離子體質(zhì)譜儀。元素的檢測下限為n×10–9,分析誤差一般優(yōu)于8%。微量元素地球化學(xué)分析步驟詳見文獻(xiàn)[27,43]。
方解石單礦物Sm-Nd同位素分析在中國地質(zhì)調(diào)查局天津地質(zhì)調(diào)查中心同位素實(shí)驗(yàn)室完成,實(shí)驗(yàn)儀器為 MAT-261質(zhì)譜儀。Nd分餾的內(nèi)校正采用146Nd/144Nd=0.7219,Sm、Nd的全流程空白分別為3×10–11g 和 5×10–11g。國際標(biāo)準(zhǔn)巖石樣 BCR-1 的結(jié)果是: Sm=6.571 μg/g、Nd=28.753 μg/g、143Nd/144Nd =0.512644±5。Sm、Nd含量的分析誤差優(yōu)于 0.5%,147Sm/144Nd(2σ)的分析誤差為±0.2%。Sm-Nd等時線年齡采用 Isoplot(4.15)程序計算[44],其中λ(147Sm) =6.54×10-12a-1。Sm-Nd同位素分析步驟詳見文獻(xiàn)[26,38,45]。
本文研究了3個階段(或3種產(chǎn)狀)的方解石。Ⅱ階段方解石為石英-硫化物階段(中階段)的含礦細(xì)粒方解石;Ⅲ1階段方解石為石英-方解石階段(晚階段)的含礦團(tuán)塊狀方解石;Ⅲ2階段方解石為石英-方解石階段(晚階段)的穿插早階段的不含礦細(xì)脈狀方解石(圖2)。3種產(chǎn)狀的方解石Sm、Nd含量和同位素組成測試結(jié)果見表1。其Sm含量為0.2037~5.431 μg/g,Nd含量為 0.3286~11.02 μg/g,147Sm/144Nd和143Nd/144Nd比值分別為0.1206~0.7938和0.511929~0.512539。
含礦方解石(Ⅱ和Ⅲ1階段樣品) 6個樣品獲得等時線年齡為(135.3±9.5) Ma(2σ,MSWD=2.9),(143Nd/144Nd)t=0.511825±0.000017(圖 3a);含礦和不含礦方解石(Ⅱ、Ⅲ1和Ⅲ2階段樣品) 9個樣品獲得等時線年齡為(138.3±2.6) Ma(2σ,MSWD=2.3),(143Nd/144Nd)t=0.5118204±0.0000067(圖 3b)。2 個年齡在誤差范圍內(nèi)一致,表明 3種產(chǎn)狀的方解石為同源樣品,地質(zhì)時代為早白堊世。
研究區(qū)三種產(chǎn)狀的方解石的 ΣREE變化范圍較大(6.42 μg/g~215.8 μg/g),稀土配分曲線均表現(xiàn)為左傾,重稀土元素富集程度更高。不同階段方解石中的稀土元素含量特征差別較大,Ⅱ、Ⅲ1和Ⅲ2階段方解石的ΣREE平均值分別為 182 μg/g、64.2 μg/g和7.63 μg/g;HREE/LREE平均值分別為1.87、3.76和 4.72;δEu平均值分別為 1.08、2.15和 0.73;δCe平均值分別為1.03、0.99和0.91(表2,圖4a)。從Ⅱ階段方解石→Ⅲ1階段方解石→Ⅲ2階段方解石,稀土元素含量逐漸降低,并在最晚階段(Ⅲ2)中出現(xiàn)了輕稀土元素強(qiáng)烈虧損的現(xiàn)象;這表明隨著流體的演化,其ΣREE值和LREE/HREE比值呈現(xiàn)規(guī)律性變化;Eu異常由弱正異常變?yōu)檎惓?最后為負(fù)異常。3個階段的方解石微量元素含量相似,普遍偏低,但相對富集 Pb(平均 53.8 μg/g),強(qiáng)烈虧損 Nb(平均0.004 μg/g)和 Zr(平均 0.18 μg/g)(表 2,圖 4b);晚階段Sr含量最低,這與湖南錫礦山銻礦床[48]方解石微量元素特征一致。
表1 欒川三道溝鉛鋅銀礦床方解石Sm-Nd同位素分析結(jié)果Table 1 Sm-Nd isotope data of calcites from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district
圖3 欒川三道溝鉛鋅銀礦床147Sm/144Nd和143Nd/144Nd關(guān)系及等時線年齡圖Fig.3 Sm-Nd isochron of calcites from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district
表2 欒川三道溝鉛鋅銀礦床方解石稀土元素和微量元素分析結(jié)果(μg/g)Table 2 REE and trace element compositions(μg/g) of calcites from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district
圖4 欒川三道溝鉛鋅銀礦床方解石的稀土元素(a)和微量元素(b)標(biāo)準(zhǔn)化分布模式Fig.4 Normalized REE and trace element patterns of calcites from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district球粒隕石和原始地幔數(shù)據(jù)分別據(jù)McDonough et al.[46]和Sun et al.[47]。Chondrite and primitive mantle data after McDonough et al.[46] and Sun et al.[47].
從理論上而言,LREE的離子半徑較HREE更接近Ca2+,更容易替代Ca2+,因而LREE的方解石-流體配分系數(shù)大于 HREE[49]。因此,相對于 HREE而言,LREE更易從流體中進(jìn)入方解石晶格中而導(dǎo)致方解石富集 LREE,因而熱液方解石的稀土元素分布模式常常表現(xiàn)為 LREE富集型[50]。但是,三道溝礦床的方解石均為 HREE富集型,這與湖南錫礦山銻礦床方解石[28]、東天山黑峰山鐵礦床方解石[49]、貴州半坡銻礦床方解石[51]等特征相似,可能暗示晶體化學(xué)因素對其REE的分布模式也起著較為重要的制約作用[28]。
含礦方解石(Ⅱ和Ⅲ1階段樣品)6個樣品獲得的等時線年齡(圖 3a)與含礦和不含礦方解石(Ⅱ、Ⅲ1和Ⅲ2階段樣品) 9個樣品獲得的等時線年齡(圖3b)近一致,均為早白堊世。數(shù)據(jù)點(diǎn)加權(quán)平均方差(MSWD)較小,為2.3~2.9之間,說明數(shù)據(jù)點(diǎn)離散程度較低、等時線可信度較高;且近年來的國內(nèi)外地質(zhì)學(xué)者亦證明了方解石 Sm-Nd定年的可靠性[34,35,52–55],因此本次方解石Sm-Nd同位素的測試結(jié)果(138 Ma)應(yīng)該代表了方解石從熱液中沉淀的時代,即三道溝鉛鋅銀礦床的成礦時代。
Caoet al.[1]統(tǒng)計了欒川礦集區(qū)的成巖和成礦年齡(圖5),研究區(qū)內(nèi)花崗巖巖漿活動可以細(xì)分為3個階段: 152~158 Ma、144~150 Ma、136~142 Ma;斑巖-夕卡巖型Mo-W礦床的成礦年齡為139~147 Ma,峰值為146 Ma,與第2階段晚侏羅世晚期巖漿巖活動有關(guān);熱液脈型 Pb-Zn-Ag礦床主要形成于 136~138 Ma,與第3階段早白堊世早期巖漿活動時代接近[56]。本次研究的三道溝礦床與區(qū)內(nèi)其他 Pb-Zn-Ag礦床成礦時代一致,均與區(qū)內(nèi)第 3階段巖漿活動有關(guān)(圖 5)。
圖5 欒川礦集區(qū)巖漿巖年齡、Mo-W礦床及Pb-Zn-Ag多金屬礦床成礦年齡統(tǒng)計圖Fig.5 Age distribution of the Pb-Zn-Ag deposits,Mo-W deposits and ore-related granites in the Luanchuan ore district
在熱液流體的起源、遷移、演化和沉淀的過程中:(1) 在流體的起源-遷移階段,若流體為還原性、酸性的高溫(> 250℃)環(huán)境[57];(2) 在流體的結(jié)晶沉淀階段,若流體為氧化的低溫(< 200℃)熱液環(huán)境;那么流體演化過程滿足這兩個條件時,從中沉淀的方解石會具有明顯的Eu正異常[27]。Ⅱ、Ⅲ1階段的方解石具有明顯的Eu正異常,這可能表明成礦流體起源為酸性、還原的高溫流體,而方解石沉淀時流體溫度降低。起源于巖漿熱液的流體與大氣降水混合會導(dǎo)致氧逸度升高,這可以解釋研究區(qū)方解石的演化過程。該礦床的石英H-O同位素的資料也顯示早階段成礦流體為巖漿水,晚階段明顯存在大氣降水的加入[23]。而Ⅲ2階段的脈狀方解石具有明顯的Eu負(fù)異常,可能是由于早階段的方解石富集了更多的Eu,而導(dǎo)致晚階段方解石虧損Eu。高溫下由于隨著溫度的增高,Ce4+/Ce3+的氧化還原平衡轉(zhuǎn)向更高的氧逸度,所以,在高溫環(huán)境中起源的流體不易形成 Ce異常[57]。三道溝礦床 3個階段的方解石均無Ce異?;蛉醯腃e異常,這與Eu異常判斷的結(jié)果(即起源于高溫的流體)一致。
Ⅱ、Ⅲ1和Ⅲ2 3個階段方解石的Y/Ho比值平均分別為28、31.06和24.55,La/Ho比值平均分別為0.79、0.66和0.49。表明三道溝礦床的Y和Ho之間、La和Ho之間分餾均不明顯;Y/Ho比值與典型的巖漿巖和碎屑巖的值(20~40)相似[27],證明流體運(yùn)移距離較短(圖6a)。同源方解石礦物在Y/Ho-La/Ho圖中大致呈水平分布[58],3個階段方解石在稀土微量元素分布模式中相近(圖 4)均反映出三者的同源性[49],即屬于同源不同階段演化的產(chǎn)物。Ⅱ階段方解石和Ⅲ1階段方解石均為含礦方解石(圖 2),在 Tb/Ca-Tb/La圖解[59]上均位于熱液成因區(qū)域內(nèi),而Ⅲ2階段不含礦脈狀方解石位于沉積成因區(qū),表明可能受地層圍巖的影響,可能圍巖地層提供了部分物質(zhì)來源(比如Ca)(圖 6b)。
圖6 欒川三道溝鉛鋅銀礦床方解石的Y/Ho-La/Ho圖解和Tb/Ca-Tb/La圖解Fig.6 Y/Ho-La/Ho and Tb/Ca-Tb/La diagrams of calcites from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district底圖分別據(jù) Bau et al.[58]和 M?ller et al.[59]。After Bau et al.[58] and M?ller et al.[59].
三道溝礦床的成礦時代與區(qū)內(nèi)巖漿活動的成巖時代接近(圖5),礦體切穿地層,受斷裂控制(圖1和圖 2),且與方鉛礦和閃鋅礦共伴生的方解石為熱液成因方解石(圖6)。因此,認(rèn)為三道溝礦床屬與巖漿活動有關(guān)的斷裂控礦的熱液脈型礦床。三道溝礦床與研究區(qū)內(nèi)的斑巖-夕卡巖型 Mo-W 礦床[2–3]、晚侏羅世-早白堊世花崗質(zhì)巖漿活動構(gòu)成一個統(tǒng)一的巖漿-熱液-成礦(Mo-W-Pb-Zn-Ag)系統(tǒng)[1]。結(jié)合區(qū)域地質(zhì)背景,認(rèn)為其形成于秦嶺造山帶中生代陸-陸碰撞過程中由擠壓向伸展轉(zhuǎn)變的階段,或碰撞后造山的局部伸展背景[8]。
(1) 從成礦早階段到晚階段,方解石富集HREE;3種產(chǎn)狀的方解石∑REE值、LREE/HREE比值和δEu值逐漸減小,無明顯的Ce異常;表明三者屬于同源不同階段演化的產(chǎn)物,晚期方解石可能受圍巖地層加入的影響。Y/Ho-La/Ho圖解和Tb/Ca-Tb/La圖解均指示該礦床方解石主要為熱液成因。
(2) 方解石147Sm/144Nd和143Nd/144Nd同位素比值具有良好的線性關(guān)系,等時線年齡為(138.3±2.6) Ma。指示三道溝礦床形成于早白堊世,礦床成因?qū)倥c巖漿活動有關(guān)的,斷裂控礦的巖漿熱液充填脈狀成因。結(jié)合區(qū)域成巖-成礦年代學(xué)資料認(rèn)為,三道溝礦床與區(qū)內(nèi)最后一階段花崗質(zhì)巖漿活動(142~136 Ma)有關(guān),屬于欒川Mo-W-Pb-Zn-Ag多金屬成礦系統(tǒng)。
野外工作期間得到了河南省地質(zhì)調(diào)查院和欒川縣地質(zhì)礦產(chǎn)局的大力支持;成文過程中得到了燕長海教授級高級工程師的悉心指導(dǎo)和修改;兩位匿名審稿專家給本文提出了許多建設(shè)性意見,使本文得以完善,在此一并致以誠摯的感謝!
:
[1]Cao H W,Zhang S T,Santosh M,Zheng L,Tang L,Li D,Zhang X H,Zhang Y H.The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt,China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages [J].J Asian Earth Sci,2015,111: 751–780.
[2]Yang Y,Chen Y J,Zhang J,Zhang C.Ore geology,fluid inclusions and four-stage hydrothermal mineralization of the Shangfanggou giant Mo-Fe deposit in Eastern Qinling,central China [J].Ore Geol Rev,2013,55: 146–161.
[3]Yang Y F,Li N,Chen Y J.Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit,Henan Province,China:Implications for the nature of porphyry ore-fluid systems formed in a continental collision setting [J].Ore Geol Rev,2012,46: 83–94.
[4]Mao J W,Pirajno F,Xiang J F,Gao J J,Ye H S,Li Y F,Guo B J.Mesozoic molybdenum deposits in the East Qinling-Dabie Orogenic Belt: Characteristics and tectonic settings [J].Ore Geol Rev,2011,43(1): 264–293.
[5]Zhu L M,Zhang G W,Guo B,Lee B.He-Ar isotopic system of fluid inclusions in pyrite from the molybdenum deposits in south margin of North China Block and its trace to metallogenetic and geodynamic background [J].Chinese Sci Bull,2009,54(14): 2479–2492.
[6]Mao J W,Xie G Q,Bierlein F,Q W J,Du A D,Ye H S,Pirajno F,Li H M,Guo B J,Li Y F.Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt [J].Geochim Cosmochim Acta,2008,72(18): 4607–4626.
[7]Li D,Han J W,Zhang S T,Yan C H,Cao H W,Song Y W.Temporal evolution of granitic magmas in the Luanchuan metallogenic belt,east Qinling Orogen,central China: Implications for Mo metallogenesis [J].J Asian Earth Sci,2015,111: 663–680.
[8]Zhang Y H,Zhang S T,Xu M,Jiang X K,Li J J,Wang S Y,Li D,Cao H W,Zou H,Fang Y.Geochronology,geochemistry and Hf isotopes of the Jiudinggou molybdenum deposit,Central China,and their geological significance [J].Geochem J,2015,49: 321–342.
[9]Bao Z W,Wang Y,Zhao T P,Li C J,Gao X Y.Petrogenesis of the Mesozoic granites and Mo mineralization of the Luanchuan ore field in the East Qinling Mo mineralization belt,Central China [J].Ore Geol Rev,2014,57: 132–153.
[10]Mao J W,Xie G Q,Pirajno F,Ye H S,Wang Y B,Li Y F,Xiang J F,Zhao H J.Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling,central-eastern China:SHRIMP zircon U-Pb ages and tectonic implications [J].Aust J Earth Sci,2010,57(1): 51–78.
[11]Li D,Zhang S T,Yan C H,Wang G W,Song Y W,Ma Z B,Han J W.Late Mesozoic time constraints on tectonic changes of the Luanchuan Mo belt,East Qinling orogen,Central China [J].J Geodynam,2012,61: 94–104.
[12]Wang X L,Jiang S Y,Dai B Z,Griffin W l,Dai M N,Yang Y H.Age,geochemistry and tectonic setting of the Neoproterozoic(ca 830Ma) gabbros on the southern margin of the North China Craton [J].Precamb Res,2011,190(1/4): 35–47.
[13]Dong Y P,Zhang G W,Franz N,Liu X M,Johann G,Christoph H.Tectonic evolution of the Qinling orogen,China: Review and synthesis [J].J Asian Earth Sci,2011,41(3): 213–237.
[14]陳衍景.造山型礦床、成礦模式及找礦潛力[J].中國地質(zhì),2006,33(6): 1181–1196.Chen Yan-jing.Orogenic-type deposits and their metallogenic model and exploration potential [J].Geol China,2006,33(6):1181–1196(in Chinese with English abstract).
[15]陳衍景,翟明國,蔣少涌.華北大陸邊緣造山過程與成礦研究的重要進(jìn)展和問題[J].巖石學(xué)報,2009,25(11): 2695–2726.Chen Yan-jing,Zhai Ming-guo,Jiang Shao-yong.Significant achievements and open issues in study of orogenesis and metmetallogenesis surrounding the North China contiment [J].Acta Petrol Sinica,2009,25(11): 2695–2726(in Chinese with English abstract).
[16]祁進(jìn)平,陳衍景,倪培,賴勇,丁俊英,宋要武,唐國軍.河南冷水北溝鉛鋅銀礦床流體包裹體研究及礦床成因[J].巖石學(xué)報,2007,23(9): 2119–2130.Qi Jin-ping,Chen Yan-jing,Ni Pei,Lai Yong,Ding Jun-ying,Song Yao-wu,Tang Guo-jun.Fluid inclusion constraints on the origin of the Lengshuibeigou Pb-Zn-Ag deposit,Henan Province [J].Acta Petrol Sinica,2007,23(9): 2119–2130(in Chinese with English abstract).
[17]燕長海,宋要武,劉國印,邢礦.河南欒川楊樹凹-百爐溝MVT鉛鋅礦帶地質(zhì)特征[J].地質(zhì)調(diào)查與研究,2004,27(4):249–254.Yan Chang-hai,Song Yao-wu,Liu Guo-yin,Xing Kuang.Geological features of Yangshuwa-Bailugou MVT lead-zinc deposit belt in Luanchuan,Henan Province [J].Geol Surv Res,2004,27(4): 249–254(in Chinese with English abstract).
[18]劉國印,燕長海,宋要武,段士剛.河南欒川赤土店鉛鋅礦床特征及成因探討[J].地質(zhì)調(diào)查與研究,2007,30(4):263–270.Liu Guo-yin,Yan Chang-hai,Song Yao-wu,Duan Shi-gang.Characteristics and genesis of Chitudian lead-zinc deposits in Luanchuan County [J].Geol Surv Res,2007,30(4): 263–270(in Chinese with English abstract).
[19]燕長海,劉國印,彭翼,宋要武,王紀(jì)中,趙榮軍,曾憲友,呂文德,姚新年,馬宏衛(wèi),何玉良.豫西南地區(qū)鉛鋅銀成礦規(guī)律[M].北京: 地質(zhì)出版社,2009: 1–369.Yan Chang-hai,Liu Guo-yin,Peng Yi,Song Yao-wu,Wang Ji-zhong,Zhao Rong-jun,Zeng Xian-you,Lü Wen-de,Yao Xin-nian,Ma Hong-wei,He Yu-liang.The Metallogenetical Characteristics of the Lead-Zinc-Silver Deposits in Southwest Henan [M].Beijing: Geological Publishing House,2009:1–369(in Chinese).
[20]Wang C M,He X Y,Yan C H,Lü W D,Sun W Z.Ore geology,and H,O,S,Pb,Ar isotopic constraints on the genesis of the Lengshuibeigou Pb-Zn-Ag deposit,China [J].Geosci Journal,2013,17(2): 197–210.
[21]Duan S G,Xue C J,Chi G X,Liu G Y.Ore geology,fluid inclusion,and S- and Pb-isotopic constraints on the genesis of the Chitudian Zn-Pb deposit,Southern margin of the North China craton [J].Resour Geol,2011,61(3): 224–240.
[22]Wang C M,Cheng Q M,Zhang S T,Deng J,Xie S Y.Magmatic-hydrothermal superlarge metallogenic systems — A case study of the Nannihu ore field [J].J China Univ Geosci,2008,19(4): 391–403.
[23]唐利,張壽庭,曹華文,田浩浩,張旭晃,張亞飛,陳慧軍,張偉.河南欒川三道溝鉛鋅銀礦床成礦流體地球化學(xué)特征[J].現(xiàn)代地質(zhì),2014,28(2): 359–368.Tang Li,Zhang Shou-ting,Cao Hua-wen,Tian Hao-hao,Zhang Xu-huang,Zhang Ya-fei,Chen Hui-jun,Zhang Wei.Geochemical features of Ore-forming fluids of the Sandaogou Pb-Zn-Ag deposit in Luanchuan County,Henan Province [j].Geoscience,2014,28(2):359–368(in Chinese with English abstract).
[24]唐永永,畢獻(xiàn)武,和利平,武麗艷,馮彩霞,鄒志超,陶琰,胡瑞忠.蘭坪金頂鉛鋅礦方解石微量元素、流體包裹體和碳-氧同位素地球化學(xué)特征研究[J].巖石學(xué)報,2011,27(9):2635–2645.Tang Yong-yong,Bi Xian-wu,He Li-ping,Wu Li-yan,Feng Cai-xia,Zou Zhi-chao,Tao Yan,Hu Rui-zhong.Geochemical characteristics of trace elements,fluid inclusions and carbon-oxygen isotopes of calcites in the Jinding Zn-Pb deposit,Lanping,China [J].Acta Petrol Sinica,2011,27(9):2635–2645(in Chinese with English abstract).
[25]Uysal I T,Zhao J X,Golding S D,Lawrence M G,Glikson M,Collerson K D.Sm-Nd dating and rare-earth element tracing of calcite: Implications for fluid-flow events in the Bowen Basin,Australia [J].Chem Geol,2007,238(1/2): 63–71.
[26]Cai Y,Zhang Q,Zhang Y B,Wang D P,Li K W.Sm-Nd dating and rare earth element geochemistry of the hydrothermal calcites from Guling carbonate-hosted talc mineralization in the central Guangxi province,South China [J].Chinese J Geochem,2015,43(2): 156–166.
[27]曹華文,張壽庭,高永璋,馬瑩,曾昭法,高峰,鄒灝.內(nèi)蒙古林西螢石礦床稀土元素地球化學(xué)特征及其指示意義[J].地球化學(xué),2014,43(2): 131–140.Cao Hua-wen,Zhang Shou-ting,Gao Yong-zhang,Ma Ying.Zeng Zhao-fa,Gao Feng,Zou Hao.REE geochemistry of fluorite from Linxi fluorite deposit and its geological implications,Inner Mongolia Autonomous Region [J].Geochimica.2014,43(2): 131–140(in Chinese with English abstract).
[28]彭建堂,胡瑞忠,漆亮,趙軍紅,符亞洲.錫礦山熱液方解石的REE分配模式及其制約因素[J].地質(zhì)論評,2004,50(1): 25–32.Peng Jian-tang,Hu Rui-zhong,Qi Liang,Zhao Jun-hong,Fu Ya-zhou.REE distribution pattern for the hydrothermal calcites from the Xikuangshan antimony deposit and its constraining factors [J].Geol Rev,2004,50(1): 25–32(in Chinese with English abstract).
[29]李榮清.湘南多金屬成礦區(qū)方解石的稀土元素分布特征及其成因意義[J].礦物巖石,1995,15(4): 72–77.Li Rong-qing.Rare earth element distribution and its genetic signification of calcite in Southern Hunan polymetallic metallogenic province [J].J Mineral Petrol,1995,15(4): 72–78(in Chinese with English abstract).
[30]包廣萍,崔銀亮,高建國.滇東北茂租鉛鋅礦床熱液方解石稀土元素地球化學(xué)特征[J].礦物學(xué)報,2013,33(4): 681–685.Bao Guang-ping,Cui Yin-liang,Gao Jian-guo.REE geochemical features of hydrothermal calcite from Maozu Pb-Zn deposit,Northeastern Yunnan Province,China [J].Acta Mineral Sinica,2013,33(4): 681–685(in Chinese with English abstract).
[31]周家喜,黃智龍,周國富,曾喬松.黔西北天橋鉛鋅礦床熱液方解石C、O同位素和REE地球化學(xué)[J].大地構(gòu)造與成礦學(xué),2012,36(1): 93–101.Zhou Jia-xi,Huang Zhi-long,Zhou Guo-fu,Zeng Qiao-song.C,O isotope and REE geochemistry of the hydrothermal calcites from the Tianqiao Pb-Zn ore deposit in NW Guizhou Province,China [J].Geotecton Metallogen,2012,36(1):93–101(in Chinese with English abstract).
[32]Bonsall T A,Spry P G,Voudouris P Ch,Tombros S,Seymour K St,Melfos V.The geochemistry of carbonate-replacement Pb-Zn-Ag mineralization in the Lavrion District,Attica,Greece: fluid inclusion,stable isotope,and rare earth element studies [J].Econ Geol,2011,106(4): 619–651.
[33]劉協(xié)魯,王義天,胡喬青,魏然,王瑞廷,溫深文,陳明壽,楊光華.陜西省鳳太礦集區(qū)柴螞金礦床碳酸鹽礦物的Sm-Nd同位素測年及意義[J].巖石學(xué)報,2014,30(1):271–280.Liu Xie-lu,Wang Yi-tian,Hu Qiao-qing,Wei Ran,Wang Rui-ting,Wen Shen-wen,Chen Ming-shou,Yang Guang-hua.Sm-Nd isotopic dating of carbonate minerals from the Chaima gold deposit in the Fengxian-Taibai ore concentration area,Shaanxi Province and its implications [J].Acta Petrol Sinica,2014,30(1): 271–280(in Chinese with English abstract).
[34]Barker S L L,Bennett V C,Cox S F,Norman M D,Gagan M K.Sm-Nd,Sr,C and O isotope systematics in hydrothermal calcite-fluorite veins: Implications for fluid–rock reaction and geochronology [J].Chem Geol,2009,268(1/2): 58–66.
[35]Peng J T,Hu R Z,Burnard P G.Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit(Hunan,China): The potential of calcite as a geochronometer [J].Chem Geol,2003,200(1/2):129–136.
[36]Su W C,Hu R Z,Xia B,Xia Y,Liu Y P.Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit,Guizhou,China [J].Chem Geol,2009,258(3/4): 269–274.
[37]Zou Z C,Hu R Z,Bi X W,Wu L Y,Feng C X,Tang Y Y.Absolute and relative dating of Cu and Pb-Zn mineralization in the Baiyangping area,Yunnan Province,SW China: Sm-Nd geochronology of calcite [J].Geochem J,2015,49(1):103–112.
[38]Zhang J R,Wen H J,Qiu Y Z,Zhang Y X,Li C.Ages of sediment-hosted Himalayan Pb-Zn-Cu-Ag polymetallic deposits in the Lanping basin,China: Re-Os geochronology of molybdenite and Sm-Nd dating of calcite [J].J Asian Earth Sci,2013,73: 284–295.
[39]Xu W G,Fan H R,Hu F F,Santosh M,Yang K F,Lan T G,Wen B J.Geochronology of the Guilaizhuang gold deposit,Luxi Block,eastern North China Craton: Constraints from zircon U-Pb and fluorite-calcite Sm-Nd dating [J].Ore Geol Rev,2015,65: 390–399.
[40]Li W B,Huang Z L,Yin M D.Dating of the giant Huize Zn-Pb ore field of Yunnan Province,southwest China: Constraints from the Sm-Nd system in hydrothermal calcite [J].Resour Geol,2007,57(1): 90–97.
[41]裴秋明,張壽庭,曹華文,唐利,許騰,李軍軍,張旭晃,郭娜娜.豫西欒川縣駱駝山硫鋅多金屬礦床閃鋅礦微量元素地球化學(xué)特征及其地質(zhì)意義[J].巖石礦物學(xué)雜志,2015,34(4): 741–754.Pei Qiu-ming,Zhang Shou-ting,Cao Hua-wen,Tang Li,Xu Teng,Li Jun-jun,Zhang Xu-huang,Guo Na-na.Trace element geochemistry of the Luotuoshan sulphur-zinc polymetallic deposit in Luanchuan,western Henan,and its geological implications [J].Acta Petrol Mineral,2015,34(4): 741–754(in Chinese with English abstract).
[42]段士剛,薛春紀(jì),馮啟偉,高炳宇,劉國印,燕長海,宋要武.豫西南赤土店鉛鋅礦床地質(zhì)、流體包裹體和 S、Pb同位素地球化學(xué)特征[J].中國地質(zhì),2011,38(2): 427–441.Duan Shi-gang,Xue Chun-ji,Feng Qi-wei,Gao Bing-yu,Liu Guo-yin,Yan Chang-hai,Song Yao-wu.Geology,fluid inclusions and S,Pb isotopic geochemistry of the Chitudian Pb-Zn deposit in Luanchuan,Henan Province [J].Geol China,2011,38(2): 427–441(in Chinese with English abstract).
[43]Cao H W,Zhang S T,Lin J Z,Zheng L,Wu J D,Li D.Geology,geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit,Tengchong County,Western Yunnan(China): Regional tectonic implications [J].J Asian Earth Sci,2014,81: 142–152.
[44]Ludwig K R.User’s Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel [M].Berkeley: Berkeley Geochronology Center,2012: 1–70.
[45]Peng J T,Hu R Z,Lin Y X,Zhao J H.Sm-Nd isotope dating of hydrothermal calcites from the Xikuangshan antimony deposit,Central Hunan [J].Chinese Sci Bull,2002,47(13):1134–1137.
[46]McDonough W F,Sun S-s.The composition of the Earth [J].Chem Geol,1995,120(3/4): 223–253.
[47]Sun S-s,McDonough W F.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J].Geol Soc London Spec Pub,1989,42(1): 313–345.
[48]解慶林,馬東升,劉英俊.錫礦山銻礦床方解石的地球化學(xué)特征[J].礦產(chǎn)與地質(zhì),1996,10(2): 94–99.Xie Qing-lin,Ma Dong-sheng,Liu Ying-jun.Geochemical characteristics of calcite in the Xikuangshan antimony deposit,Hunan [J].Mineral Resour Geol,1996,10(2): 94–99(in Chinese with English abstract).
[49]黃小文,漆亮,孟郁苗.東天山黑峰山、雙峰山及沙泉子(銅)鐵礦床的礦物微量和稀土元素地球化學(xué)特征[J].礦床地質(zhì),2013,32(6): 1188–1210.Huang Xiao-wen,Qi Liang,Meng Yu-miao.Trace element and REE geochemistry of minerals from Heifengshan,Shuangfengshan and Shaquanzi(Cu)-Fe deposits,Eastern Tianshan Mountains [J].Mineral Deposits,2013,32(6):1188–1210(in Chinese with English abstract).
[50]馮彩霞,畢獻(xiàn)武,武麗艷,鄒志超,唐永永.滇西北白秧坪多金屬礦集區(qū)東礦帶方解石 REE地球化學(xué)特征及意義[J].吉林大學(xué)學(xué)報(地球科學(xué)版),2011,41(5): 1397–1406.Feng Cai-xia,Bi Xian-wu,Wu Li-yan,Zou Zhi-chao,Tang Yong-yong.Significance and characteristics of REE geochemistry in calcite in the Eastern ore belt of the Baiyangping poly-metallic metallogenic province,northwestern Yunnan Province,China [J].J Jilin Univ(Earth Sci Ed),2011,41(5):1397–1406(in Chinese with English abstract).
[51]鄧紅,黃智龍,肖憲國,丁偉.貴州半坡銻礦床方解石稀土元素地球化學(xué)研究[J].礦物學(xué)報,2014,34(2): 208–216.Deng Hong,Huang Zhi-long,Xiao Xian-guo,Ding Wei.REE geochemistry of gangue calcite from Banpo deposit in Dushan antimony ore field,Guizhou Province,China [J].Acta Mineral Sinica,2014,34(2): 208–216(in Chinese with English abstract).
[52]劉英超,楊竹森,田世洪,宋玉財,李玉龍,盧世銀,趙志逸,侯增謙.三江中段青海玉樹吉龍沉積巖容礦脈狀銅礦成礦作用研究[J].巖石學(xué)報,2013,29(11): 3852–3870.Liu Ying-chao,Yang Zhu-sen,Tian Shi-hong,Song Yu-cai,Li Yu-long,Lu Shi-yin,Zhao Zhi-yi,Hou Zeng-qian.Metallogeny of Jilong sediment-hosted vein type Cu deposit in the central part of the ‘Sanjiang’ belt [J].Acta Petrol Sinica,2013,29(11): 3852–3870(in Chinese with English abstract).
[53]田世洪,楊竹森,侯增謙,楊天南,張洪瑞,劉燕學(xué),宋玉財,劉英超,王銀喜,于玉帥,王富春,薛萬文,魯海峰,張玉寶,朱田,俞長捷.青海玉樹東莫扎抓和莫海拉亨鉛鋅礦床與逆沖推覆構(gòu)造關(guān)系的確定——來自粗晶方解石Rb-Sr和Sm-Nd等時線年齡證據(jù)[J].巖石礦物學(xué)雜志,2011,30(3): 475–489.Tian Shi-hong,Yang Zhu-sen,Hou Zeng-qian,Yang Tian-nan,Zhang Hong-rui,Liu Yan-xue,Song Yu-cai,Liu Ying-chao,Wang Yin-xi,Yu Yu-shuai,Wang Fu-chun,Xue Wan-wen,Lu Hai-feng,Zhang Yu-bao,Zhu Tian,Yu Chang-jie.Confirmation of connection between Dongmozhazhua and Mohailaheng Pb-Zn ore deposits and thrust nappe system in Yushu area,Southern Qinghai: Evidence from Rb-Sr and Sm-Nd isochron ages of macrocrystalline calcite [J].Acta Petrol Mineral,2011,30(3): 475–489(in Chinese with English abstract).
[54]王登紅,秦燕,王成輝,陳毓川,高蘭.貴州低溫?zé)嵋盒凸?、銻、金礦床成礦譜系——以晴隆大廠、興仁紫木凼和銅仁亂巖塘為例[J].大地構(gòu)造與成礦學(xué),2012,36(3):330–336.Wang Deng-hong,Qin Yan,Wang Cheng-hui,Chen Yu-chuan,Gao Lan.Mineralization pedigree for epithermal Hg,Sb,Au deposit in Guizhou Province: Taking the Dachang Sb deposit,the Zimudang Au deposit and the Luanyangtang Hg deposit for examples [J].Geotecton Metallogen,2012,36(3):330–336(in Chinese with English abstract).
[55]Zhou J X,Huang Z L,Yan Z F.The origin of the Maozu carbonate-hosted Pb-Zn deposit,southwest China: Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age [J].J Asian Earth Sci,2013,73: 39–47.
[56]曹華文,裴秋明,張壽庭,張林奎,鄭硌,胡昕凱.豫西欒川中魚庫鋅鉛礦床閃鋅礦 Rb-Sr定年及其地質(zhì)意義[J].成都理工大學(xué)學(xué)報(自然科學(xué)版),2016(待刊).Cao Hua-wen,Pei Qiu-ming,Zhang Shou-ting,Zhang Lin-kui,Zheng Luo,Hu Xin-kai.Rb-Sr dating of sphalerites from the Zhongyuku Zn-Pb deposit in Luanchuan,Western of Henan Province and its geological significance [J].J Chengdu Univ Technol(Sci Technol Ed),2016(in press)(in Chinese with English abstract).
[57]Bau M,M?ller P.Rare earth element fractionation in metamorphogenic hydrothermal calcite,magnesite and siderite [J].Mineral Petrol,1992,45(3): 231–246.
[58]Bau M,Dulski P.Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids [J].Contrib Mineral Petrol,1995,119(2): 213–223.
[59]M?ller P,Parekh P P,Schneider H J.The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis [J].Mineral Deposita,1976,11(1): 111–116.