• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Strategy to Probe and Compare the Binding Modes of Two Perfluorocarboxylic Acids with Human Serum Albumin Based on Spectroscopic and Molecular Docking Methods

    2016-06-15 16:40:21HUTaoyingFANGQingJINYeZHOUShanshanLIUYing
    光譜學(xué)與光譜分析 2016年8期
    關(guān)鍵詞:中央民族大學(xué)長鏈全氟

    HU Tao-ying, FANG Qing, JIN Ye, ZHOU Shan-shan,2, LIU Ying,2*

    1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China

    2. Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China

    A New Strategy to Probe and Compare the Binding Modes of Two Perfluorocarboxylic Acids with Human Serum Albumin Based on Spectroscopic and Molecular Docking Methods

    HU Tao-ying1, FANG Qing1, JIN Ye1, ZHOU Shan-shan1,2, LIU Ying1,2*

    1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China

    2. Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China

    Perfluorocarboxylic acids (PFCAs) have been widespread used for over half century as surfactants in commercial and industrial products because of their hydrophilic and hydrophobic peculiarity. Perfluoroundecanoic acid (PFUnA) and perfluorotridecanoic acid (PFTriA) are two representatives of long-chain PFCAs, and they were detected more frequently in human body recent years, however, the two PFCAs were found to express endocrine disruption effects, developmental toxicity and teratogenicity. In this study, we established a new strategy to probe the binding modes of PFUnA (PFTriA) with the most abundant protein human serum albumin (HSA) based on spectroscopic and molecular docking methods. Results showed that both PFUnA and PFTriA can quench the intrinsic fluorescence of HSA with one binding site by means of dynamic and static quenching procedure with a strong affinity and the order is PFUnA>PFTriA. On the basis of thermodynamic results, we knew that the main driving force of the interaction between PFUnA and HSA was electrostatic force (ΔH=-26.32 kJ·mol-1, ΔS=21.76 J·mol-1·K-1), while van der Waals interaction and halogen-bond played major roles in complexation process of PFTriA-HSA (ΔH=-39.69 kJ·mol-1, ΔS=-25.66 J·mol-1·K-1). The binding distance (r<8 nm) indicated that the non-radioactive energy transfer came into being from HSA to PFUnA (PFTriA). The binding process of PFUnA (PFTriA) with HSA caused conformational and some micro-environmental changes of HSA, but also led to a loss of helical stability through three-dimensional fluorescence and circular dichroism spectra (CD). Furthermore, site markers competitive experiments and molecular docking revealed that PFUnA and PFTriA had a high affinity into hydrophobic pocket of subdomain IIA in HSA through polar force, hydrophobic interaction and halogen-bond and so on, and the fluorophore Trp residues was located in the binding position which proved further the quenching of PFUnA and PFTriA on HSA fluorescence. The accurate and full basic data in the work are beneficial to clarify the binding mechanism of long-chain perfluorocarboxylic acids with serum protein in vivo, and provide essential theoretical clues for their toxicity assessment and toxicologic research.

    Perfluoroundecanoic acid; Perfluorotridecanoic acid; Human serum albumin; Spectroscopic method; Molecular docking

    Introduction

    Human serum albumin (HSA), the most abundant protein in the circulatory system of a wide variety of organisms, increases the apparent solubility of hydrophobic ligands in plasma and modulates their delivery to cell in vivo and in vitro[1]. Perfluorocarboxylic acids (PFCAs), which are composed of a hydrophobic perfluorinated alkyl chain and a hydrophilic carboxylic functional group, have been widespread used for over half century as surfactants in commercial and industrial products[2]. Perfluoroundecanoic acid (PFUnA) and perfluorotridecanoic acid (PFTriA) are common long-chain members of PFCAs. The high energy carbon-fluorine (C-F) bond renders PFUnA (PFTriA) resistant to hydrolysis, photolysis, microbial degradation and metabolism, increasing their biomagnifications and bioaccumulations through the food-chain. Interestingly, PFUnA (PFTriA) preferentially accumulates in serum, liver and kidneys instead of lipids and fatty tissue because of their hydrophilic nature[2]. More importantly, they are also detected in emerging personal care products (termed PCPs in 1999), which are one large class of the active ingredients receiving comparatively little attention but used in large amounts throughout the world[3]. In recent years, PFUnA and PFTriA were common detected in human maternal plasma, breast milk and liver, and unfortunately they were found to exhibit endocrine disruption effects, developmental toxicity and teratogenicity[4]. Thus, the binding of PFUnA and PFTriA with HSA may impede the transport of endogenous substances and affect conformation, activity and physiological function of HSA. So far, however, there is no report on the interaction of PFTriA-HSA and only one report on the binding of PFUnA with serum albumin, and the binding site, driving force and structural changes of albumin caused by PFUnA have not previously been identified[5]. The three aspects hinder our proper and comprehensive understanding of the interaction between long-chain PFCAs and protein.

    Therefore, major goal in this paper is dedicated to further elucidating the underlying binding mechanism, thermodynamic characterization and structural changes of HSA upon binding PFUnA (PFTriA) by spectroscopic and molecular docking methods. The study can clarify the binding mechanism of PFUnA (PFTriA) with HSA at a molecular level, and contribute to understand its effect on protein structure and function in vivo.

    1 Materials and methods

    HSA (Sigma, USA) working solution was prepared with the concentration of 2.0×10-5mol·L-1. PFUnA and PFTriA (Shanghai Aijie Biological Technology Co., Ltd., China) was dissolved and diluted to 5.0×10-4mol·L-1with ultrapure water as stock solutions. The stock solutions of phenylbutazone and ibuprofen were prepared to 5.0×10-4mol·L-1. All above solutions were kept in the dark at 0~4 ℃. Phosphate buffer solution (mixture of 75 mmol·L-1NaH2PO4and 75 mmol·L-1Na2HPO4(19∶81,V/V), pH 7.40).

    Fluorescence spectroscopy, elimination of the inner filter effects, CD measurements and molecular modeling are seen literature [6].

    2 Results and discussions

    2.1 The mechanism of fluorescence quenching

    The fluorescence quenching measurement of HSA in the absence and presence of PFUnA (PFTriA) at 298 K were performed. Fig.1 shows the effect of PFUnA and PFTriA on the fluorescence emission spectra of HSA at 280 nm excitation wavelength. The fluorescence intensity of HSA remarkably decreased regularly with increasing PFUnA (PFTriA) concentrations. The maximum emission wavelength upon the binding of PFUnA and PFTriA shifted from 351 to 345 nm

    Fig.1 Effects of PFUnA (PFTriA) on HSA fluorescence

    cHSA=2.0×10-6mol·L-1;cPFUnA(×10-6mol·L-1)(1~7): 0, 1.6, 3.2, 4.8, 6.4, 8.0, 9.6;cPFTriA(×10-6mol·L-1)(1~7): 0, 1.2, 2.4, 3.6, 4.8, 6.0, 7.2;T=298 K

    and 348 nm, respectively, which indicated the microenvironment changes for residues of HSA and the formation of PFUnA (PFTriA)-HSA complex.

    Fluorescence quenching is usually classified as static quenching and dynamic quenching. To elucidate the type of fluorescence quenching mode, the fluorescence quenching data were analyzed with the Stern Volmer equation[7]

    (1)

    whereF,F0,KSV,kq,τ0and [Q] are seen literature [7]. As shown in Fig.2, the slope of Stern Volmer curves (KSV) increased accordingly with the increasing temperature, which suggested that the predominant quenching process was dynamic quenching mechanism. However, the static quenching effect of complex formation could not be completely precluded in the present study. On the one hand, spectroscopic studies above have confirmed the formation of PFUnA (PFTriA)-HSA complex. On the other hand, the maximum scatter collision quenching constant (kq) of various quenchers with the biopolymer is 2.0×1010L·mol-1·s-1[8]while that of HSA quenching procedure initiated by PFUnA and PFTriA, 8.17×1012L·mol-1·s-1and 7.44×1012L·mol-1·s-1at 298 K, respectively, was far greater than this value. Therefore, in conclusion, the fluorescence quenching mechanism of HSA by PFUnA and PFTriA was a combination of dynamic quenching with ground complex formation.

    Fig.2 Stern-Volmer plots for the quenching of HSA by PFUnA and PFTriA at different temperatures

    2.2 Binding constants and binding sites

    For the equilibrium between free and bound molecules, when small molecules bind independently to a set of equivalent sites on a macromolecules, the relationship between the binding constant (Ka) and the number of binding sites (n) could be described by the equation[7]

    (2)

    Kaandnwill be derived from a plot of log[(F0-F)/F] versus log[Q]. Table 1 shows the calculatedKaandn. The number of binding sites,n, was approximately 1, indicating the existence of just a single binding site in HSA for PFUnA (PFTriA) during the interaction. For PFUnA, the binding constant increased with the rising temperature, which indicated that the capacity of PFUnA binding to HSA was enhanced at high temperature. However, opposite to PFUnA, the binding constant of PFTriA decreased with rising temperature, which implied the existence of PFTriA-HSA complex and its stability became less stable with rising temperature. Furthermore, the affinity order is as follows: PFUnA>PFTriA.

    Table 1 Binding constants and relative thermodynamic parameters of PFUnA (PFTriA) HSA

    2.3 Thermodynamic parameters and binding distance

    According to van’t Hoff equation and thermodynamic equation[6], we obtained enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG) at 298 and 310 K (Table 1). The negative sign for ΔGof PFUnA (PFTriA)-HSA meant that the interaction process was spontaneous. The negative ΔHand positive ΔSvalues for the association interaction between PFUnA and HSA implied that electrostatic force was the major driving force of the interaction, while halogen-bond and van der Waals force played major roles in the acting forces of PFTriA with HSA in terms of the both negative ΔHand ΔS.

    The distancerbetween a protein residue (donor) and a bound ligand molecule (acceptor) can be calculated according to F?ster non-radioactive energy transfer theory[9]. There was enough overlapping between the absorption spectrum of PFUnA (PFTriA) with the fluorescence emission spectrum of HSA, and their overlap integralJwere 1.04×10-14and 4.91×10-15cm3·L·mol-1, respectively. The binding distancerbetween PFUnA (PFTriA) and Trp residues were 3.66 and 3.32 nm (<8 nm), respectively, indicating that energy transfer from HSA to PFUnA or PFTriA occurred with high possibility.

    2.4 Conformation investigation

    Three-dimensional fluorescence spectrum can comprehensively exhibit the fluorescence information and conformational changes of the protein. The three-dimensional fluorescence spectra of HSA, PFUnA-HSA and PFTriA-HSA systems are shown in Fig.3. Peak a (λex=λem) is the Rayleigh scattering peak, peak b (λem=2λex) is the second-ordered scattering peak. Peak 1 mainly reveals the spectral feature of the polarity of Trp and Tyr residues microenvironment[7]. After the addition of PFUnA (PFTriA), the fluorescence intensity of peak 1 decreased markedly and both had a same obvious blue shift (from 350 to 347 nm). It indicated that the polarity of Trp and Tyr residues microenvironment decreased and almost all the hydrophobic amino acid residues of HSA were buried in hydrophobic pocket. Peak 2 chiefly exhibits the fluorescence spectra behavior of polypeptide chain backbone structures[7]. The fluorescence intensity of peak 2 reduced dramatically with a 3 nm blue shift after the addition of PFUnA (PFTriA), meaning that the conformation of the peptide backbone was altered. Thus we can conclude that the binding of PFUnA (PFTriA) to HSA induced some micro-environmental and conformational changes on HSA.

    Fig.3 Three-dimensional fluorescence spectra of HSA, PFUnA HSA and PFTriA HSA systems

    2.5 Changes of HSA’s secondary structure

    To monitor the global structural changes of HSA upon the binding of PFUnA (PFTriA), CD measurements were carried out in the presence of different concentrations of PFUnA (PFTriA) (Fig.4). As shown in Fig.4, the CD spectra of HSA in the absence and presence of PFUnA (PFTriA) were similar in shape, indicating that the structure of HSA was also predominantlyα-helix. Theα-helix contents in the secondary structure of HSA were calculated from mean residue ellipticity (MRE) values at 209 nm using the following two equations[6]

    (3)

    (4)

    where the parameters ofCp,n(n=585, for HSA),l, MRE209, 4 000, and 33 000 are seen literature [6]. From the above equations, the quantitative analysis results of the secondary structure in HSA were obtained (Table 2). It was noted that the free HSA had anα-helix content of 48.4%. When the molar ratio of HSA to PFUnA was 1∶15 and 1∶20, theα-helix content was reduced to 42.2% and 38.7%, respectively. When the molar ratio of HSA to PFTriA was 1∶20 and 1∶30, theα-helix content was reduced to 40.7% and 38.2%, respectively. It reflected the impaired secondary structure of HSA by PFUnA (PFTriA). These results suggested that the higher concentration of PFUnA (PFTriA) induced larger extent of structural damage of HSA. The more pronounced decrease inα-helix content with the greater binding ability of PFUnA than that of PFTriA indicated that the binding affinities of PFUnA and PFTriA were closely associated with the structural alteration of HSA.

    Fig.4 CD spectra of HSA in the absence and presence of PFUnA (PFTriA) at room temperature

    Table 2 Secondary structure of HSA in the absence and presence of PFUnA (PFTriA) determined by CONTIN

    Molarratiosα?helix/%β?sheet/%β?turn/%Random/%FreeHSA48 48 216 826 7HSA∶PFUnA=1∶1542 212 713 234 0HSA∶PFUnA=1∶2038 711 514 835 0HSA∶PFTriA=1∶2040 711 514 233 6HSA∶PFTriA=1∶3038 213 114 334 4

    2.6 Site marker competitive experiments

    To identify the binding sites of PFUnA (PFTriA) on HSA, site marker competitive experiments were performed using phenylbutazone (that explicitly binds to site Ⅰ in the subdomain ⅡA) and ibuprofen (that explicitly binds to site Ⅱ located in the subdomain ⅢA) as our site probes[10]. The changes induced by the site probes are presented in Fig.5. The fluorescence of the complex was remarkably affected in presence of phenylbutazone, but remained invariant with ibuprofen. The observations demonstrated that phenylbutazone displaced PFUnA (PFTriA) from the binding site, while ibuprofen had a little effect on the binding of PFUnA (PFTriA) to HSA. Hence, it can be concluded that PFUnA (PFTriA) was likely to be bound to site Ⅰ in the subdomain ⅡA of HSA.

    Fig.5 Effects of site marker probes on the fluorescence of PFUnA-HSA and PFTriA-HSA systems

    2.7 Molecular docking study

    To acquire the more information about the PFUnA (PFTriA) interaction with HSA, we had run a docking program to simulate the binding mode between PFUnA (PFTriA) and HSA. The crystal structure of HSA was taken from the Protein Data Bank (entry codes 2BXN). The best energy ranked results are shown in Fig.6. It was noted that both PFUnA and PFTriA were bound in subdomain ⅡA, and the inside wall of the pocket of subdomain ⅡA was formed by hydrophobic side chains, whereas the entrance to the pocket was surrounded by positively charged residues (PFUnA with Arg 218, Arg 257, Lys199, His 242; PFTriA with Arg 218, Arg 257, Lys 195, Lys 199, His 242) [Fig.6(c)]. Thus we concluded that PFUnA (PFTriA) were able to fit well within the hydrophobic cavity of subdomain IIA. The docking results showed the existence of polar force, hydrophobic interaction and halogen-bond between PFUnA (PFTriA) and HSA (Table 3). For example, C 2 of PFUnA and C 4 of PFTriA interacted with Trp 214 through hydrophobic interaction, which also elucidated that PFUnA and PFTriA can quench the intrinsic fluorescence of HSA.

    Fig.6 (a) The binding site of PFUnA (PFTriA) on HSA. HSA is shown in cartoon and PFUnA (PFTriA) is represented using spheres; (b) Enlarged binding mode between PFUnA (PFTriA) and HSA. HSA is shown in cartoon, the interacting side chains of HSA are displayed in surface mode and PFUnA (PFTriA) is represented using balls and sticks; (c) Molecular modeling of the interaction between PFUnA (PFTriA) and HSA. The atoms of PFUnA (PFTriA) are blue

    Table 3 The distances and driving forces between the PFUnA (PFTriA) atoms

    3 Conclusions

    In this paper, we probed and compared the interaction of PFUnA (PFTriA) with HSA at a molecular level by using spectroscopic and molecular docking methods. The experimental results indicated that PFUnA (PFTriA) can quench the HSA fluorescence by a combined process of dynamic quenching and ground-complex formation, and the complex formation had a high affinity of 105L·mol-1. The main driving forces for the interactions of PFUnA-HSA and PFTriA-HSA were electrostatic force (ΔH<0, ΔS>0), van der Waals interaction and halogen-bond (ΔH<0, ΔS<0), respectively. The distances (r=3.66 and 3.32 nm) revealed the occurrence of the energy transfer from HSA to PFUnA and PFTriA. Three-dimensional fluorescence and CD spectra showed that the binding of PFUnA and PFTriA can led to decrease of the polarity of Trp and Tyr residues microenvironment and conformational changes of HSA. By performing site marker competitive experiments, the specific binding of PFUnA and PFTriA in the vicinity of site Ⅰ of HSA was clarified. The molecular modeling further confirmed the specific binding site of PFUnA (PFTriA) on HSA. This paper can provide insights with the binding mode of PFUnA (PFTriA)-HSA and salient biophysical and biochemical clues on elucidating the transport, distribution of PFUnA (PFTriA) in vivo.

    [1] Yang B J, Hao F, Li J R, et al. Food Chem. Toxicol., 2014, 65: 227.

    [2] Bischel H N, MacManus-Spencer L A, Luthy R G. Environ. Sci. Technol., 2010, 44: 5263.

    [3] Christian G D, Thomas A T. Environ. Health Persp., 1999, 107: 907.

    [4] Jo A, Ji K, Choi K. Chemosphere, 2014, 108: 360.

    [5] MacManus-Spencer L A, Tse M L, Hebert P C, et al. Anal. Chem., 2010, 82: 974.

    [6] Hu T Y, Liu Y. J. Pharm. Biomed. Anal., 2015, 107: 325.

    [7] Sun H W, Wu Y J, Xia X H, et al. J. Lumin., 2013, 134: 580.

    [8] Lakowicz J R, Weber G. Biochemistry, 1973, 12: 4161.

    [9] F?rster T. Modern Quantum Chemistry. Academic Press: New York, 1965.

    [10] Sudlow G, Birkett D J, Wade D N. Mol. Pharmacol., 1975, 11: 824.

    O657.3

    A

    光譜法和分子對接法研究和比較兩種全氟羧酸與人血清白蛋白的結(jié)合模式

    胡濤英1, 方 慶1, 金 葉1, 周珊珊1,2, 劉 穎1,2*

    1. 中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院, 北京 100081

    2. 中央民族大學(xué)北京市食品環(huán)境與健康工程技術(shù)研究中心, 北京 100081

    全氟羧酸(PFCAs)由于具有既親水又疏水的表面活性劑特性, 被廣泛應(yīng)用于工業(yè)和生活產(chǎn)品中。 全氟十一酸(PFUnA)和全氟十三酸(PFTriA)是長鏈PFCAs類的典型代表, 但近年來它們越來越頻繁的在人體中檢測到, 并且發(fā)現(xiàn)表現(xiàn)出內(nèi)分泌干擾效應(yīng)、 發(fā)育毒性和致畸性。 本文以光譜學(xué)和分子對接為基礎(chǔ), 探索PFUnA和PFTriA與人體最豐富的蛋白人血清白蛋白(HSA)的結(jié)合模式。 結(jié)果表明, PFUnA和PFTriA均通過動靜態(tài)猝滅過程猝滅HSA的內(nèi)源熒光, 與HSA只有一個強親和位點, 且PFUnA與HSA的結(jié)合比PFTriA更緊密。 根據(jù)熱力學(xué)計算結(jié)果, 可知PFUnA與HSA結(jié)合的焓變、 熵變分別為-26.32 kJ·mol-1和21.76 J·mol-1·K-1, 其結(jié)合作用主要依靠靜電引力, 而PFTriA主要通過范德華力和鹵鍵與HSA結(jié)合, 是放熱熵減過程, 其焓變和熵變分別為-39.69 kJ·mol-1和-25.66 J·mol-1·K-1。 計算得到的結(jié)合距離(r<8 nm)顯示從HSA到PFUnA和PFTriA發(fā)生了非輻射能量轉(zhuǎn)移。 三維熒光光譜和圓二色譜表明, PFUnA和PFTriA與HSA的結(jié)合不僅可以改變HSA的構(gòu)象和微環(huán)境, 還可以引起α-螺旋穩(wěn)定性降低。 取代實驗和分子對接進(jìn)一步顯示PFUnA 和PFTriA通過極性鍵、 疏水作用力和鹵鍵等與HSA的亞域ⅡA疏水腔有高親和性, 且熒光團Trp殘基處于結(jié)合位置中, 進(jìn)一步證明PFUnA和PFTriA可以猝滅HSA的熒光。 本文研究結(jié)果為闡明長鏈PFCAs在機體內(nèi)與血清蛋白的結(jié)合機理提供了完整可靠的數(shù)據(jù), 并為長鏈PFCAs的毒性評價和毒理學(xué)研究提供了理論依據(jù)。

    全氟十一酸; 全氟十三酸; 人血清白蛋白; 光譜法; 分子對接

    2015-06-03,

    2015-11-20)

    2015-06-03; accepted: 2015-11-20

    The National Natural Science Foundation of China (21177163), 111 Project B08044, First-class University First Class Academic Program of Minzu University of China (YLDX01013), Coordinate Development of First-Class and First-Class University Discipline Construction Funds(10301-0150200604), The Academic Team Construction Project of Minzu University of China (2015MDTD25C&13C), First-class Universities and First-class Discipline Construction Transitional Funds Under Special Funding (10301-01404031, 2015), 2015MDTD08C

    10.3964/j.issn.1000-0593(2016)08-2698-07

    Biography: HU Tao-ying, (1989—), Master of College of Life and Environmental Sciences, Minzu University of China e-mail: hty0945020@163.com *Corresponding author e-mail: liuying4300@163.com

    *通訊聯(lián)系人

    猜你喜歡
    中央民族大學(xué)長鏈全氟
    全氟烷基化合物暴露與成年人抑郁癥間的關(guān)系:基于NHANES 2005~2018
    中央民族大學(xué)
    長鏈非編碼RNA APTR、HEIH、FAS-ASA1、FAM83H-AS1、DICER1-AS1、PR-lncRNA在肺癌中的表達(dá)
    ??? ?? ??? ??? ‘? ??’?????? ????
    1種制備全氟聚醚羧酸的方法
    1種制備全氟烯醚磺酰氟化合物的方法
    長鏈磷腈衍生物的制備及其在聚丙烯中的阻燃應(yīng)用
    中國塑料(2015年10期)2015-10-14 01:13:16
    健康體檢數(shù)據(jù)分析肥胖及相關(guān)疾病——以中央民族大學(xué)退休教工為例
    長鏈非編碼RNA與腫瘤的相關(guān)研究進(jìn)展
    中央民族大學(xué)微分方程團隊簡介
    中文字幕人妻熟人妻熟丝袜美| 最好的美女福利视频网| 国产中年淑女户外野战色| 97热精品久久久久久| 免费看美女性在线毛片视频| 丰满的人妻完整版| 少妇被粗大猛烈的视频| 亚洲精品亚洲一区二区| 国产三级中文精品| 亚洲精品日韩在线中文字幕 | 狂野欧美激情性xxxx在线观看| 亚洲欧美清纯卡通| 精品久久久久久成人av| 成年版毛片免费区| 九九久久精品国产亚洲av麻豆| 噜噜噜噜噜久久久久久91| 亚洲av免费高清在线观看| 国产精品久久电影中文字幕| 亚洲色图av天堂| 欧美日本亚洲视频在线播放| 美女xxoo啪啪120秒动态图| 亚洲最大成人手机在线| 亚洲美女搞黄在线观看| 真实男女啪啪啪动态图| 色尼玛亚洲综合影院| 日韩强制内射视频| avwww免费| 日产精品乱码卡一卡2卡三| 岛国毛片在线播放| 小蜜桃在线观看免费完整版高清| 国产欧美日韩精品一区二区| 成人一区二区视频在线观看| 成人一区二区视频在线观看| 国产欧美日韩精品一区二区| 中文字幕av在线有码专区| 麻豆一二三区av精品| 亚洲av中文字字幕乱码综合| 亚洲精华国产精华液的使用体验 | 岛国在线免费视频观看| 中出人妻视频一区二区| 亚洲色图av天堂| 少妇被粗大猛烈的视频| 插阴视频在线观看视频| 联通29元200g的流量卡| 色哟哟哟哟哟哟| 国产一区亚洲一区在线观看| 亚洲欧美中文字幕日韩二区| 日韩在线高清观看一区二区三区| 国产 一区精品| 深爱激情五月婷婷| 久久精品国产亚洲网站| 国产成人freesex在线| 久久人人精品亚洲av| 激情 狠狠 欧美| 日韩一区二区三区影片| 日本熟妇午夜| 精品一区二区免费观看| 午夜福利视频1000在线观看| 男女那种视频在线观看| 日韩人妻高清精品专区| a级毛片a级免费在线| 久久久久网色| 91精品一卡2卡3卡4卡| 亚洲av中文av极速乱| 国产精品日韩av在线免费观看| 久99久视频精品免费| 99精品在免费线老司机午夜| 亚洲成人精品中文字幕电影| 日韩精品有码人妻一区| 久久99蜜桃精品久久| 美女国产视频在线观看| 亚洲最大成人手机在线| 赤兔流量卡办理| 亚洲精品乱码久久久久久按摩| 日韩制服骚丝袜av| 亚洲成人精品中文字幕电影| 亚洲精品粉嫩美女一区| 久久精品久久久久久久性| 免费人成在线观看视频色| 亚洲色图av天堂| 国产真实伦视频高清在线观看| 变态另类丝袜制服| а√天堂www在线а√下载| 亚洲国产欧美人成| 高清午夜精品一区二区三区 | 美女被艹到高潮喷水动态| 在线国产一区二区在线| 在线播放无遮挡| 最近中文字幕高清免费大全6| 五月伊人婷婷丁香| 一边摸一边抽搐一进一小说| 十八禁国产超污无遮挡网站| 三级毛片av免费| 成年免费大片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品永久免费网站| 青春草视频在线免费观看| 精品人妻一区二区三区麻豆| 久久草成人影院| 国产成人a区在线观看| 在线播放无遮挡| 不卡视频在线观看欧美| 黄色日韩在线| 少妇熟女aⅴ在线视频| 高清在线视频一区二区三区 | 精品国产三级普通话版| 看片在线看免费视频| 青春草视频在线免费观看| 欧美最黄视频在线播放免费| 在线播放国产精品三级| 观看免费一级毛片| 国产在线精品亚洲第一网站| 精品日产1卡2卡| 亚洲成a人片在线一区二区| 亚洲国产精品久久男人天堂| 99久久成人亚洲精品观看| 99热这里只有是精品50| 大又大粗又爽又黄少妇毛片口| 国产av麻豆久久久久久久| 久久亚洲国产成人精品v| av专区在线播放| 国产午夜精品论理片| 伦理电影大哥的女人| 亚洲欧美日韩东京热| 悠悠久久av| 久久热精品热| 亚洲中文字幕日韩| 不卡一级毛片| 成人亚洲欧美一区二区av| 国产精品久久久久久亚洲av鲁大| 日本免费一区二区三区高清不卡| 91久久精品电影网| 波多野结衣高清无吗| 日本五十路高清| 男女下面进入的视频免费午夜| 国产私拍福利视频在线观看| 日韩欧美一区二区三区在线观看| 亚洲精品色激情综合| 亚洲国产欧美在线一区| 我的女老师完整版在线观看| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩无卡精品| 亚洲欧洲国产日韩| 久久精品久久久久久噜噜老黄 | 一级二级三级毛片免费看| 丝袜美腿在线中文| 欧美性猛交╳xxx乱大交人| av卡一久久| 日本一二三区视频观看| 中文字幕精品亚洲无线码一区| 久久人人爽人人片av| 十八禁国产超污无遮挡网站| 波多野结衣巨乳人妻| 日韩欧美在线乱码| 日韩,欧美,国产一区二区三区 | 一本久久中文字幕| 能在线免费看毛片的网站| 99在线视频只有这里精品首页| 久久精品国产亚洲网站| 亚洲最大成人手机在线| 国产黄色视频一区二区在线观看 | 看十八女毛片水多多多| 看黄色毛片网站| 国产成人午夜福利电影在线观看| 天堂网av新在线| 又爽又黄无遮挡网站| 国产麻豆成人av免费视频| av卡一久久| 欧美zozozo另类| 三级毛片av免费| 如何舔出高潮| 黄色欧美视频在线观看| 国产成人午夜福利电影在线观看| 小说图片视频综合网站| 又粗又爽又猛毛片免费看| www.色视频.com| 亚洲无线在线观看| 高清毛片免费观看视频网站| 热99re8久久精品国产| 国产精品久久电影中文字幕| 精品人妻一区二区三区麻豆| 看十八女毛片水多多多| 久久中文看片网| 男插女下体视频免费在线播放| 亚洲在线自拍视频| 国产极品天堂在线| 久久6这里有精品| 亚洲美女搞黄在线观看| 全区人妻精品视频| 成人特级av手机在线观看| 麻豆av噜噜一区二区三区| 免费av观看视频| 不卡一级毛片| 一级毛片久久久久久久久女| 成熟少妇高潮喷水视频| 欧美日韩综合久久久久久| 日韩欧美一区二区三区在线观看| 综合色丁香网| 老女人水多毛片| 成年女人看的毛片在线观看| 五月玫瑰六月丁香| 精品无人区乱码1区二区| 久久这里有精品视频免费| 神马国产精品三级电影在线观看| 一个人免费在线观看电影| 在线免费观看不下载黄p国产| 别揉我奶头 嗯啊视频| 别揉我奶头 嗯啊视频| 九九爱精品视频在线观看| 久久人妻av系列| 岛国毛片在线播放| 日产精品乱码卡一卡2卡三| 淫秽高清视频在线观看| 狠狠狠狠99中文字幕| 久久久色成人| 精品久久久久久久久久久久久| 日本-黄色视频高清免费观看| 99在线人妻在线中文字幕| 秋霞在线观看毛片| 婷婷亚洲欧美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日日干狠狠操夜夜爽| 高清毛片免费看| 人妻夜夜爽99麻豆av| 一边亲一边摸免费视频| 精品99又大又爽又粗少妇毛片| 九九在线视频观看精品| 激情 狠狠 欧美| 亚洲久久久久久中文字幕| 日本成人三级电影网站| 变态另类丝袜制服| 一级毛片我不卡| 91精品一卡2卡3卡4卡| 五月伊人婷婷丁香| 久久久国产成人免费| 十八禁国产超污无遮挡网站| ponron亚洲| 国产精品爽爽va在线观看网站| 女的被弄到高潮叫床怎么办| 国产成人freesex在线| 欧美精品国产亚洲| 久久人人爽人人片av| www.av在线官网国产| 久久精品国产亚洲av香蕉五月| 在现免费观看毛片| 不卡视频在线观看欧美| 久久久久久大精品| 晚上一个人看的免费电影| 在线a可以看的网站| 国产男人的电影天堂91| 日韩一区二区三区影片| 欧美最新免费一区二区三区| 日韩强制内射视频| 久久精品国产鲁丝片午夜精品| 国产精品.久久久| 日日撸夜夜添| 欧美xxxx性猛交bbbb| 少妇熟女aⅴ在线视频| 97人妻精品一区二区三区麻豆| 男女视频在线观看网站免费| 伦精品一区二区三区| 色噜噜av男人的天堂激情| 亚洲精品国产av成人精品| 国产av麻豆久久久久久久| av免费观看日本| 国产精品久久视频播放| 中国美白少妇内射xxxbb| av免费在线看不卡| 亚洲一区高清亚洲精品| 欧美最新免费一区二区三区| 亚洲精品国产成人久久av| 午夜福利成人在线免费观看| 一区二区三区高清视频在线| 日日摸夜夜添夜夜爱| 亚洲人成网站高清观看| 亚洲欧美日韩无卡精品| 少妇人妻精品综合一区二区 | 欧美+亚洲+日韩+国产| 一个人免费在线观看电影| 乱码一卡2卡4卡精品| 精品人妻偷拍中文字幕| 好男人视频免费观看在线| 联通29元200g的流量卡| 男的添女的下面高潮视频| 麻豆国产97在线/欧美| 亚洲人与动物交配视频| 精品久久久久久久久久免费视频| 国产女主播在线喷水免费视频网站 | 久久综合国产亚洲精品| 高清毛片免费看| 欧美三级亚洲精品| 亚洲七黄色美女视频| 高清在线视频一区二区三区 | 久久精品91蜜桃| 国产成人福利小说| 国产单亲对白刺激| 国产精品一区二区性色av| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 日韩一本色道免费dvd| 精品免费久久久久久久清纯| 国内精品久久久久精免费| 国产精品久久久久久亚洲av鲁大| 岛国在线免费视频观看| 亚洲av中文字字幕乱码综合| 久久久成人免费电影| 女人被狂操c到高潮| 日本-黄色视频高清免费观看| 欧美一区二区亚洲| 直男gayav资源| 悠悠久久av| 色播亚洲综合网| 大又大粗又爽又黄少妇毛片口| 国产女主播在线喷水免费视频网站 | 日本撒尿小便嘘嘘汇集6| av.在线天堂| 欧美一区二区国产精品久久精品| 成人一区二区视频在线观看| 亚洲欧洲国产日韩| 精品日产1卡2卡| 人妻夜夜爽99麻豆av| 最近手机中文字幕大全| 岛国毛片在线播放| 久久久精品欧美日韩精品| 亚洲三级黄色毛片| 久久婷婷人人爽人人干人人爱| 精品欧美国产一区二区三| 亚洲经典国产精华液单| 一个人免费在线观看电影| 小蜜桃在线观看免费完整版高清| 99久久中文字幕三级久久日本| 热99re8久久精品国产| 国产精品不卡视频一区二区| 五月玫瑰六月丁香| 晚上一个人看的免费电影| 边亲边吃奶的免费视频| 午夜精品在线福利| 九草在线视频观看| 国产精品女同一区二区软件| 91精品一卡2卡3卡4卡| 亚洲自偷自拍三级| 欧美极品一区二区三区四区| 精品久久久久久久久亚洲| 午夜精品在线福利| 黄色一级大片看看| 又粗又硬又长又爽又黄的视频 | 欧美性感艳星| 人妻系列 视频| 91精品一卡2卡3卡4卡| 在线观看av片永久免费下载| 国产高清激情床上av| 久久韩国三级中文字幕| 亚洲国产精品国产精品| 少妇熟女aⅴ在线视频| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频 | 色综合亚洲欧美另类图片| 性色avwww在线观看| 精品国内亚洲2022精品成人| 国产三级在线视频| 久久九九热精品免费| 国产伦在线观看视频一区| 亚洲18禁久久av| 九九爱精品视频在线观看| 成人毛片a级毛片在线播放| 欧美成人一区二区免费高清观看| 国产午夜精品论理片| 变态另类丝袜制服| 国产亚洲av片在线观看秒播厂 | 麻豆av噜噜一区二区三区| av卡一久久| 欧美日韩国产亚洲二区| 18禁在线播放成人免费| 午夜精品一区二区三区免费看| 亚洲欧洲国产日韩| 色视频www国产| 三级国产精品欧美在线观看| 亚洲精品久久国产高清桃花| 黄色配什么色好看| 亚洲av一区综合| 十八禁国产超污无遮挡网站| 亚洲av免费在线观看| 国产精品伦人一区二区| 不卡一级毛片| 日韩av在线大香蕉| 国产在线男女| 国产精品一区二区三区四区久久| 久久精品国产亚洲av天美| 此物有八面人人有两片| 午夜精品在线福利| 国产精品野战在线观看| 五月伊人婷婷丁香| 中文字幕制服av| 男女啪啪激烈高潮av片| 日韩高清综合在线| 亚洲欧美日韩东京热| 九九热线精品视视频播放| 中文字幕人妻熟人妻熟丝袜美| 国产精品一及| 日本三级黄在线观看| 久久国产乱子免费精品| 国产人妻一区二区三区在| av天堂中文字幕网| 69av精品久久久久久| 免费av观看视频| av免费在线看不卡| 给我免费播放毛片高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品久久久久久一区二区三区| 男插女下体视频免费在线播放| 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放| 日韩一区二区视频免费看| 爱豆传媒免费全集在线观看| 99久久成人亚洲精品观看| 色噜噜av男人的天堂激情| 久久99热6这里只有精品| av专区在线播放| 在线观看一区二区三区| 日本三级黄在线观看| av在线观看视频网站免费| 亚洲欧美日韩高清专用| 美女脱内裤让男人舔精品视频 | 真实男女啪啪啪动态图| 国内揄拍国产精品人妻在线| 国产精华一区二区三区| 成年女人看的毛片在线观看| 午夜免费激情av| 老熟妇乱子伦视频在线观看| 欧美xxxx黑人xx丫x性爽| 大香蕉久久网| 欧美日韩乱码在线| 成人午夜精彩视频在线观看| 欧美一区二区国产精品久久精品| 一级毛片aaaaaa免费看小| 国产高清激情床上av| 精品无人区乱码1区二区| 婷婷精品国产亚洲av| 国产一区二区三区在线臀色熟女| 欧美潮喷喷水| 亚洲18禁久久av| 久久久a久久爽久久v久久| 丰满的人妻完整版| 成年av动漫网址| 国产亚洲精品久久久久久毛片| 免费观看的影片在线观看| 国产精品1区2区在线观看.| 69av精品久久久久久| 尾随美女入室| 成人漫画全彩无遮挡| 精品久久久久久久人妻蜜臀av| 哪里可以看免费的av片| 天堂网av新在线| 国产精品一及| 久久草成人影院| 国内揄拍国产精品人妻在线| 国产极品天堂在线| 国产人妻一区二区三区在| 麻豆久久精品国产亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩综合久久久久久| 中文字幕熟女人妻在线| 99久久人妻综合| 国产一级毛片七仙女欲春2| 中文字幕熟女人妻在线| 欧美色欧美亚洲另类二区| 日韩欧美在线乱码| 国产不卡一卡二| 国产黄片视频在线免费观看| 亚洲av成人精品一区久久| 亚洲av中文av极速乱| 一个人免费在线观看电影| 午夜视频国产福利| 亚洲欧洲国产日韩| 精品欧美国产一区二区三| 日韩国内少妇激情av| 成人三级黄色视频| 亚洲高清免费不卡视频| 亚洲三级黄色毛片| 少妇丰满av| 亚洲aⅴ乱码一区二区在线播放| 久久亚洲国产成人精品v| 亚洲av男天堂| 久久久久性生活片| 三级男女做爰猛烈吃奶摸视频| 国产精品爽爽va在线观看网站| 久久久久久久久久久丰满| 欧美+亚洲+日韩+国产| 国产视频首页在线观看| 九九爱精品视频在线观看| 国产极品精品免费视频能看的| 两个人视频免费观看高清| 联通29元200g的流量卡| 国产 一区精品| 禁无遮挡网站| 亚洲在久久综合| 久久久久久久久久黄片| 亚洲欧美中文字幕日韩二区| av在线亚洲专区| 国产精品三级大全| 一级av片app| 国产伦一二天堂av在线观看| 婷婷六月久久综合丁香| 乱系列少妇在线播放| .国产精品久久| 性插视频无遮挡在线免费观看| 国语自产精品视频在线第100页| 一本久久精品| 三级国产精品欧美在线观看| 国产精品一区www在线观看| 日本与韩国留学比较| 男人狂女人下面高潮的视频| 国产一区二区在线观看日韩| 男女那种视频在线观看| 在线免费观看的www视频| 久久人妻av系列| 丰满乱子伦码专区| 国产午夜精品一二区理论片| 偷拍熟女少妇极品色| 一个人看的www免费观看视频| 久久午夜福利片| av天堂中文字幕网| 国产精品久久久久久av不卡| 日韩欧美 国产精品| 成人性生交大片免费视频hd| 91午夜精品亚洲一区二区三区| 日韩高清综合在线| 亚洲电影在线观看av| 韩国av在线不卡| 少妇人妻一区二区三区视频| 人妻久久中文字幕网| 婷婷色综合大香蕉| 久久久国产成人精品二区| 村上凉子中文字幕在线| 日韩 亚洲 欧美在线| 18禁黄网站禁片免费观看直播| 国产91av在线免费观看| 亚洲av.av天堂| 精品久久久久久久久久免费视频| 久久人人爽人人爽人人片va| 天堂av国产一区二区熟女人妻| 久久精品久久久久久噜噜老黄 | 女人被狂操c到高潮| 久久精品国产清高在天天线| 在线国产一区二区在线| 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久久久按摩| 女的被弄到高潮叫床怎么办| 中文精品一卡2卡3卡4更新| 中文资源天堂在线| 美女cb高潮喷水在线观看| 国产精品久久久久久亚洲av鲁大| 高清毛片免费看| 亚洲国产欧美人成| 国产精品国产高清国产av| 精品一区二区三区视频在线| 少妇被粗大猛烈的视频| 国产色婷婷99| 91在线精品国自产拍蜜月| 永久网站在线| 亚洲国产精品成人久久小说 | 成年女人永久免费观看视频| 国产精品野战在线观看| 搡老妇女老女人老熟妇| 黄色配什么色好看| 午夜老司机福利剧场| 色哟哟哟哟哟哟| 午夜激情福利司机影院| 国产精品一区二区性色av| 国产v大片淫在线免费观看| 亚洲av男天堂| 久久久精品大字幕| 九九热线精品视视频播放| 97超碰精品成人国产| 成人无遮挡网站| 寂寞人妻少妇视频99o| 午夜激情欧美在线| 黄片无遮挡物在线观看| 国产精品永久免费网站| 波多野结衣高清作品| 亚洲人成网站在线观看播放| 一个人免费在线观看电影| 免费无遮挡裸体视频| 精品人妻熟女av久视频| 人人妻人人澡欧美一区二区| 欧美另类亚洲清纯唯美| av免费在线看不卡| 欧美潮喷喷水| 少妇猛男粗大的猛烈进出视频 | 国产色婷婷99| a级毛片免费高清观看在线播放| 国产精品野战在线观看| 日本av手机在线免费观看| 国产伦精品一区二区三区四那| 天美传媒精品一区二区| 三级男女做爰猛烈吃奶摸视频| 亚洲七黄色美女视频| 国产毛片a区久久久久| 如何舔出高潮| 国产精品一及| 国产成人一区二区在线| 亚洲婷婷狠狠爱综合网| av在线蜜桃| 又爽又黄无遮挡网站| 精华霜和精华液先用哪个| 黄色欧美视频在线观看| 美女xxoo啪啪120秒动态图| 黄色日韩在线| 99在线视频只有这里精品首页| 久久99精品国语久久久| 国产综合懂色| 波多野结衣高清作品| 91狼人影院| 97热精品久久久久久| 村上凉子中文字幕在线|