• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOHO/SUMER Observations of Transition Region Explosive Events in Prominence

    2016-06-15 16:40:47ZHANGMinWANGDongDENGYan
    光譜學與光譜分析 2016年8期
    關(guān)鍵詞:噴流譜線雙向

    ZHANG Min, WANG Dong, DENG Yan

    1. Department of Mathematics and Physics, Anhui Jianzhu University, Heifei 230601, China

    2. School of Earth and Space Science, University of Science and Technology of China, Heifei 230026, China

    SOHO/SUMER Observations of Transition Region Explosive Events in Prominence

    ZHANG Min1,2, WANG Dong1,2, DENG Yan1

    1. Department of Mathematics and Physics, Anhui Jianzhu University, Heifei 230601, China

    2. School of Earth and Space Science, University of Science and Technology of China, Heifei 230026, China

    Explosive events (EEs) are small-scale dynamic phenomena often observed in the solar transition region (TR). EEs are characterized by non-Gaussian and broad profiles with enhancements in the blue/red wings with an average line-of-sight Doppler velocities of ~100 km·s-1. They have a small spatial scale of about 1 800 km and a short lifetime of about 60 s on average. EEs are often found to be associated with magnetic cancellation and reveal bi-directional flows with high velocities comparable to the local Alfvén velocity; they are generally regarded as the consequence of small-scale fast magnetic reconnections. Since the launch of SOHO spacecraft, the SUMER (solar ultraviolet measurements of emitted radiation) spectrograph has been widely used to study EEs. With high spatial and spectral resolution, and wide spectral coverage, SUMER was a powerful tool of ultraviolet spectroscopy and it has greatly increased our knowledge of EEs. Relationship between EEs and other small-scale events observed in the transition region, such as blinkers and EUV spicules have also been investigated during the SOHO era. However, the association between EEs and large-scale events such as prominence remains unclear. A sit-and-stare mode observation made by SUMER is selected for the study. We investigate the properties of EEs in a prominence. EEs are identified with analysis of the width of Si Ⅲ line (111.3 nm). The Si Ⅲ lines with a width greater than three standard deviations (3σ) were singled out for further visual inspection to finally determine the occurrence of EEs. It is found that the vast majority of explosive events concentrate in the bright knots of the prominence. EEs in the core of the prominence occur repetitively with a period of about 20 mins. It is proposed that the explosive events caused by small-scale fast magnetic reconnections are triggered by magnetic flux loops in the core of prominence. The blue shift of the explosive events is significant and possibly related to the initiation of a CME.

    Sun: Prominence; Sun: Explosive events; Sun: UV line

    Introduction

    Explosive events (EEs) are small-scale dynamic phenomena often observed in the solar transition region (TR). They can be observed in far and extreme ultraviolet (FUV/EUV) spectral lines with a formation temperature ranging from 1×104~5×105K and best seen in typical transition-region lines (e.g., Si iv; C iv; O vi). As turbulent events and jets, they are characterized by non-Gaussian and broad profiles with enhancements in the blue/red wings, especially with the line-of-sight Doppler velocities of the blue wing reaching 100 km·s-1[1-2]. EEs are often found to be associated with magnetic cancellation and reveal bi-directional flows with high velocities comparable to the local Alfvén velocity, they have been suggested to be a consequence of small-scale fast magnetic reconnections[3-5].Analysis of the energetics of EEs indicates that the energy flux released by these events might be insignificant for heating the solar atmosphere globally[6]. However, the mass flux carried by such events could be a significant source of the solar wind.

    Prominences are very splendid phenomena in the solar atmosphere. They can be classified into quiet prominences (QPs), active prominences (APs) and eruptive prominences (EPs). Eruptive prominences are usually the most intense ones with the ascending speed of several hundred kilometers per second[7]. The close relationship between EPs and coronal mass ejections (CMEs) has been discussed and reviewed by many authors[8]. Prominences have fine structures such as thin threads with about 210 km in width and 3 500~28 000 km in length. They are also highly dynamic phenomena. The velocities of plasma in prominences are about 2~35 km·s-1in Hα line and slightly higher in EUV lines. Since prominences are cool and dense plasma in the corona, they are suggested to be the result of the injection of chromospheric plasma through siphon-effect, or the condensation of coronal plasma by thermal instability[9-10].

    In the past, EEs were mainly studied in the quiet-Sun (QS) region on the solar disk, while their properties above limb have been poorly investigated. There have been a lot of investigations of the association between EEs and other TR small-scale events such as blinkers and EUV spicules. However, the association between EEs and large-scale events such as prominence remains unclear. In this paper, we present results of EEs in the prominenceobserved by SOHO/SUMER for the first time.

    1 Observations and data analysis

    In this paper, we analyze a data set taken by SOHO/SUMER[11-12]from 20:50 UT on 25 Sep 2000 to 8:17 UT on the next day. A slit with length of 300″ and width of 4″ was pointing at a prominence above east limb of the Sun (x=-980″,y=-250″). In Fig.1, we overplot the sumer slit on

    Fig.1 Location of the SUMER slit (the narrow black vertical bar) on images of He Ⅱ (30.4 nm) (upper panel) and Fe Ⅻ (19.5nm) (lower panel)observed by SOHO/EIT. In the upper panel, the prominence periphery is showed in white-box, the bright spot is in green-box, the strong jet is showed in blue-triangle in the first map while the bright surge is showed in blue-box in the last map

    the He Ⅱ(30.4 nm) and Fe Ⅻ(19.5 nm) images from SOHO/EIT. Highcadence SUMER observations were carried out with an exposure time of 162 s in the wavelength range between 109.8 and 113.8 nm. We select the strong TR Si Ⅲ line (111.3 nm, ~5×104K) for this study. As a common practice, we applied the standard procedure for correcting and calibrating the SUMER raw data which includes decompression, field-field, dead-time, local-gain and geometrical corrections. The method used to deduce the line parameters (line radiance, central position of the spectral line and width) is described in detail by Dammasch[13]. In order to deduce the Doppler velocity more reliably, an additional line-position correction was performed to remove spurious spectral line shifts caused by thermal deformations of the instrument and the residual errors systematically varying along the slit. As previous studies have shown that chromospheric lines have very small systematic line shifts on average in SUMER observations, we use cold chromospheric C Ⅰ (110.9 nm) line as a reference to derive the rest wavelength of Si Ⅲ line in the prominence[1,14]. In this paper, EEs were identified by Si Ⅲ profiles. We disregarded the noisy profiles with a peak intensity below the half-peak intensity of the average profile. Then the profiles with a width greater than three standard deviations (3σ) were singled out for further visual inspection to finally identify EEs. Our method is similar to those used by Teriaca[1].

    2 Results

    Fig.1 shows EIT images with a cadence of 6 hours in the He Ⅱ (30.4 nm) and Fe Ⅻ (19.5 nm) lines. In the upper panel we can see an arc-like prominence with the length of 300″ locating above the east limb and extending to the south. The central position of its original footprint on the disk is about 0″ in Y (north-south)- direction. The SUMER slit above the solar limb was crossing the prominence exactly. To the right of the slit there is a singular bright spot (green-box in the top left of Fig.1) on the disk and the bright spots move westwards with solar rotation. Strong jets (blue-triangle in the top left of Fig.1) inject into the corona straightly from the southeast corner of the solar disk at 13:18 UT Sep. 25 and existed till 7:17 Sep. 26. The prominence periphery (white-box in the top left of Fig.1) brightens strongly and the footprint of the prominence on the disk is not distinct at 19:17 UT Sep. 25 which is close to the beginning of SUMER observation. Six hours later, the arc-like prominence erupts partially with some structures still visible. Loops appear across the SUMER slit, which can also be seen in Fe Ⅻ 195 image. The prominence fades gradually and two bright surges (blue-box in the top right of Fig.1) burst through the slit at 7:17 UT Sep. 26. The EIT Fe Ⅻ 195 images with a cadence of 6 hours are also showed in the lower panel of Fig.1. The singular bright spot and the strong jets can also be seen in Fe Ⅻ (19.5 nm)line and exist throughout the entire observation duration. At 1:11 UT Sep. 26, large amount of plasma ejected into higher layers and the coronal loops appear simultaneously. A blob-like CME observed by LASCO C2 at 2:50 UT Sep 26 has been reported to be associated with this prominence[15].

    The intensity evolution of the prominence obtained by the Si Ⅲ line is shown in the upper panel of Fig.2. The intensities are shown in logarithmic scale to increase the contrast and enhance the bright area with high intensity. Because our observation was taken in sit-and-stare mode, the figures show the evolution in time of the prominence which falls into the SUMER field-of-view. The bright knots with enhanced emission around -150″ are identified as the core of the prominence. The bright knots have a few ten arcsecs along the slit. They mainly survive before 1:25 UT Sep 26, although they can be seen again occasionally after 04:20 UT Sep 26 with much smaller size. The fine thread-like structures of the prominence are varying with time along the slit, which can also be observed by Si Ⅲ line. The Doppler shift of the prominence is shown in the middle panel of Fig.2. The blue shift (negative values) represents flows moving to the observer, while the red shift (positive values) indicates flows moving away from the observer. By calibrating with the cold chromospheric C Ⅰ (110.9 nm) line and eliminating the effect of solar rotation, the line-of-sight velocity of Si Ⅲ in the prominence is blue shifted and its average blue shift is 2.76 km·s-1. In the Dopplergram, the dynamics of prominence can be seen and some significant blue patches can be found. The blue patches with relative higher velocity concentrate from -200″ to -130″ along the slit. The velocity of the thread of the prominence alternates between blue and red. In order to facilitate the study, the Dopplergram map is overlaid by the black contours of the intensity to outline the bright knots of the prominence. We found that most of the bright knots appear in regions where large blue shifts are found. The width of the Si Ⅲ line is also showed in the bottom panels of Fig.2. The line width of the bright knots at around -150″ along the slit, which is identified as the core of the prominence, is usually large, while the bright knots in other regions has smaller line width.

    The identified events are marked as the black “+” in intensity maps of Si Ⅲ line (see Fig.3). 337 pixels with EE-like profiles were detected in the prominence. It is obvious that the black “+” is not randomly distributed. Some of them can form a small group and neighboring EE pixels in each spectral line can be regarded as a single event. The occurrence rate of EEs in the prominence is about 4×10-16m-2·s-1, which is comparable to the occurrence rate obtained by Teriaca[1]in a quiet sun (QS) region and Zhang[15]in both QS and polar coronal hole (PCH) region. We find the vast majority

    Fig.2 Intensity(logarithmic scale), Doppler shift and line width maps of the Si Ⅲ line.

    Fig.3 EEs are marked with black “+” in the intensity map of the prominence seen in the Si Ⅲ line.

    of the EEs concentrate in the region from -200″ to -130″ along the slit and most of the EEs lie in or on the edge of the bright knots. Some time, EEs occur repeatedly in the same region. Four regions marked with A,B,C and D in which EEs recur are showed in Fig.3. The center of A-region is -150″ and the repetitive occurrence here lasts for 110 mins. We find seven EEs during this period and the quasi-periodicity is about 16 mins. The center of B-region is slightly lower than that of A-region and the repetitive occurrence also lasts for 120 mins. In this region, we find six EEs and the quasi-periodicity is about 22 mins. The central positions of C and D regions are approximately the same as that of A-region and there are six and five EEs respectively. The quasi-periodicity of EEs is about 21 mins in both C and D regions.

    Fig.4 shows three typical EEs with bi-directional flows. Each spectrum of EEs has several arcsecs along the slit and all spectrums have a strong intensity in the wings. The positions of these EEs are around -170″ along the slit. The profile of each EE with bi-wings which have well-defined bursting velocities is greater than 150 km·s-1. The average line-of-sight Doppler velocities of the wings are up to ~150 km·s-1. The shift of the EE1 obtained by single-Gaussian fitting is -19.04 km·s-1and the blue shift is obvious. In contrast, EE2 and EE3 have very small shifts, with the velocities of 3.03 and 5.23 km·s-1respectively. Although with different shifts, the profiles of all events have non-Gaussian shapes and obviously enhanced wings in both the red and blue sides.

    Fig.4 Three slit spectrum are showed in the Si Ⅲ line, two solid black lines marked the lacation of the EEs

    3 Conclusions and Discussions

    We study the TR EEs in a prominence above the east limb. The prominence core is located from -200″ to -130″ along the slit and erupts at about 1:17 UT Sep. 26. A small flare and CME are observed subsequently. The blue-shift of the prominence core observed by the Si Ⅲ line is significant. But when we show the time evolution of the prominence, the red-shift of the prominence is also observed in the core. As the prominence is arclike and the main part of it is along the slit, the red-shift may be characterized as the visual-direction component of the downflow. This is consistent with the scenario that some prominence materials fall back to the disk after ascending to a certain height. Through diagnosing the line width of the profile, we select 337 EE pixels. The occurrence rate of EEs in the prominence is 4×10-16m-2·s-1which is similar to that in QS. Most TR EEs with high emission often occur in or on the edge of the core of the prominence. We studied three typical bi-directions EEs in more detail. They all have broad width and the shift of each two wings can reach 150 km·s-1.

    The repetitive occurrence of EEs was first observed in regions undergoing magnetic cancellation by Dere[16], which had been confirmed by other authors. Innes[17]found that EEs could occur repeatedly several times and lasts about 30 minutes. Ning[3]found that the repetitive occurrence of EEs was not random, but had a quasi-periodicity of three or five minutes. In the coronal hole boundary, Doyle[5]found that the period of the EEs can be increased from three minutes at beginning to five minutes in the end. In our data, the period of the repetition is around 20 min, which is larger than five minutes but is in the range of the quasi-periodicity of the high-speed fine-scale jets (see, e.g., Tian et al., 2011)[18]. These high-speed fine-scale jets might be the coronal counterpart of EEs. EEs repetitively occur in the same region and last for several hours in the prominence. We select four in the time series observation. Although the positions of the four repeated regions with higher emission are slightly difference, they are all in the position from -200″ to -130″ along the slit. As mentioned above, the core of the prominence is in the region. And the same time, we observed the loops appear in the same region from EIT images after the prominence eruption. As we know, EEs are associated with the cancellation of the magnetic flux and the emerging flux can provide the preconditions of magnetic reconnection. Chen et al.[14]described the physical mechanism detailedly and inferred that the reconnection between the emerging flux and the pre-existing coronal magnetic field causes the formation of Hα surges and the oscillation of the prominence which finally triggering the eruption of the prominence. The reconnection appears intermittently which is implied by the repetitive Hα surges. Here, we speculate that the repetitive reconnection can be triggered by some kind of wave mode (i.e. the kink mode) of the flux tubes. Then plasma is heated and accelerated, and we not only diagnosis EEs but also find two bright surges occur from EIT images.

    EEs are mainly associated with blue shift in the prominence. Although the outflow speed derived from a single Gaussian fit is roughly in the range of 10~40 km·s-1, the effluent plasma of their wings are splendidly. From the observed phenomenon, we assume that when EEs occur in the prominence, the small-scale magnetic reconnection events generate outflow and the high speed flow can be easily observed. In our study, the high speed flow generated from the EEs in the erupted prominence might play a role in the initiation of the CME or contribute to the solar wind streams following CMEs.

    Anyway, our work is just the beginning. New imaging and spectroscopic data, especially high resolution and multi-band spectrum data are needed to understand the ralationship between prominence and EEs in the future.

    Acknowledgements: The SUMER project is financially supported by DLR,CNES, NASA, and the ESA PRODEX Programme (Swiss contribution).SUMER is an instrument onboard SOHO, a mission operated by ESA and NASA. We thank Dr. H. Tian for the helpful comments.

    [1] Teriaca L, Banerjee D, Falchi A, et al. A&A, 2004, 427: 1065.

    [2] Zhang M, Xia L D, Tian H, et al. A&A, 2010, 520: 37.

    [3] Ning Z, Innes D E, Solanki S K. A&A, 2004, 419: 1141.

    [4] Innes D E, Inhester B, Axford W I, et al. Nature, 1997, 386: 811.

    [5] Doyle J G, Popescu M D, Taroyan Y. A&A, 2006, 446: 327.

    [6] Winebarger A R, Emslie A G, Mariska J T, et al. ApJ, 2002, 565: 1298.

    [7] Lin Y, Engvold O, Rouppe van der Voort, et al. Solar Phys., 2005, 226: 239.

    [8] Liu K, Wang Y M, Shen C L, et al. ApJL, 2012, 744: 168.

    [9] Olmedo O, Zhang J. ApJ, 2010, 718: 433.

    [10] Berger T, Testa P, Hillier A, et al. Nature, 2011, 472: 197.

    [11] Wilhelm K, Curdt W, Marsch E, et al. Solar Phys., 1995, 162: 189.

    [12] Wilhelm K, Lemaire P, Curdt W, et al. Solar Phys., 1997, 170: 75.

    [13] Dammasch I E, Wilhelm K, Curdt W, et al. A&A, 1999, 346: 285.

    [14] Zhang Min, Wang Dong, Liu Guohong. Spectroscopy and Spectral Analysis, 2014, 34(7): 1890.

    [15] Chen P F, Innes D E, Solanki S K. A&A, 2008, 484: 487.

    [16] Dere K P. Adv. Space. Res., 1994, 14: 13.

    [17] Innes D E, Brekke P, Germerott D, et al. Sol. Phys., 1997, 175: 341.

    [18] Tian H, McIntosh S W, De Pontieu B. ApJL, 2011, 727: 37.

    O657.3

    A

    太陽爆發(fā)日珥內(nèi)雙向噴流事件的紫外光譜研究

    章 敏1,2, 王 東1,2, 鄧 燕1

    1. 安徽建筑大學數(shù)理學院, 安徽 合肥 230601

    2. 中國科學技術(shù)大學地球與空間科學學院, 安徽 合肥 230026

    太陽雙向噴流事件是過渡區(qū)重要的小尺度現(xiàn)象之一。 雙向噴流事件的光譜特征是強的展寬和非高斯形狀。 當雙向噴流事件發(fā)生時, 光譜像的紅、 藍兩翼分別或者同時明顯增強, 其相應的多普勒速度可達100 km·s-1以上。 雙向噴流事件的平均尺度約1 800 km, 壽命約60 s。 雙向噴流事件出現(xiàn)在磁對消區(qū)附近, 且其速度與當?shù)氐陌柗宜俣认喈敚?普遍認為其產(chǎn)生機制為小尺度快速磁重聯(lián)。 對其系統(tǒng)、 全面地研究始于SOHO時代。 SOHO/SUMER具有高時空和譜分辨率、 寬的譜線覆蓋, 其觀測的光譜數(shù)據(jù)為探究雙向噴流事件提供了有力的光譜學診斷工具。 雙向噴流事件及其他過渡區(qū)小尺度現(xiàn)象的相互聯(lián)系已被廣泛研究, 但雙向噴流事件與日珥及其精細結(jié)構(gòu)的關(guān)系研究還很少。 文章通過SOHO/SUMER的Si Ⅲ譜線的定點觀測, 再現(xiàn)了爆發(fā)日珥演化的強度﹑多普勒速度和寬度演化圖。 通過Si Ⅲ譜線分析, 找出寬度大于三個標準偏差的Si Ⅲ譜線, 然后進行視像篩選出雙向噴流事件, 最終在爆發(fā)日珥中診斷出多個雙向噴流事件, 且大多數(shù)的雙向噴流事件以準周期20 min重復出現(xiàn)在爆發(fā)日珥的中心區(qū)域。 通過討論, 認為日珥中心磁流管之間的磁重聯(lián)導致了雙向噴流事件的重復出現(xiàn), 雙向噴流事件產(chǎn)生的高速等離子體流可能是日面物質(zhì)拋射的一部分, 或是跟隨日面物質(zhì)拋射的太陽風的一部分。

    太陽日珥; 雙向噴流事件; 紫外光譜

    2015-10-27,

    2016-02-25)

    2015-10-27; accepted: 2016-02-25

    the National Natural Science Foundation of China(NSFC) under contract 41304134, the foundation for Young Talents in College of Anhui Province (2013SQRL044ZD), colleges and Universities Natural Science Foundation of Anhui Province (KJ2016JD18), the doctoral foundation of Anhui University of Architecture (K02654) and CAS Key Research Program KZZD-EW-01

    10.3964/j.issn.1000-0593(2016)08-2679-07

    Biography: ZHANG Min, (1980—), female, associate professor in Anhui Jianzhu University e-mail: chengzm@ustc.edu.cn

    猜你喜歡
    噴流譜線雙向
    雙向度的成長與自我實現(xiàn)
    出版人(2022年11期)2022-11-15 04:30:18
    基于HITRAN光譜數(shù)據(jù)庫的合并譜線測溫仿真研究
    “慧眼”發(fā)現(xiàn)迄今距離黑洞最近的高速噴流
    鐵合金光譜譜線分離實驗研究
    電子測試(2018年11期)2018-06-26 05:56:00
    噴流干擾氣動熱數(shù)值模擬的若干影響因素
    鍶原子光鐘鐘躍遷譜線探測中的程序控制
    一種軟開關(guān)的交錯并聯(lián)Buck/Boost雙向DC/DC變換器
    耀變體噴流高能電子譜的形成機制
    發(fā)生在活動區(qū)11931附近的重復噴流?
    天文學報(2015年6期)2015-06-27 09:33:30
    一種工作頻率可變的雙向DC-DC變換器
    少妇熟女aⅴ在线视频| 成年女人永久免费观看视频| 全区人妻精品视频| 亚洲四区av| 三级国产精品欧美在线观看| 国产在线男女| 一本精品99久久精品77| 午夜爱爱视频在线播放| 久久精品夜色国产| 午夜激情福利司机影院| 亚洲国产色片| 国产片特级美女逼逼视频| 老司机影院成人| 中国美女看黄片| 99在线视频只有这里精品首页| 午夜福利视频1000在线观看| 亚洲四区av| 成人二区视频| 又爽又黄无遮挡网站| 一级黄片播放器| 美女cb高潮喷水在线观看| 国产高清视频在线观看网站| 日本色播在线视频| 国产爱豆传媒在线观看| 精品少妇黑人巨大在线播放 | 国产视频首页在线观看| 26uuu在线亚洲综合色| 国语自产精品视频在线第100页| 久久久精品大字幕| 久久人人爽人人片av| 麻豆国产97在线/欧美| 变态另类丝袜制服| 久久久久久久午夜电影| 九九热线精品视视频播放| 国产一区二区三区在线臀色熟女| 久久久精品94久久精品| 免费观看人在逋| 亚洲国产欧美人成| 长腿黑丝高跟| 久久久久久久久大av| 永久网站在线| 国产黄片美女视频| 亚洲欧美日韩东京热| 99精品在免费线老司机午夜| 国产69精品久久久久777片| 97热精品久久久久久| 91久久精品国产一区二区成人| 亚洲av男天堂| 久久欧美精品欧美久久欧美| 国产精品.久久久| 国产色婷婷99| 99久久人妻综合| 三级毛片av免费| 1024手机看黄色片| 久久久久九九精品影院| 乱人视频在线观看| 国产精品国产三级国产av玫瑰| 精品熟女少妇av免费看| 国产精品99久久久久久久久| 久久久欧美国产精品| 婷婷色av中文字幕| 亚洲欧美日韩高清专用| av在线播放精品| 国产私拍福利视频在线观看| 亚洲乱码一区二区免费版| 不卡一级毛片| 欧美区成人在线视频| 国产毛片a区久久久久| 18+在线观看网站| 久久久精品大字幕| 乱码一卡2卡4卡精品| 欧美极品一区二区三区四区| 成人鲁丝片一二三区免费| 非洲黑人性xxxx精品又粗又长| 亚洲国产色片| 国内精品宾馆在线| 成人无遮挡网站| 亚洲欧美日韩卡通动漫| 听说在线观看完整版免费高清| 国产成人精品婷婷| 国产精品一及| 精品人妻视频免费看| ponron亚洲| 日本黄大片高清| av.在线天堂| 亚洲最大成人中文| 欧美激情国产日韩精品一区| 国产精品99久久久久久久久| 久久久久久久久久成人| 国产午夜精品一二区理论片| 成人欧美大片| 亚洲丝袜综合中文字幕| 成人综合一区亚洲| 国产伦精品一区二区三区四那| 日本一本二区三区精品| av黄色大香蕉| 老师上课跳d突然被开到最大视频| 亚洲精品456在线播放app| 久久精品夜色国产| 99热这里只有是精品在线观看| 人妻系列 视频| 在线免费观看不下载黄p国产| 麻豆国产av国片精品| 国产成人影院久久av| 1024手机看黄色片| 国产亚洲精品久久久com| 国产精品久久视频播放| 两个人视频免费观看高清| 日韩成人av中文字幕在线观看| 黄色视频,在线免费观看| 亚洲最大成人av| a级毛片a级免费在线| 亚洲国产欧美人成| 淫秽高清视频在线观看| 黄色视频,在线免费观看| 国产一区二区三区在线臀色熟女| 亚洲国产欧美人成| 国产精品三级大全| 又粗又硬又长又爽又黄的视频 | 久久精品国产清高在天天线| 亚洲av免费在线观看| 人人妻人人澡欧美一区二区| 日韩av不卡免费在线播放| 成人毛片60女人毛片免费| 你懂的网址亚洲精品在线观看 | 国产伦一二天堂av在线观看| 欧美日韩国产亚洲二区| 18+在线观看网站| 日韩欧美在线乱码| 大又大粗又爽又黄少妇毛片口| 男女那种视频在线观看| 成人亚洲精品av一区二区| 麻豆精品久久久久久蜜桃| 国产成人aa在线观看| 亚洲国产精品成人久久小说 | 在线观看66精品国产| 亚洲av二区三区四区| 白带黄色成豆腐渣| 久久久久国产网址| 九草在线视频观看| 国产三级在线视频| 免费不卡的大黄色大毛片视频在线观看 | 日本色播在线视频| 少妇人妻一区二区三区视频| 亚洲欧美精品专区久久| 美女大奶头视频| 亚洲精品日韩av片在线观看| 欧美bdsm另类| 久久婷婷人人爽人人干人人爱| 亚洲精品日韩av片在线观看| av国产免费在线观看| 日本免费一区二区三区高清不卡| 久久久久久九九精品二区国产| 久久欧美精品欧美久久欧美| 亚洲自拍偷在线| 欧美bdsm另类| 99热网站在线观看| 国产一区亚洲一区在线观看| 国产精品一及| 国国产精品蜜臀av免费| 一级毛片电影观看 | 波多野结衣高清无吗| 国产精品福利在线免费观看| 18禁黄网站禁片免费观看直播| 国产一区二区在线观看日韩| 亚洲美女视频黄频| 99热只有精品国产| 丰满乱子伦码专区| 搡老妇女老女人老熟妇| 成人无遮挡网站| 国产片特级美女逼逼视频| 禁无遮挡网站| 亚洲精品国产av成人精品| 国产成人影院久久av| 国产精品美女特级片免费视频播放器| 日本撒尿小便嘘嘘汇集6| 欧美3d第一页| 成年av动漫网址| 亚洲在线观看片| 99久久精品一区二区三区| av在线亚洲专区| 人人妻人人澡人人爽人人夜夜 | 国产精品人妻久久久影院| 综合色av麻豆| 少妇猛男粗大的猛烈进出视频 | a级毛片免费高清观看在线播放| 日韩欧美三级三区| 天堂√8在线中文| 嫩草影院精品99| 青青草视频在线视频观看| 成人午夜高清在线视频| 国产精品久久视频播放| 男人的好看免费观看在线视频| 欧美色视频一区免费| 能在线免费观看的黄片| 麻豆精品久久久久久蜜桃| 婷婷色av中文字幕| 亚洲精品乱码久久久v下载方式| 99久久人妻综合| 国产综合懂色| 天堂网av新在线| 美女被艹到高潮喷水动态| 欧美日本视频| 国产精品国产高清国产av| 美女脱内裤让男人舔精品视频 | 欧美日韩精品成人综合77777| 久久精品久久久久久噜噜老黄 | 哪里可以看免费的av片| 一边亲一边摸免费视频| 乱人视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 长腿黑丝高跟| 美女脱内裤让男人舔精品视频 | 国产三级在线视频| 国产精品人妻久久久影院| 综合色丁香网| 春色校园在线视频观看| 中文字幕免费在线视频6| 欧美成人精品欧美一级黄| 亚洲一区高清亚洲精品| 91精品国产九色| 国产av一区在线观看免费| 亚洲av成人精品一区久久| 国产日韩欧美在线精品| 乱码一卡2卡4卡精品| 亚洲av不卡在线观看| 亚洲美女搞黄在线观看| 国产乱人偷精品视频| 午夜精品一区二区三区免费看| 天堂av国产一区二区熟女人妻| 亚洲无线观看免费| 黄色一级大片看看| 99视频精品全部免费 在线| 边亲边吃奶的免费视频| 自拍偷自拍亚洲精品老妇| 免费不卡的大黄色大毛片视频在线观看 | 国产成人91sexporn| 久久精品久久久久久噜噜老黄 | 国产一区二区激情短视频| 欧美日韩乱码在线| 性插视频无遮挡在线免费观看| 在线观看午夜福利视频| 熟女人妻精品中文字幕| 欧美丝袜亚洲另类| 国产69精品久久久久777片| 久久精品国产亚洲av天美| kizo精华| 色哟哟哟哟哟哟| 亚洲欧洲国产日韩| 欧美一区二区国产精品久久精品| 老司机影院成人| 免费人成在线观看视频色| 亚洲中文字幕一区二区三区有码在线看| 九九久久精品国产亚洲av麻豆| 亚洲最大成人av| 国产美女午夜福利| 啦啦啦观看免费观看视频高清| 看十八女毛片水多多多| 国产av在哪里看| 亚洲内射少妇av| 毛片一级片免费看久久久久| 久久久久性生活片| 欧美最黄视频在线播放免费| 99视频精品全部免费 在线| 久久99精品国语久久久| 精品久久国产蜜桃| 欧美色视频一区免费| 女的被弄到高潮叫床怎么办| 久久久久久久久久成人| 精品人妻视频免费看| 狂野欧美激情性xxxx在线观看| 高清毛片免费观看视频网站| 日本在线视频免费播放| 欧美一级a爱片免费观看看| 三级男女做爰猛烈吃奶摸视频| 婷婷色综合大香蕉| 欧美性感艳星| 性色avwww在线观看| 亚洲成a人片在线一区二区| 级片在线观看| 黄色一级大片看看| 欧美日本亚洲视频在线播放| 哪里可以看免费的av片| 国产麻豆成人av免费视频| 男女那种视频在线观看| 日韩一区二区视频免费看| ponron亚洲| 久久久久久久久大av| 丝袜美腿在线中文| 亚洲欧美精品综合久久99| 亚洲在久久综合| 22中文网久久字幕| 久久久久久久久久黄片| 亚洲精品影视一区二区三区av| 国产黄色视频一区二区在线观看 | 国产老妇伦熟女老妇高清| 国产大屁股一区二区在线视频| 亚洲经典国产精华液单| 亚洲自拍偷在线| 中文字幕熟女人妻在线| 成人性生交大片免费视频hd| 老师上课跳d突然被开到最大视频| 不卡视频在线观看欧美| 亚洲自拍偷在线| 久久久久久大精品| 国内精品宾馆在线| 精品久久久久久久久久久久久| 国产午夜精品一二区理论片| 麻豆久久精品国产亚洲av| 国产高清激情床上av| 日本av手机在线免费观看| 亚洲成人久久爱视频| 日韩大尺度精品在线看网址| 在线天堂最新版资源| 少妇丰满av| 午夜亚洲福利在线播放| 韩国av在线不卡| a级一级毛片免费在线观看| 色哟哟哟哟哟哟| 国产成人精品婷婷| 男人的好看免费观看在线视频| 国产精品蜜桃在线观看 | 少妇高潮的动态图| 看十八女毛片水多多多| 成人三级黄色视频| 一级二级三级毛片免费看| 国产日本99.免费观看| 亚洲欧美成人精品一区二区| 边亲边吃奶的免费视频| 男女边吃奶边做爰视频| 国产淫片久久久久久久久| 国产成人精品一,二区 | 日本av手机在线免费观看| 青春草国产在线视频 | 国产乱人视频| 精品久久国产蜜桃| 精品无人区乱码1区二区| 国产精品野战在线观看| 午夜福利高清视频| 久久人人爽人人爽人人片va| 男人的好看免费观看在线视频| 十八禁国产超污无遮挡网站| 日本成人三级电影网站| 亚洲欧美成人综合另类久久久 | 岛国在线免费视频观看| 欧美成人精品欧美一级黄| 一个人看视频在线观看www免费| av免费观看日本| 国产黄色小视频在线观看| 亚洲一区高清亚洲精品| 欧美高清成人免费视频www| 亚洲激情五月婷婷啪啪| 亚洲最大成人av| 久久人人爽人人片av| 亚洲无线观看免费| 色噜噜av男人的天堂激情| 丝袜美腿在线中文| 久久久久久久久久久丰满| 在线观看66精品国产| 中文精品一卡2卡3卡4更新| 久久午夜亚洲精品久久| 黄色欧美视频在线观看| 亚洲一区二区三区色噜噜| 日韩欧美三级三区| 日韩亚洲欧美综合| 99热这里只有是精品50| 身体一侧抽搐| 亚洲内射少妇av| 51国产日韩欧美| 日韩成人伦理影院| 日本色播在线视频| 日日干狠狠操夜夜爽| 精品99又大又爽又粗少妇毛片| 色哟哟哟哟哟哟| or卡值多少钱| 国产亚洲av片在线观看秒播厂 | а√天堂www在线а√下载| 午夜精品国产一区二区电影 | 欧美日本视频| 久久这里只有精品中国| 一级毛片我不卡| 联通29元200g的流量卡| 久久人人精品亚洲av| 99久久无色码亚洲精品果冻| 国产成人精品一,二区 | 干丝袜人妻中文字幕| 波野结衣二区三区在线| 国产一区二区激情短视频| 国产v大片淫在线免费观看| 精品一区二区三区人妻视频| 久久久久久国产a免费观看| 美女高潮的动态| 黄色配什么色好看| 久久99热这里只有精品18| 一本一本综合久久| 欧美日本视频| 欧美bdsm另类| 69av精品久久久久久| 国产精品永久免费网站| 午夜免费男女啪啪视频观看| 国产免费一级a男人的天堂| 国产精品一及| 免费搜索国产男女视频| 国产成人精品一,二区 | 亚洲欧美中文字幕日韩二区| 精品久久久久久久久久免费视频| 欧美精品一区二区大全| a级毛片免费高清观看在线播放| 蜜桃亚洲精品一区二区三区| 成人亚洲欧美一区二区av| 美女黄网站色视频| 又爽又黄无遮挡网站| 99久久九九国产精品国产免费| 99热网站在线观看| 久久久久九九精品影院| 人人妻人人看人人澡| 日韩中字成人| 狂野欧美白嫩少妇大欣赏| 白带黄色成豆腐渣| 国产精品人妻久久久影院| 国产中年淑女户外野战色| 伊人久久精品亚洲午夜| 菩萨蛮人人尽说江南好唐韦庄 | 国产男人的电影天堂91| 免费在线观看成人毛片| 婷婷精品国产亚洲av| 国产高清视频在线观看网站| 日韩一区二区三区影片| 天天一区二区日本电影三级| 国产精品人妻久久久影院| 精品一区二区三区视频在线| 免费一级毛片在线播放高清视频| 日本色播在线视频| 男插女下体视频免费在线播放| 大又大粗又爽又黄少妇毛片口| av免费观看日本| 1024手机看黄色片| 伊人久久精品亚洲午夜| 亚州av有码| 美女高潮的动态| .国产精品久久| 久久久精品欧美日韩精品| 亚洲国产精品国产精品| 成人毛片60女人毛片免费| 青青草视频在线视频观看| 尤物成人国产欧美一区二区三区| 日韩欧美 国产精品| 日本av手机在线免费观看| 99精品在免费线老司机午夜| 我的女老师完整版在线观看| 国产淫片久久久久久久久| 国产伦一二天堂av在线观看| 久久精品国产清高在天天线| 18禁黄网站禁片免费观看直播| av在线播放精品| 国产成人精品一,二区 | 久久久久九九精品影院| 久久精品国产亚洲av涩爱 | 男人狂女人下面高潮的视频| 美女脱内裤让男人舔精品视频 | 成人亚洲精品av一区二区| 欧美+亚洲+日韩+国产| 国产成人a∨麻豆精品| 在线国产一区二区在线| 国产男人的电影天堂91| 级片在线观看| 不卡一级毛片| 亚洲最大成人av| 成年av动漫网址| 永久网站在线| 国产精品日韩av在线免费观看| 国产极品精品免费视频能看的| www.av在线官网国产| 国产成年人精品一区二区| 一级av片app| 日本-黄色视频高清免费观看| 欧美一区二区亚洲| 中文字幕人妻熟人妻熟丝袜美| 日韩中字成人| 99热全是精品| 男人舔奶头视频| 亚洲人与动物交配视频| 1000部很黄的大片| 毛片女人毛片| 日本熟妇午夜| 亚洲最大成人av| 联通29元200g的流量卡| 日韩精品有码人妻一区| 中文字幕精品亚洲无线码一区| 插逼视频在线观看| av视频在线观看入口| 一级毛片aaaaaa免费看小| 日韩欧美一区二区三区在线观看| 成年免费大片在线观看| 寂寞人妻少妇视频99o| 卡戴珊不雅视频在线播放| 国产成人午夜福利电影在线观看| 色吧在线观看| 干丝袜人妻中文字幕| 国产女主播在线喷水免费视频网站 | 国产精品女同一区二区软件| 国产大屁股一区二区在线视频| 日韩中字成人| 麻豆精品久久久久久蜜桃| 寂寞人妻少妇视频99o| 免费人成视频x8x8入口观看| 看黄色毛片网站| 五月玫瑰六月丁香| 成年av动漫网址| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 亚洲经典国产精华液单| 欧美一区二区亚洲| 欧美潮喷喷水| 国产精品一及| 欧美另类亚洲清纯唯美| 最好的美女福利视频网| 国产片特级美女逼逼视频| av天堂中文字幕网| 校园人妻丝袜中文字幕| 成人午夜精彩视频在线观看| 日韩欧美三级三区| 精品久久久久久成人av| 久久99精品国语久久久| 国产淫片久久久久久久久| 在线观看免费视频日本深夜| 日本爱情动作片www.在线观看| 久久久久免费精品人妻一区二区| 深夜精品福利| 欧洲精品卡2卡3卡4卡5卡区| 日产精品乱码卡一卡2卡三| 国产老妇伦熟女老妇高清| 三级男女做爰猛烈吃奶摸视频| 一个人免费在线观看电影| 看黄色毛片网站| 九色成人免费人妻av| 国产色爽女视频免费观看| 久久亚洲精品不卡| 特大巨黑吊av在线直播| 亚洲真实伦在线观看| 国产淫片久久久久久久久| 国产熟女欧美一区二区| 国产精品久久久久久av不卡| 伊人久久精品亚洲午夜| 免费大片18禁| kizo精华| 国产精品日韩av在线免费观看| 国内精品久久久久精免费| 九九久久精品国产亚洲av麻豆| 晚上一个人看的免费电影| av在线观看视频网站免费| 狂野欧美白嫩少妇大欣赏| 国产女主播在线喷水免费视频网站 | 国产美女午夜福利| 久久精品91蜜桃| 好男人视频免费观看在线| 岛国毛片在线播放| 黄色视频,在线免费观看| 亚洲av中文字字幕乱码综合| 欧美精品国产亚洲| 久久久久久久亚洲中文字幕| 免费av毛片视频| 亚洲精品乱码久久久v下载方式| 亚洲精品成人久久久久久| 成人鲁丝片一二三区免费| 久久久午夜欧美精品| 热99re8久久精品国产| 在线观看av片永久免费下载| 在线免费十八禁| 免费观看在线日韩| 日韩高清综合在线| 国产亚洲精品久久久久久毛片| 在线观看午夜福利视频| h日本视频在线播放| 91在线精品国自产拍蜜月| 国产免费男女视频| 青青草视频在线视频观看| 日韩在线高清观看一区二区三区| 综合色av麻豆| 91精品一卡2卡3卡4卡| 久久久久久大精品| 国产亚洲精品av在线| 国产精品精品国产色婷婷| 91精品一卡2卡3卡4卡| 深爱激情五月婷婷| 欧美日韩国产亚洲二区| 免费大片18禁| 免费看光身美女| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区三区四区免费观看| 岛国在线免费视频观看| 婷婷亚洲欧美| 亚洲精品影视一区二区三区av| 人人妻人人澡人人爽人人夜夜 | 国产精品久久久久久久久免| www日本黄色视频网| 国产精品三级大全| 在线观看午夜福利视频| 在线观看66精品国产| 成人无遮挡网站| 在线天堂最新版资源| 午夜精品在线福利| 91久久精品电影网| 少妇熟女欧美另类| 国产一区二区三区av在线 | 亚洲av中文av极速乱| 国产日本99.免费观看| 亚洲乱码一区二区免费版| 蜜桃亚洲精品一区二区三区| 五月伊人婷婷丁香| 日本三级黄在线观看| 国产精品免费一区二区三区在线| 国产成人精品一,二区 | 亚洲人成网站高清观看| 国产成人福利小说|