• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple linear equation of pore structure and coal–oxygen diffusion on low temperature oxidation process of lignite☆

    2016-06-08 03:03:12XianliangMengMingqiangGaoRuizhiChuGuoguangWuQiangFang

    Xianliang Meng ,Mingqiang Gao ,Ruizhi Chu ,*,Guoguang Wu ,Qiang Fang

    1 School of Chemical Engineering and Technology,China University of Mining&Technology,Xuzhou 221116,China

    2 Key Laboratory of Gas and Fire Control for Coal Mines,China University of Mining&Technology,Xuzhou 221116,China

    1.Introduction

    Lignite,as low rank coal,is characterized by high moisture content,high volatility and low calorific value[1].With the discovery of more lignite coal fields,lignite is playing an increasingly important role in supplying primary energy due to its large reserve,location in shallow depths and low price.However,low-level lignite,especially upgrading lignite through low temperature drying,is very active and has high spontaneous combustion tendency,which has been a disaster in the storage and transportation[2].The low temperature oxidation characteristics of upgraded lignite have become a concern[3],which greatly limits its application.

    It is well known that the compounding of coal and oxygen at low temperature is the major reason responsible for coal spontaneous combustion,which has been studied by many investigators[4–6].Wang et al.[5]divided the process of low temperature oxidization into four phenomena:oxygen diffusion,chemical interaction between coal and oxygen,heat release and gas emission.The diffusion process of oxygen from environment to coal surface and pore is an essential premise for subsequent reactions,and plays a main control role in the development of coal spontaneous combustion.If the oxygen supply is blocked,the coal oxidization can be prevented[7].Therefore,it is an important job with practical significance to master the diffusion law of oxygen in coal.

    In the field of coal spontaneous combustion,there have been some studies about oxygen diffusion.Brooks and David developed a simplified one-dimensional model,in which natural convection was taken into account as a mechanism for oxygen transport[8].Zhang and Yan investigated the impact of moisture content on the oxygen diffusion of brown coal[9].However,the diffusion of oxygen in loosen coalis a very complex mass transfer process,involving multiple influential factors such as temperature,pressure,water content,particle size,and air void.The perfect theory has not been established.

    In view of the fact that there are very complex and a wide range of influence factors in the low temperature oxidation process of lignite[10],the author proposes that factors would be divided into external factors,including humidity[11],temperature[12]and air velocity[13,14],and internal factors,including particle size[15],pore structure[16,17]and surface chemical structure[18,19].All the influence factors will be studied separately in our present and future work.This paper focuses on the rule of the influence of pore structure of lignite on O2diffusion coefficient in low temperature oxidation process.

    According to the theory of mass transfer in porous media,gas diffusion model is related to the pore characteristics[20,21].Fractal analysis is a powerful analytical tool that can define and describe the attributes of a material.For porous materials this includes description of pore irregularity.Using fractal analysis of porous materials,it has been shown that the irregularity of surfaces and pores is important for diffusion[20–24].The random distribution of pore in the coal implies that there is a pore fractal structure.Because the diffusion of gas in the coal are related to the random distribution pore of coal,a fractal method can be used to characterize and explain the relationship between the pore structures and the gas diffusion capacity.The study of relationship between fractal analysis and the effective diffusion coefficient of gas has received extensive attention[25–28].However,previous researches mainly focused on the numerical and theoretical analysis of oxygen diffusion model.The relationship between pore change law and coal–oxygen diffusion properties under different oxidation temperatures has not been reported.

    Differing from previous researches,this study pays attention to the dynamic development of coal spontaneous combustion.Based on fractal theory and flow characteristics,the fractal dimension of gas diffusion in the pore ways was calculated under different temperature.Considering pore size distribution,connectivity distribution and Fick diffusion mechanisms,the relationship between the gas diffusivity increases with pore area fractal dimension and porosity was investigated,and multiple linear equation of the coal–oxygen diffusion coefficients and pore parameters was obtained.Comparison between the experimental data and model prediction verifies the validity of the model.It is important to reveal the mechanism of coal spontaneous combustion and to make corresponding prevention measures.

    2.Experimental

    2.1.Sample preparation

    Lignite obtained from three representative lignite samples,those are Baiyinhua lignite(Inner Mongolia of China),Zhaotong lignite(Yunnan province of China),and Xiaolongtan lignite(Yunnan province of China)were used as raw coals in this study.They were numbered No.1,No.2,and No.3,respectively.The raw coals were crushed to the particle size between 1.0 mm and 1.5 mm,in order to ensure that the oxygen molecules escape mainly for the internal hole diffusion and migration process.The raw coals were dried at 25°C for48 h in vacuum under constant temperature to eliminate inner moisture,in order to eliminate the influence of moisture.Then the coal samples were accurately weighed,loaded into well closed sample tube and vacuumized.Table 1 summarizes the results of the proximate analysis,the ultimate analysis and determination of equivalent diameter(de)sphericity of coal samples before vacuum drying.The particle size range and the equivalent diameter are basically same,so it can be considered that the external diffusion resistance are equal.

    For investigating the effect of the temperature,the coal samples were oxidized for 8 h in air ambient by a humidity drying oven under 25 °C,50 °C,90 °C,130 °C,and 170 °C.All the experimental coals were marked and hermetic loaded in the well closed sample tubes.

    2.2.Determination of surface morphology and pore structure

    The FEI Quanta 250 Scanning Electron Microscope(SEM)was used to analyze the surface morphology of oxidized coal samples.The magnification times were fixed at 10000.The pore structure parameters of the oxidized coal samples were tested by the AS-1 Automatic surface area and pore size analyzer(Quantachrome Instruments)made in United States of America.Nitrogen as the adsorbate,the adsorption progress was carried out at liquid nitrogen temperature(-196°C).The coal surface area was determined by Brunauer,Emmett and Teller(BET)equation.The pore volume,the average pore diameter and pore size distribution were obtained by Density Functional Theory(DFT).The fractal dimensions of pore structure were calculated according to the fractal Frenkel–Halsey–Hill(FHH)mode from the N2adsorption data[29].

    2.3.Determination of coal-oxygen diffusion coefficient

    In this section,coal–oxygen diffusion coefficients were determined according to static proliferation dual-volume method,which has been used in the field of coal–oxygen diffusion because of its good reliability[30].

    2.3.1.Experimental device

    Device of measuring coal–oxygen diffusion is shown in Fig.1.

    Two airtight gas chambers(5 L capacity)are connected by a perspex tube(9 cm long and 1 cm in diameter)with two valves.Every experimental coal sample was filled in the test tube with the same filling method and voidage.The oxygen was introduced to chamber A and nitrogen to B.The pressures of the two chambers were adjusted to be equal.When the valves were opened,the oxygen began to diffuse through coals.The gas compositions of the two chambers were analyzed by gas chromatography.

    2.3.2.Methods

    Feng et al.[31] find that the pore resistance of the limiting particles is constant,while the pore resistance of large pores is much smaller than that of tiny pores.According of that,we assume that the external diffusion time is negligible compared to the diffusion time because the external diffusion coefficient is much greater than the internal diffusion coefficient after the coal is broken to a certain size(1 mm or more),the flow of gas in the loose coal pile is dominated by internal diffusion.Therefore,The model assumes that coal particles are spherical particles with the same diameter,O2diffusion resistance between the coal particle surface and the coal particle is negligible and the diffusion process of O2in coal grains obeys Fick's law.

    Under experimental conditions,the gas diffusion through loose coal is assumed quasi-static.Eq.(1)can be obtained according to Fick's law and conservation of mass.

    where JAis mass flow rate of oxygen diffusion,mol·s-1·m-2.S is the cross-sectional area of experimental tube,m2.DABis coal–oxygen diffusion coefficient,m2·s-1.CAand CBare respectively the oxygen concentration of gas chamber A and B,mol·L-1.L is the length of experimental tube,m.VBis the volume of gas chamber B,m3.

    Table 1 Basic characteristics of lignites

    Fig.1.Schematic diagram of coal-oxygen diffusion coef fi cient determination device.

    At equilibrium,the average concentration can be determined according to the initial concentrationat any time by mass balance.

    3.Results and Discussion

    3.1.Effect of low temperature oxidation on surface morphology

    From Fig.2,it can be seen that the particle surface of lignite is irregular with many pores and fractures.As the oxidation processed,coal particle surface morphology and pore structure have great changes.The coal particle oxidized at 50°C become smooth relatively.After being oxidized at 90 °C and 130 °C,phenomenon of pore growth can be observed obviously,and the edge of the pore becomes round and smooth.However,after being oxidized at 170°C,the irregular degree of the particle surface increased again.The collapse of coal can be observed.Meanwhile,the cracks become richer.This shows that the physical structures of coal change obviously because of the temperature effect,which is the reflection of the degree of oxidation.

    3.2.Effect of low temperature oxidation on pore morphology

    The low-temperature liquid nitrogen adsorption isotherms and the pore size distribution of lignite under different temperature are shown in Fig.3.

    Obviously,low-temperature oxidation causes great change both in pore diameter and fractal dimension of lignite.When relative pressure is less than 0.3,the separation degree of the adsorption/desorption isotherms increases with temperature(Fig.3a to e).When the relative pressure ranges from 0.4 to 0.95,the adsorbed amount increases sharply and large hysteresis loops appear.It can be concluded that experimental coal samples have wide pore size distribution.Meanwhile,many interconnected pores with larger diameter exist in coal.However,Fig.3e separates most obviously,which indicates blind pores in raw coal gradually evolve to interconnected pores because of gas expansion with the rising of ambient temperature.

    The pore size(Fig.3f)is divided into class 1 pore(<5 nm),class 2 pore(5 nm–15 nm),class 3 pore(>15 nm).It can be seen that the average pore diameter first increases and then decreases and reaches maximum at 90°C.The microspore content first decreases and then increases,which is contrary to macrospore.

    3.3.Effect of low temperature oxidation on pore parameters

    Average pore diameter and fractal dimension are given in Table 2.The fractal dimension,ranging from 2 and 3, first decreases and then increases with the minimum at 90 °C.From 25 °C to 90 °C,it is considered that average pore diameter become larger and pore topology becomes more uniform due to the evaporation and removal of the adsorbed gases.From 90 °C to 170 °C,water was removed from small capillaries.Similar to physical structure changes in the process of lignite drying[1],the shrinkage forces caused by emptying such small capillaries lead to the collapse of macrospore and generation of tiny pore.So the pore structure finally becomes more complicated.

    Fig.2.SEM images of No.1 lignite particles oxidized under different temperatures.

    Fig.3.Adsorption isotherms of No.1 lignite oxidized under(a)25 °C;(b)50 °C;(c)90 °C;(d)130 °C;(e)170 °C;and(f)pore size distribution of lignite under different temperature.

    3.4.Changing rule of coal-oxygen diffusion properties

    Data collected by gas chromatography are shown in Table 3.The oxygen diffusion coefficients of coal samples oxidized at different temperature are calculated according to the methods of 2.3.2 and are shown in Table 4.

    It can be seen from Table 4,with oxidation temperature increasing,the diffusion coefficient first increases and then decreases and reaches max at 90°C.

    The coal–oxygen diffusion coefficients of all coal samples are determined at the room temperature and the void ratios are similar,but the different coal samples have different results.Therefore,the continuous evolution of pore structure in the oxidation process must influence the coal–oxygen diffusion properties.

    Table 2 Average pore diameter and fractal dimension of No.1 lignite under different oxidation temperature

    4.Effect of Pore Structure on Coal–Oxygen Diffusion Properties

    The relationship among oxygen diffusion coefficient,average pore diameter and fractal dimension is shown in Fig.4.The coal–oxygen diffusion coefficient increases with the average pore diameter but decreases with the fractal dimension,and both of them have good linear relationship.

    The interaction between oxygen diffusion and average pore diameter can be explained by the Knudsen number,which represents the relative size of pore diameter and average free path of molecule motion[32].The diffusion mode can be divided into Fick diffusion,Knudsen diffusion and Transition diffusion by the Knudsen number.Larger pore diameter is more advantageous to the occurrence of Fick diffusion which has larger diffusion rate.So the generation of microspore is unfavorable to the oxygen diffusion.This leads to the conclusion that the evolution process of microspore to macrospore is a boost for the oxygen diffusion in coal.

    On the other hand,when the fractal dimension is smaller,the pore is more regular and uniform,which is beneficial to the diffusion of oxygen in coal.The effect of pore structure on carbon monoxide proliferation was reported by Guo et al.[33]Similar to the oxygen diffusion,the change of fractal dimension reflects the change of the surface morphology of diffusion channel.The difference is that fractal dimension and carbon monoxide proliferation has a quadratic curve relationship.Sothe certain influence relationship may be also related to the type of diffusion gas.

    Table 3 Change of O2 concentration with time

    Table 4 Oxygen diffusion coefficients of No.1 lignite under different Oxidation temperature

    Fig.4.Relationship among oxygen diffusion coefficient,average pore diameter and fractal dimension of No.1 lignite.

    The average pore diameter and fractal dimension are key parameters,which describe the classical and fractal pore structure respectively.The multiple linear regression of pore structure and coal–oxygen diffusion properties was made.

    where d is average pore diameter,mm.D is fractal dimension.a,b1and b2are coefficients.

    The results of multiple linear regression were obtained as following.

    Correlation coefficient:r=0.998

    Partial regression coefficients “t-Stat”:td=4.718,tD=1.327

    A correlation coefficient of 0.998 was obtained which can pass the F inspection on a high level of significance.The established linear regression equation fits well with the experimental data.According to “t-Stat”,average pore diameter affects the coal-oxygen diffusion coefficients more significantly than fractal dimension.

    5.Equation Verification

    The experimental data of oxygen diffusion coefficient,average pore diameter and fractal dimension of No.1,No.2 and No.3 samples are given in Table 5.The 3D figure(Fig.5)was plotted with the experimental data and the calculated data of oxygen diffusion coefficient with multiple linear equation of pore structure and coal–oxygen diffusion.The relative error of calculated data are less than 5%,indicating that this multiple linear equation of pore structure and coal–oxygen diffusion can predict the oxygen diffusion of low temperature oxidation lignite.

    6.Conclusions

    (1)During low temperature oxidation processes,physical structure of lignite changed obviously with pore growth,cracks production.The physical structure changes reflected the degree of oxidation.

    (2)Temperature had a significant impact on the pore evolution.The transition temperature was 90 °C.From 25 °C to 90 °C,the microspore became larger and the pore topology was more regular.From90 °C to 170 °C,the macrospore collapse and microspore developed again.The pore shape changed obviously and small permeable pores appeared gradually.

    (3)The effect of pore structure changes on coal-oxygen diffusion properties was testified.Larger pore diameter and smaller fractal dimension are beneficial to the diffusion of oxygen.The relevant equation of the coal-oxygen diffusion coefficients and the pore parameters is.Average pore diameter is the main influencing factor.

    Table 5 Data of lignite samples under different oxidation temperature

    Fig.5.3D figure of oxygen diffusion coefficient between the experimental and calculated data.

    [1]B.Sun,J.Yu,A.Tahmasebi,Y.Han,An experimental study on binderless briquetting of Chinese lignite:Effects of briquetting conditions,Fuel Process.Technol.124(10)(2014)243–248.

    [2]Y.Fei,A.A.Aziz,S.Nasir,W.R.Jackson,M.Marshall,J.Hulston,A.L.Chaffee,The spontaneous combustion behavior of some low rank coals and a range of dried products,Fuel 88(9)(2009)1650–1655.

    [3]H.Choi,C.Thiruppathiraja,S.Kim,Y.Rhim,J.Lim,S.Lee,Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal,Fuel Process.Technol.92(2011)2005–2010.

    [4]S.Krishnaswamy,S.Bhat,R.D.Gunn,P.K.Agarwal,Low-temperature oxidation of coal.1.A single-particle reaction–diffusion model,Fuel 75(95)(1996)333–343.

    [5]H.Wang,B.Z.Dlugogorski,E.M.Kennedy,Analysis of the mechanism of the lowtemperature oxidation of coal,Prog.Energy Combust.Sci.134(3)(2003)107–117.

    [6]B.Taraba,R.Peter,V.Slovák,Calorimetric investigation of chemical additives affecting oxidation of coal at low temperatures,Fuel Process.Technol.92(3)(2011)712–715.

    [7]X.M.Guo,J.C.Xu,S.E.Hui,Theoretical analysis on low of transporting oxygen in the loose coal,J.China Coal Soc.6(2001)643–648(in Chinese).

    [8]K.Brooks,D.Glasser,A implified model of spontaneous combustion in coal stockpiles,Fuel 65(86)(1986)1035–1041.

    [9]Z.Q.Zhang,K.F.Yan,Molecular dynamics simulation of oxygen diffusion in dry and water-containing brown coal,Mol.Phys.109(19)(2011)2367–2374.

    [10]H.Wen,M.G.Xu,Z.P.Wang,A.P.Dai,Research of influence of ground temperature on coal spontaneous combustion,J.Xi'an Univ.Sci.Technol.21(1)(2001)1–3(in Chinese).

    [11]Y.Xiao,Q.W.Li,J.H.Lu,Effects of air relative humidity on coal spontaneous combustion properties,China Saf.Sci.J.25(3)(2015)34–40(in Chinese).

    [12]Y.N.Zhang,J.Deng,Z.M.Luo,H.Wen,W.Wang,Thermogravimetric analysis on influence factor of coal spontaneous combustion,J.Xi'an Univ.Sci.Technol.28(2)(2008)388–391(in Chinese).

    [13]H.Wang,B.Z.Dlugogorski,E.M.Kennedy,Coal oxidation at low temperatures:oxygen consumption,oxidation products,reaction mechanism and kinetic modelling,Prog.Energy Combust.29(3)(2003)487–513.

    [14]X.L.Meng,Y.F.Liu,R.Z.Chu,Q.Fang,Z.C.Zhang,Experiment study on the influence of oxygen diffusion and mass-transfer on the oxidation reaction of lignite in lowtemperament,China Coal 39(3)(2013)68–72(in Chinese).

    [15]A.Kü?ük,Y.Kad?o?lu,M.?.Gülabo?lu,A study of spontaneous combustion characteristics of a turkish lignite:particle size,moisture of coal,humidity of air,Combust.Flame 133(3)(2003)255–261.

    [16]Y.Wang,Y.S.Zhao,Z.Z.Feng,Evolution characteristics of pore structure during lignite seam spontaneous combustion developing,J.China Coal Soc.35(9)(2010)1490–1495.

    [17]H.P.Corporation,A quaternized polysulfone membrane for zinc–bromine redox flow battery,J.Chem.15(1)(2014)1683–1685.

    [18]W.Q.Zhang,S.G.Jiang,Z.Y.Wu,L.Y.Wang,X.R.Ju,Review of spontaneous combustion characteristic structures in coal surface,Saf.Coal Min.43(1)(2012)15–18.

    [19]X.L.Meng,R.Z.Chu,G.G.Wu,J.M.Zhu,Z.H.Wang,J.Chen,Lab preparation and performance study on polyvinyl alcohol oxygen insulation gel to prevent coal spontaneous combustion,Coal Eng.9(2009)102–105(in Chinese).

    [20]M.J.Watt-Smith,S.P.Rigby,T.R.Ralph,F.C.Walsh,Characterisation of porous carbon electrode materials used in proton exchange membrane fuel cells via gas adsorption,J.Power Sources 184(1)(2008)29–37.

    [21]G.M.S.E.Shafei,C.A.Philip,N.A.Moussa,Fractal analysis of hydroxyapatite from nitrogen isotherms,J.Colloid Interface Sci.277(2)(2004)410–416.

    [22]J.Guo,O.Posnansky,S.Hirsch,M.Scheel,M.Taupitz,J.Braun,I.Sack,Fractal network dimension and viscoelastic powerlaw behavior:II.An experimental study of structure-mimicking phantoms by magnetic resonance elastography,Phys.Med.Biol.57(12)(2012)4041–4053.

    [23]S.I.Pyun,C.K.Rhee,An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures,Electrochim.Acta 49(24)(2004)4171–4180.

    [24]Y.D.Cai,D.M.Liu,Z.J.Pan,Y.B.Yao,J.Q.Li,Y.K.Qiu,Pore structure and its impact on CH4adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China,Fuel 103(2013)258–268.

    [25]G.S.Armatas,Determination of the effects of the pore size distribution and pore connectivity distribution on the pore tortuosity and diffusive transport in model porous networks,Chem.Eng.Sci.61(14)(2006)4662–4675.

    [26]Y.Shi,J.Xiao,M.Pan,R.Yuan,A fractal permeability model for the gas diffusion layer of PEM fuel cells,J.Power Sources 160(1)(2006)277–283.

    [27]Q.Zheng,B.Yu,S.Wang,L.Luo,A diffusivity model for gas diffusion through fractal porous media,Chem.Eng.Sci.68(1)(2012)650–655.

    [28]Y.Shi,J.Xiao,S.Quan,M.Pan,L.Zhang,Fractal model for prediction of effective hydrogen diffusivity of gas diffusion layer in proton exchange membrane fuel cell,Int.J.Hydrogen Energy 35(7)(2010)2863–2867.

    [29]A.L.Ahmad,N.N.N.Mustafa,Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel–Halsey–Hill(FHH)model,J.Colloid Interface Sci.301(2)(2006)575–584.

    [30]J.Deng,J.C.Xu,L.Li,Experimental research on diffusion coefficient of oxygen in crashed coal,J.China Univ.Min.Technol.32(2)(2003)145–147(in Chinese).

    [31]B.Feng,S.K.Bhatia,Variation of the pore structure of coal chars during gasification,Carbon 41(3)(2003)507–523.

    [32]X.C.Li,B.S.Nie,R.M.Zhang,L.L.Chi,Experiment of gas diffusion and its diffusion mechanism in coal,Int.J.Min.Sci.Technol.6(6)(2012)885–889.

    [33]L.W.Guo,Z.Y.Xiao,Y.X.Liu,Effect of coal pore structure on the CO proliferation,J.China Univ.Min.Technol.36(5)(2007)636–640(in Chinese).

    深夜精品福利| 亚洲精品色激情综合| 久久久久久久久久黄片| 国产色视频综合| 女人被狂操c到高潮| 夜夜躁狠狠躁天天躁| 手机成人av网站| 久久人人精品亚洲av| 日韩精品免费视频一区二区三区| 国产91精品成人一区二区三区| 亚洲精品美女久久av网站| 亚洲熟妇中文字幕五十中出| 亚洲精品久久国产高清桃花| 两人在一起打扑克的视频| 国产成人av激情在线播放| 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女黄片视频| 久久人妻福利社区极品人妻图片| 久9热在线精品视频| 午夜久久久久精精品| 又黄又粗又硬又大视频| 在线视频色国产色| 51午夜福利影视在线观看| 美女 人体艺术 gogo| 夜夜躁狠狠躁天天躁| 变态另类成人亚洲欧美熟女| 午夜福利欧美成人| 免费人成视频x8x8入口观看| 国产成人欧美在线观看| 99国产精品一区二区三区| 男人舔女人的私密视频| 国产精品爽爽va在线观看网站 | 哪里可以看免费的av片| 久久九九热精品免费| 欧美中文综合在线视频| 少妇 在线观看| 国产一区在线观看成人免费| 免费观看人在逋| 老司机午夜十八禁免费视频| 麻豆一二三区av精品| 国产亚洲精品久久久久久毛片| av在线播放免费不卡| 久久中文字幕人妻熟女| 亚洲成国产人片在线观看| 午夜日韩欧美国产| 午夜福利18| 亚洲av电影在线进入| 99精品久久久久人妻精品| 午夜免费鲁丝| 亚洲全国av大片| 久久精品影院6| 青草久久国产| 中文字幕av电影在线播放| 999精品在线视频| 在线免费观看的www视频| 最近最新免费中文字幕在线| 亚洲国产中文字幕在线视频| 欧美不卡视频在线免费观看 | 男女之事视频高清在线观看| 久久久久久亚洲精品国产蜜桃av| netflix在线观看网站| 久久欧美精品欧美久久欧美| 国产亚洲欧美在线一区二区| 一进一出抽搐动态| 亚洲一区二区三区不卡视频| 最好的美女福利视频网| а√天堂www在线а√下载| 在线av久久热| 又黄又爽又免费观看的视频| 亚洲国产看品久久| 视频在线观看一区二区三区| svipshipincom国产片| 免费无遮挡裸体视频| www日本黄色视频网| 中文字幕另类日韩欧美亚洲嫩草| 国产精品亚洲av一区麻豆| 色综合婷婷激情| 欧美又色又爽又黄视频| 性色av乱码一区二区三区2| 首页视频小说图片口味搜索| 欧美精品啪啪一区二区三区| 88av欧美| 国产亚洲av嫩草精品影院| 最新美女视频免费是黄的| 夜夜看夜夜爽夜夜摸| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 黄色a级毛片大全视频| 999精品在线视频| 久久精品影院6| 国产真实乱freesex| 99国产精品99久久久久| 一级a爱片免费观看的视频| 51午夜福利影视在线观看| 国产亚洲欧美精品永久| 亚洲熟女毛片儿| 亚洲男人天堂网一区| 成人手机av| 男女那种视频在线观看| 久久久久久九九精品二区国产 | ponron亚洲| 女性生殖器流出的白浆| 亚洲第一欧美日韩一区二区三区| 在线十欧美十亚洲十日本专区| 一级a爱片免费观看的视频| 丝袜美腿诱惑在线| 精品欧美一区二区三区在线| 欧美绝顶高潮抽搐喷水| 一区二区日韩欧美中文字幕| 中亚洲国语对白在线视频| 国产视频内射| 成人永久免费在线观看视频| 村上凉子中文字幕在线| 丝袜人妻中文字幕| 久久国产亚洲av麻豆专区| www.自偷自拍.com| 欧美在线一区亚洲| 欧美最黄视频在线播放免费| 12—13女人毛片做爰片一| 日韩三级视频一区二区三区| 国产熟女午夜一区二区三区| 可以在线观看毛片的网站| 一区二区三区高清视频在线| 国产精品日韩av在线免费观看| 精品熟女少妇八av免费久了| 真人做人爱边吃奶动态| 欧美日本亚洲视频在线播放| 亚洲av第一区精品v没综合| 可以免费在线观看a视频的电影网站| 熟妇人妻久久中文字幕3abv| 美女午夜性视频免费| 最近最新中文字幕大全免费视频| 99热这里只有精品一区 | 首页视频小说图片口味搜索| 成人国产综合亚洲| www.999成人在线观看| 操出白浆在线播放| 美国免费a级毛片| 国内毛片毛片毛片毛片毛片| 色综合欧美亚洲国产小说| 精品不卡国产一区二区三区| 久久精品影院6| 欧美色欧美亚洲另类二区| 欧美 亚洲 国产 日韩一| 日韩精品免费视频一区二区三区| 一区二区三区精品91| 啦啦啦韩国在线观看视频| 午夜福利在线在线| 最近最新免费中文字幕在线| 怎么达到女性高潮| 成人三级黄色视频| 99在线视频只有这里精品首页| netflix在线观看网站| 久久国产乱子伦精品免费另类| or卡值多少钱| 国产主播在线观看一区二区| 午夜福利18| 啦啦啦 在线观看视频| 美女 人体艺术 gogo| 一本综合久久免费| 一级a爱片免费观看的视频| 香蕉丝袜av| x7x7x7水蜜桃| 一级毛片高清免费大全| 老熟妇仑乱视频hdxx| 亚洲成av片中文字幕在线观看| 真人一进一出gif抽搐免费| 成人欧美大片| 欧美一区二区精品小视频在线| 国产午夜精品久久久久久| 人人妻人人澡人人看| 男男h啪啪无遮挡| 999久久久国产精品视频| www.999成人在线观看| a级毛片在线看网站| 正在播放国产对白刺激| 激情在线观看视频在线高清| 午夜影院日韩av| 少妇裸体淫交视频免费看高清 | 最近最新中文字幕大全电影3 | 欧美精品亚洲一区二区| 午夜影院日韩av| 琪琪午夜伦伦电影理论片6080| 一个人观看的视频www高清免费观看 | 侵犯人妻中文字幕一二三四区| 自线自在国产av| 国内揄拍国产精品人妻在线 | 精品久久久久久久末码| 最新在线观看一区二区三区| 国内久久婷婷六月综合欲色啪| 国产1区2区3区精品| 又黄又爽又免费观看的视频| 一区二区三区高清视频在线| 午夜福利18| 久久精品影院6| 国产成人精品久久二区二区91| 这个男人来自地球电影免费观看| 国产精品美女特级片免费视频播放器 | 一边摸一边抽搐一进一小说| 国产麻豆成人av免费视频| 久久伊人香网站| 日日爽夜夜爽网站| 国产精品99久久99久久久不卡| 亚洲一区中文字幕在线| 国产成+人综合+亚洲专区| 亚洲色图av天堂| 国产黄片美女视频| 999久久久精品免费观看国产| 一a级毛片在线观看| 狠狠狠狠99中文字幕| 黄色片一级片一级黄色片| 国产人伦9x9x在线观看| 国产伦一二天堂av在线观看| 中文字幕精品免费在线观看视频| 中文资源天堂在线| 巨乳人妻的诱惑在线观看| 日韩欧美一区二区三区在线观看| 在线永久观看黄色视频| 久久天堂一区二区三区四区| 国产精品香港三级国产av潘金莲| 波多野结衣高清无吗| 亚洲五月色婷婷综合| 国产亚洲精品久久久久久毛片| 亚洲av成人不卡在线观看播放网| 岛国视频午夜一区免费看| 国产熟女午夜一区二区三区| x7x7x7水蜜桃| 我的亚洲天堂| www日本在线高清视频| 日韩 欧美 亚洲 中文字幕| 国产伦人伦偷精品视频| 操出白浆在线播放| 成熟少妇高潮喷水视频| 亚洲美女黄片视频| 18禁国产床啪视频网站| 美女高潮喷水抽搐中文字幕| 亚洲精品国产精品久久久不卡| 18美女黄网站色大片免费观看| 欧洲精品卡2卡3卡4卡5卡区| 天堂影院成人在线观看| 欧美日韩精品网址| 男人舔奶头视频| 亚洲成av片中文字幕在线观看| 国产国语露脸激情在线看| 久久 成人 亚洲| 无遮挡黄片免费观看| 亚洲色图 男人天堂 中文字幕| 午夜日韩欧美国产| 久久精品国产清高在天天线| 国产成人欧美在线观看| 国产视频一区二区在线看| 男女床上黄色一级片免费看| 欧美中文综合在线视频| 自线自在国产av| 一区二区三区精品91| 国产激情偷乱视频一区二区| 亚洲美女黄片视频| 免费在线观看亚洲国产| 久久国产精品影院| 99国产综合亚洲精品| 国产精品永久免费网站| 色哟哟哟哟哟哟| 黄色视频,在线免费观看| 人人澡人人妻人| 成人国产一区最新在线观看| a在线观看视频网站| 亚洲国产欧美网| 深夜精品福利| 午夜福利成人在线免费观看| 夜夜看夜夜爽夜夜摸| 狠狠狠狠99中文字幕| 男女那种视频在线观看| 久久久国产欧美日韩av| 国产真人三级小视频在线观看| 香蕉国产在线看| 精品国产乱子伦一区二区三区| 欧美日本亚洲视频在线播放| 久久久国产成人免费| netflix在线观看网站| 一区二区日韩欧美中文字幕| 亚洲成国产人片在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧洲综合997久久, | 亚洲全国av大片| 嫁个100分男人电影在线观看| 亚洲精品av麻豆狂野| 一级a爱片免费观看的视频| 午夜激情福利司机影院| 亚洲国产高清在线一区二区三 | 欧美丝袜亚洲另类 | 欧美乱码精品一区二区三区| 国产又色又爽无遮挡免费看| 国产av又大| 欧美 亚洲 国产 日韩一| 视频区欧美日本亚洲| 午夜福利成人在线免费观看| 黄色 视频免费看| 欧美日韩亚洲综合一区二区三区_| 怎么达到女性高潮| 久久狼人影院| 别揉我奶头~嗯~啊~动态视频| 日本成人三级电影网站| aaaaa片日本免费| 亚洲最大成人中文| 亚洲七黄色美女视频| 中文字幕久久专区| av欧美777| 欧美黄色淫秽网站| 欧美一区二区精品小视频在线| 亚洲一码二码三码区别大吗| 亚洲一区二区三区不卡视频| 亚洲男人天堂网一区| 欧美黄色淫秽网站| 亚洲精品在线观看二区| 禁无遮挡网站| 欧美激情久久久久久爽电影| 精品国产乱码久久久久久男人| 久久午夜综合久久蜜桃| 日韩成人在线观看一区二区三区| 免费在线观看亚洲国产| 亚洲精品中文字幕在线视频| 这个男人来自地球电影免费观看| 美国免费a级毛片| 波多野结衣高清作品| 久久久久精品国产欧美久久久| 91字幕亚洲| 久久精品91无色码中文字幕| 国产乱人伦免费视频| 午夜亚洲福利在线播放| 丁香六月欧美| 麻豆久久精品国产亚洲av| 国产伦人伦偷精品视频| av电影中文网址| 免费电影在线观看免费观看| 在线av久久热| 国产精品综合久久久久久久免费| 禁无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲一码二码三码区别大吗| 国产激情偷乱视频一区二区| 国产一区二区激情短视频| 国产激情久久老熟女| 久久久国产欧美日韩av| 国产日本99.免费观看| 亚洲 欧美 日韩 在线 免费| 中国美女看黄片| 久久精品亚洲精品国产色婷小说| 免费高清在线观看日韩| 午夜免费鲁丝| 亚洲精品久久成人aⅴ小说| 99久久综合精品五月天人人| 一区二区三区高清视频在线| 国产真实乱freesex| 亚洲国产精品合色在线| 狠狠狠狠99中文字幕| 黑人操中国人逼视频| 在线免费观看的www视频| 黄色丝袜av网址大全| 无遮挡黄片免费观看| 两人在一起打扑克的视频| 人人妻人人澡欧美一区二区| 国产区一区二久久| 韩国精品一区二区三区| 午夜老司机福利片| 久久婷婷成人综合色麻豆| 国产色视频综合| 欧美日韩瑟瑟在线播放| 久久人妻福利社区极品人妻图片| 国产精品野战在线观看| 国产精品日韩av在线免费观看| 国产片内射在线| 亚洲欧美日韩无卡精品| 欧美日韩一级在线毛片| 亚洲国产高清在线一区二区三 | 国产精品 欧美亚洲| 此物有八面人人有两片| tocl精华| 精品不卡国产一区二区三区| 亚洲国产精品成人综合色| 亚洲色图av天堂| 欧美日韩亚洲综合一区二区三区_| 香蕉久久夜色| 久久久水蜜桃国产精品网| 高潮久久久久久久久久久不卡| 丁香欧美五月| aaaaa片日本免费| 老司机靠b影院| av福利片在线| 亚洲精品国产区一区二| 午夜精品久久久久久毛片777| 少妇 在线观看| 欧美成人一区二区免费高清观看 | 免费在线观看黄色视频的| 亚洲五月色婷婷综合| av视频在线观看入口| 欧美激情久久久久久爽电影| 制服丝袜大香蕉在线| 99国产精品一区二区三区| 午夜福利免费观看在线| 在线观看舔阴道视频| 日韩三级视频一区二区三区| 久久 成人 亚洲| 日本精品一区二区三区蜜桃| 免费在线观看日本一区| 久久久久久久久久黄片| 国产激情偷乱视频一区二区| 欧美黑人欧美精品刺激| 日日爽夜夜爽网站| 日韩三级视频一区二区三区| 亚洲午夜理论影院| 成人亚洲精品一区在线观看| 搡老熟女国产l中国老女人| 国产三级黄色录像| 国产亚洲精品综合一区在线观看 | 夜夜爽天天搞| 国产精品1区2区在线观看.| 久久中文字幕一级| 欧美乱码精品一区二区三区| 搡老妇女老女人老熟妇| 美国免费a级毛片| 90打野战视频偷拍视频| 国产伦在线观看视频一区| 成人免费观看视频高清| 日日摸夜夜添夜夜添小说| 91成年电影在线观看| 免费在线观看日本一区| 老汉色av国产亚洲站长工具| 精品高清国产在线一区| 变态另类丝袜制服| 两个人看的免费小视频| 午夜免费观看网址| 欧美另类亚洲清纯唯美| 久久中文看片网| 久久久久精品国产欧美久久久| 一级a爱片免费观看的视频| 亚洲国产精品久久男人天堂| 日本 av在线| 亚洲一区高清亚洲精品| 欧美在线黄色| 久久久久国产一级毛片高清牌| 亚洲真实伦在线观看| 国产v大片淫在线免费观看| 成人国产一区最新在线观看| 热99re8久久精品国产| 色在线成人网| 少妇的丰满在线观看| 视频在线观看一区二区三区| 热re99久久国产66热| 国产欧美日韩精品亚洲av| 欧美大码av| 少妇被粗大的猛进出69影院| 女人被狂操c到高潮| 亚洲精品久久成人aⅴ小说| 99热这里只有精品一区 | 国产片内射在线| 国产精品久久久久久亚洲av鲁大| 精品久久蜜臀av无| 亚洲自拍偷在线| 美女 人体艺术 gogo| 亚洲国产精品sss在线观看| 国产视频内射| 久久人人精品亚洲av| 欧美成人免费av一区二区三区| avwww免费| 精品午夜福利视频在线观看一区| 日韩欧美一区视频在线观看| 亚洲男人的天堂狠狠| 18禁黄网站禁片免费观看直播| 少妇的丰满在线观看| 丰满的人妻完整版| www.熟女人妻精品国产| 国产免费av片在线观看野外av| 国产成人欧美在线观看| 久久精品aⅴ一区二区三区四区| 成熟少妇高潮喷水视频| 国产在线观看jvid| 欧美国产日韩亚洲一区| 国产精品久久久人人做人人爽| 日韩欧美在线二视频| 国产91精品成人一区二区三区| 久久国产精品人妻蜜桃| 亚洲成av片中文字幕在线观看| 日韩欧美国产在线观看| АⅤ资源中文在线天堂| 怎么达到女性高潮| 国产av不卡久久| 国产亚洲精品综合一区在线观看 | 男女之事视频高清在线观看| www日本在线高清视频| 51午夜福利影视在线观看| 91九色精品人成在线观看| cao死你这个sao货| 久热爱精品视频在线9| 中国美女看黄片| 18禁观看日本| 国产极品粉嫩免费观看在线| 18禁观看日本| 18禁黄网站禁片午夜丰满| 久久国产精品男人的天堂亚洲| 免费看日本二区| 国产野战对白在线观看| 国产成人啪精品午夜网站| avwww免费| 亚洲avbb在线观看| 一区福利在线观看| 我的亚洲天堂| 变态另类丝袜制服| 欧美绝顶高潮抽搐喷水| 亚洲欧美一区二区三区黑人| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av五月六月丁香网| 久久精品国产清高在天天线| 午夜免费鲁丝| 亚洲av日韩精品久久久久久密| 脱女人内裤的视频| 亚洲av美国av| 黄色a级毛片大全视频| 丝袜美腿诱惑在线| 日韩精品中文字幕看吧| 久久香蕉激情| 欧美+亚洲+日韩+国产| 熟女少妇亚洲综合色aaa.| 长腿黑丝高跟| 色老头精品视频在线观看| 99在线视频只有这里精品首页| 亚洲国产毛片av蜜桃av| 亚洲avbb在线观看| 国产一区二区激情短视频| 国产99久久九九免费精品| 久久香蕉精品热| 俄罗斯特黄特色一大片| 久久精品亚洲精品国产色婷小说| 黄色视频,在线免费观看| 精品高清国产在线一区| 午夜亚洲福利在线播放| 久久久久久免费高清国产稀缺| 男人的好看免费观看在线视频 | 黄色 视频免费看| 在线av久久热| av欧美777| 怎么达到女性高潮| 日日干狠狠操夜夜爽| 亚洲欧美精品综合一区二区三区| 国产极品粉嫩免费观看在线| 婷婷精品国产亚洲av在线| 99久久综合精品五月天人人| 两个人免费观看高清视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲无线在线观看| 国产伦在线观看视频一区| 国产精华一区二区三区| 亚洲专区中文字幕在线| 成熟少妇高潮喷水视频| 宅男免费午夜| 精品国内亚洲2022精品成人| 久久久久久久精品吃奶| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区精品| 一a级毛片在线观看| 最新美女视频免费是黄的| 免费看美女性在线毛片视频| 又黄又爽又免费观看的视频| 十八禁人妻一区二区| 亚洲成人精品中文字幕电影| 国产激情久久老熟女| 在线免费观看的www视频| 中文字幕精品免费在线观看视频| 人成视频在线观看免费观看| 亚洲专区国产一区二区| 免费在线观看成人毛片| 波多野结衣av一区二区av| 人妻久久中文字幕网| 啦啦啦 在线观看视频| 精品国产国语对白av| 午夜福利视频1000在线观看| 欧美一区二区精品小视频在线| 亚洲免费av在线视频| 亚洲精品色激情综合| 真人做人爱边吃奶动态| 免费观看人在逋| 悠悠久久av| 免费在线观看亚洲国产| www日本黄色视频网| 窝窝影院91人妻| 亚洲九九香蕉| 欧美激情久久久久久爽电影| 久久九九热精品免费| 18禁观看日本| 首页视频小说图片口味搜索| АⅤ资源中文在线天堂| 亚洲国产日韩欧美精品在线观看 | 国产成人av激情在线播放| 亚洲中文av在线| 久久精品国产综合久久久| 99久久无色码亚洲精品果冻| 亚洲精品国产区一区二| 欧美中文综合在线视频| 老汉色av国产亚洲站长工具| 国产亚洲精品一区二区www| 好男人在线观看高清免费视频 | 久久香蕉激情| 欧美黑人精品巨大| 国产精品电影一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 12—13女人毛片做爰片一| 亚洲免费av在线视频| 国产又色又爽无遮挡免费看| 精品卡一卡二卡四卡免费| 99久久无色码亚洲精品果冻| 女人高潮潮喷娇喘18禁视频| www.精华液| 99国产综合亚洲精品| 侵犯人妻中文字幕一二三四区| 1024手机看黄色片| 男女做爰动态图高潮gif福利片|