• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A stepwise optimal design of water network☆

    2016-06-08 03:03:04YingLiJintaoGuan

    Ying Li*,Jintao Guan

    Department of Environmental and Chemical Engineering,Dalian Jiaotong University,Dalian 116028,China

    1.Introduction

    Water has been used in abundant quantities by chemical,petrochemical,petroleum refining and other process industries.However,increasing cost of wastewater treatment to meet environmental standards and scarcity of good quality industrial water create a serious economic driving force to minimize the amount of water consumption and wastewater discharge.Without fundamental changes to reduce the operations requiring water,three general approaches are usually for wastewater minimization:water reuse,regenerated water reuse,and regenerated water recycle[1].Their definitions are as follows[2].

    Reuse:the outlet water from one process,which is sufficiently clean,is directly re-used to satisfy the water demand of another process.

    Regeneration reuse:the outlet water from a process is treated to be suitable for use in some water-consuming processes.The treatment is called regeneration.

    Regeneration recycle:the regenerated water is re-used in the same process.

    The total water network for wastewater minimization is separated into two subsystems for reuse:water utilization network[3–8]and wastewater treatment network[9–13].When the optimal flow scheme only involves the interaction of two subsystems,many opportunities of wastewater minimization such as regeneration reuse are ignored[14].Many efforts have been made to optimal design of water network due to the inherent complexity of two subsystems involving regeneration reuse[15].The pinch technology[16–21]shows limitations to address the complexity of the problem,and the research field moves to mathematical programming methods[22–27].

    In order to improve design methods and optimization frameworks for water networks in practice,Alva-Argáez et al.[28]have addressed an integrated approach,which brought the engineering insight with water pinch analysis and powerful mathematical programming tools.Efforts have been made to obtain global optimality for solutions generated from mathematical programming techniques[29,30].Faria and Bagajewicz[31]have discussed the network structure of water system.Teles et al.[32]have proposed new mixed-integer linear programming models for the optimal design of water-using and wastewater treatment networks.However,most of available design methods and approaches have focused on minimizing water consumption and its operating costs.Gunaratnam et al.[33]have developed an automated method for the design of total water systems.Hu et al.[34]have adopted appropriate process decomposition strategies to further reduce freshwater usage and avoid recycling.Iancu et al.[35]have extended the mathematical model of wastewater network for partial/total stream regeneration.

    In order to attain zero discharge,regeneration recycle is used in water network design[36].Relvas et al.[37]developed software AquoMin to design and target the networks involving regeneration reuse/recycling.Poplewski et al.[38]established a superstructure for water-using network involving reuse/recycling and solved the superstructure with adaptive random search optimization technique.Kim[39]discussed system analysis tools including a graphical method and an optimization method.Khor et al.[40]proposed a superstructure with fixed topology for a water network consisting of three layers:sources for reuse/recycle,regenerators for contaminant removal,and sinks for acceptance of water for reuse/recycle.Liu's group[41–44]developed a heuristic design procedure for design of water network including regeneration recycle.

    Undoubtedly,the introduction of regeneration process can further reduce the consumption of fresh water.Compared with regeneration recycle,regeneration reuse can avoid the risk of potential build-up of trace contaminants in the process.However,the difference between regeneration reuse and regeneration recycle results in a MINLP problem for water network design.For regeneration reuse,the regeneration process cut the water network into two sub-networks before and after the process.Although the research effort in this area has increasingly focused on mathematical programming methods,the solution will be assisted by exploiting insights from conceptual approaches in order to simplify solution procedures.In this paper,a stepwise design approach is developed,in which reuse,regeneration reuse and regeneration recycle are considered step by step and the insights from the design are used to guide the next design.The MINLP problems for regeneration reuse are changed to NLP or LP problems and the recycling water flow rate is minimized.

    2.Model Development

    2.1.Problem statement

    For a set of water-using processes requiring water of a certain quality and a set of regeneration processes with a certain capacity of treating wastewater,it is desired to determine a network of water streams among the processes so that the overall fresh water consumption is minimized while the processes receive water of adequate quality.

    For design of water network,the superstructure is so large that it is difficult to solve or find the optimal solutions for corresponding MINLP problem.To simplify the framework of superstructure and find the optimal design of water network,the options for process k to minimize fresh water consumption by a stepwise adoption of reuse,regeneration reuse and regeneration recycle are shown in Fig.1.The head process[4]utilizes only fresh water.Direct reuse process and other processes using fresh water reduce fresh water consumption with the addition of regeneration reuse,which will be considered in Section 2.2.The replacement of regeneration reuse water to fresh water and placement before or after the regeneration process are discussed in Section 2.3.The processes that utilize fresh water except head processes adopt regeneration recycle(Fig.1d).

    2.2.Design of water network with direct reuse

    For single contaminant systems,processes can be arranged directly in the order of their maximum outlet concentration.However,for multiple contaminant systems,the monotonicity condition of key contaminant must be satisfied.For the process using fresh water only,the contaminant consuming the largest fresh water flow rate is the key contaminant and its outlet concentration attains the maximum for this process.

    Usually,the objective function of water network may be the minimization of fresh water consumption.

    Fig.1.Options for process k to minimize fresh water consumption.

    The optimization platform in this work is the general algebraic modeling system,which is a system with optimization models specified in equation form and their solutions obtained with different solvers.The solvers employed are CONOPT for NLP problem.

    2.3.Determination for placement of regeneration process

    With regeneration process added,whether regeneration recycle is included must be considered.In regeneration recycle,the same water enters the same process many times,forming similar NLP problem.In regeneration reuse,the same water is allowed to enter the same process once,leading to an MINLP problem for water network design.Binary variables are introduced to account for the water-using processes behind the regeneration process.

    Since the difference between the water network involving regeneration and that involving reuse only is an additional stream,when adding the regenerated stream into the network with reuse only,the network involving regeneration is formed.It is necessary to know possible regenerated water flow rate and contaminant concentration.The determination of regeneration process can provide these according to the following rules from reuse water network structure.The design needs to diminish regenerated water flow rater with the minimum fresh water consumption.It means that regenerated water replaces fresh water as much as possible and replaces reuse water as little as possible.

    Rule1:Head processes must be placed before the regeneration process.This is decided by definition of head processes in Fig.1(a).

    Rule 2:If process i satisfies reuse water demand of process k completely,process k is placed at the same position as process i(before or after the regeneration process).Process k is a total wastewater user as shown in Fig.1(b),which can be satisfied by direct reuse.It is not necessary to consider regeneration reuse for process k in view of fresh water reduction.Meanwhile,the priority of direct reuse is retained by Rule 2 as the simplest method to attain wastewater minimization.

    Rule 3:The purpose of setting regeneration process is to replace fresh water with regeneration reuse,so at least one process that uses fresh water must be placed after the regeneration process.If process i and process k are fresh water users and the consumed fresh water of process k is less than that of process i,process k is preferred to be placed before regeneration process.This is the most important step to determine the placement of regeneration process and judge whether the fresh water user processes are placed before or after the regeneration process,as shown in Fig.1(c).

    Rule 4:As a special case of Rule 3,if process i sends wastewater to process k,it is not allowed to put process k before the regeneration process and process i after the regeneration process.The stepwise optimal design from reuse to regeneration reuse is shown.

    Many regeneration reuse plans are generated according to the processes placement before or after the regeneration process.The regeneration reuse is adopted as an approach to reduce fresh water consumption for process k.At the same time,the reuse water network structure is kept to the largest extent.

    2.4.Design of water network with regeneration reuse

    Based on these rules,regeneration process is arranged at different positions one by one according to theoretical minimum fresh water consumption.The network structure before the regeneration process is similar to the one in reuse water network.The network structure after the regeneration is optimized through the following NLP model.Regeneration process is normally specified by simply an outlet concentration or a removal ratio.The minimum fresh water consumption and regenerated water flow rate are guaranteed by objective function in whichλαis10times greater thanλβ.Regenerated water flow rate is initialized to be equal to fresh water consumption before the regeneration process.

    The objective function of water network:

    Table 1 Specified conditions of water using processes for example 1[14]

    Table 2 Minimum fresh water consumption of plan design of example 1 for regeneration reuse

    Table 3 Specified conditions of water using processes for example 2

    2.5.Design of water network including regeneration recycle

    In regeneration reuse water network,some processes except head processes that use fresh water will adopt regeneration recycle,toguarantee the minimum recycling water flow rate,which is determined according to the consumed fresh water of head processes.The structure of regeneration reuse water network is kept,and the fresh water consumption except head processes will be replaced by regeneration recycle.For process k in Fig.1(c),the flow rate of regeneration recycle is determined,as shown in Fig.2.

    Table 4 Minimum fresh water consumption of plan design of example 2 for regeneration reuse

    3.Case Study

    Example 1 consists of five water-using processes with single contaminant,given in Table 1 from Kuo and Smith[14].The removal ratio for the regeneration process of 95%is assumed.For single contaminant problem,reuse water network is obtained through a LP model to attain the maximum outlet concentration of each process.In Fig.3,process 1 is head process,processes 2 and 3 need fresh water and the consumption of process 3 is less,process 4 reuses wastewater from process 1 completely,process 5 reuses wastewater produced by processes 2 and 3,and process 2 also sends wastewater to process 3.

    Fig.2.The optimal procedure for regeneration reuse water network.

    Fig.3.Design of example 1 with direct reuse.

    According to the reuse water network,some rules are adopted.

    Rule 1:Process 1 is head process and must be placed before the regeneration process.

    Rule 2:Process 4 is a direct reuse process and is placed before the regeneration process as process 1.

    Rule 3:Among process 2 and 3 at least one process is placed behind the regeneration process.

    Rule 4:It is not allowed to place process 3 before the regeneration process and process 2 after the regeneration process simultaneously.Process 5 is a direct reuse process and must be placed after the regeneration process.

    Fig.4 shows two plans for regeneration reuse water network design.Plan 1 is the optimal according to the minimum fresh water consumption in Table 2.The corresponding regenerated reuse water network design is shown in Fig.5.It is similar to the result of Liu et al.[41],but the fresh water supplies to process 2 with low contaminant concentration.Otherwise,process 3 can be satisfied by regeneration reuse water and process 2 will be considered with regeneration recycle.

    Fig.4.Design plan of example 1 for regeneration reuse.

    Based on the regeneration reuse structure,the regenerated water flow rate is 43.68 t·h-1and the recycling water flow rate is 3.68 t·h-1,as shown in Fig.6,which are less than 51.3 t·h-1and 28.8 t·h-1,respectively[14].The regenerated water flow rate is identical to the result of Kuo and Smith[14]of 42.1 t·h-1with a fixed outlet concentration of10 mg·L-1in Fig.7,while the recycling water flow rate is 2.11 t·h-1,which is far less than 35 t·h-1of[14].

    For the water network design problem with multiple contaminants in a simplified petroleum refinery,example 2 is also taken from Kuo and Smith[14].The problem consists of five water-using processes with three contaminants hydrocarbon(H.C.),hydrogen sulfide,and suspended solids(S.S.).Table 3 presents the operating data for the water-using processes and contaminants.The regeneration process is defined in terms of removal ratios,specified to(0,99.9%,0)for the three contaminants.

    According to NLP model for reuse only,the reuse water network is shown in Fig.8.Processes 1 and 4 are head processes.Process 5 is direct reuse process that reuses wastewater from process 1 completely.Processes 2 and 3 need fresh water and the consumption of process 2 is less.

    The rules to place regeneration process are as follows.

    Rule 1:Processes 1 and 4 must be placed before the regeneration process.

    Rule 2:Process 5 is placed before the regeneration as process 1.

    Rule 3:Among processes 2 and 3 at least one process is placed after the regeneration process.And process 2 has priority to be placed before the regeneration process.

    Rule 4:No case is used.

    Fig.9 shows three plans for regeneration reuse water network design.According to the convergence criterion in Fig.2,fresh water consumption behind the regeneration process equals zero with plan 2 and the total fresh water consumption is less than plan 1 in Table 4.The final regeneration reuse water network of plan 2 is shown in Fig.10.

    Fig.5.Design of example 1 for regeneration reuse.

    Fig.6.Design of example 1 for regeneration recycle.

    Fig.7.Design of example 1 for regeneration recycle at a fixed regeneration outlet concentration of 10 mg·L-1.

    Liu etal.[44]and Hu etal.[34]investigated this example with the regeneration reuse.Table 5 compares the results of different methods for this example.Results indicate that the regenerated water flow rate is lower than that in the literature.The final contaminant concentrations and flow rate of the process streams are shown in Table 6.The key contaminant in each process reaches the limiting outlet concentration and the inlet and outlet concentrations of process 3 are closer to the limiting inlet and outlet concentrations compared with the results of Liu et al.[41](in the brackets).The optimal result benefits from the objective function Eq.(6)and the insights from Fig.8 for reuse from processes 1 to 3.

    Fig.8.Design of example 2 with direct reuse.

    Fig.9.Design plan of example 2 for regeneration reuse.

    Fig.10.Design of example 2 for regeneration reuse.

    Fig.11.Design of example 2 for regeneration recycle.

    Table 5 Comparison of different results for example 2

    Meanwhile,process 3 can be satisfied by regenerated reuse water and process 2 is left to supply water with adequate quality by regeneration recycle.For regeneration recycle in Fig.11,the regenerated water flow rate of 55.77 t·h–1is less than that of 56.08 t·h–1in[43].

    4.Conclusions

    In this paper,a stepwise design of regeneration water network is proposed based on mathematical programming with the insights fromreuse water network structure.For regeneration reuse water network,an MINLP problem is changed to an NLP problem and the searching procedure is simple and effective.Both the minimum fresh water consumption and the minimum regenerated water flow rate are obtained.Furthermore,the regeneration recycle water network featured by minimum recycling water flow rate can be easily provided.Water networks with single and multiple contaminants are designed using the method presented in this paper.Although the fresh water consumption is equal to that in traditional water network,the regenerated water flow rate or the recycling water flow rate is lower than that in literature.Water network involving reuse,regeneration reuse and regeneration recycle is designed step by step in this paper,so the network structure presents better flexibility and operability.

    Table 6 The optimal process data for example 2

    [1]N.Takama,T.Kuriyama,K.Shiroko,Optimal water allocation in a petroleum refinery,Comput.Chem.Eng.4(1980)251–258.

    [2]J.G.Mann,Y.A.Liu,Industrial Water Reuse and Wastewater Minimization,McGraw-Hill,New York,1999.

    [3]Y.P.Wang,R.Smith,Wastewater minimization,Chem.Eng.Sci.49(1994)981–1006.

    [4]M.J.Savelski,M.J.Bagajewicz,On the optimality conditions of water utilization systems in process plants with single contaminant,Chem.Eng.Sci.55(2000)5035–5048.

    [5]M.J.Bagajewicz,M.Rivas,M.J.Savelski,A robust method to obtain optimal and suboptimal design and retro fit solutions of water utilization systems with multiple contaminants in process plants,Comput.Chem.Eng.24(2000)1461–1466.

    [6]Y.Li,P.J.Yao,Optimal design of water utilization networks by combination of water pinch analysis and mathematical programming,J.Chem.Ind.Eng.55(2004)220–225.

    [7]S.Aly,S.Abeer,M.Awad,A new systematic approach for water network design,Clean Techn.Environ.Policy 7(2005)154–161.

    [8]J.P.Teles,P.M.Castro,A.Q.Novais,LP-based solution strategies for the optimal design of industrial water networks with multiple contaminants,Chem.Eng.Sci.63(2008)376–394.

    [9]Y.P.Wang,R.Smith,Design of distributed effluent treatment systems,Chem.Eng.Sci.49(1994)3127–3145.

    [10]W.J.Kuo,R.Smith,Effluent treatment system design,Chem.Eng.Sci.52(1997)4273–4290.

    [11]B.Galan,I.E.Grossmann,Optimal of distributed wastewater treatment networks,Ind.Eng.Chem.Res.37(1998)4036–4048.

    [12]H.S.Rogelio,C.F.Julian,M.Z.Ju,Superstructure decomposition and parametric optimization approach for the synthesis of distributed wastewater treatment networks,Ind.Eng.Chem.Res.43(2004)2175–2191.

    [13]P.M.Castro,J.P.Teles,A.Q.Novais,Linear program-based algorithm for the optimal design of wastewater treatment systems,Clean Techn.Environ.Policy 11(2009)83–93.

    [14]W.J.Kuo,R.Smith,Design of water-using systems involving regeneration,Trans.IChemE 76(B)(1998)94–114.

    [15]M.J.Bagajewicz,A review of recent design procedures for water networks in refineries and process plants,Comput.Chem.Eng.24(2000)2093–2113.

    [16]S.Mohammadnejad,G.R.NabiBidhendi,N.Mehrdadi,Water pinch analysis in oil refinery using regeneration reuse and recycling consideration,Desalination 265(2011)255–265.

    [17]A.A.Ulson de Souza,E.Forgiarini,H.L.Brand?oa,M.F.Xavier,F.L.P.Pessoa,S.M.A.Guelli U Souza,Application of Water Source Diagram(WSD)method for the reduction of water consumption in petroleum refineries,Resour.Conserv.Recycl.53(2009)149–154.

    [18]S.R.Wan Alwi,Z.A.Manan,M.H.Samingin,N.Misran,A holistic framework for design of cost-effective minimum water utilization network,J.Environ.Manag.88(2008)219–252.

    [19]J.Bai,X.Feng,C.Deng,Graphically based optimization of single-contaminant regeneration reuse water systems,Chem.Eng.Res.Des.85(2007)1178–1187.

    [20]J.Bai,X.Feng,C.Deng,Optimal design of single-contaminant regeneration reuse water networks with process decomposition,AICHE J.56(2010)915–929.

    [21]J.F.S.Gomes,E.M.Queiroz,F.L.P.Pessoa,Design procedure for water/wastewater minimization:single contaminant,J.Clean.Prod.15(2007)474–485.

    [22]A.Alva-Argáez,A.Vallianatos,A.C.Kokossis,A multi-contaminant transshipment model for mass exchange networks and wastewater minimization problems,Comput.Chem.Eng.23(1999)1439–1453.

    [23]C.H.Huang,C.T.Chang,H.C.Ling,A mathematical programming model for water usage and treatment network design,Ind.Eng.Chem.Res.38(1999)2666–2679.

    [24]M.Tasi,C.Chang,Water usage and treatment network design using genetic algorithm,Ind.Eng.Chem.Res.40(2001)4874–4888.

    [25]L.Matija?evi?,I.Dejanovi?a,D.Spojab,A water network optimization using MATLAB—a case study,Resour.Conserv.Recycl.54(2010)1362–1367.

    [26]D.C.de Faria,A.A.U.de Souza,S.M.de Arruda,G.U.de Souza,Optimization of water networks in industrial processes,J.Clean.Prod.17(2009)857–862.

    [27]A.P.R.Koppola,M.J.Bagajewicza,B.J.Dericksb,M.J.Savelski,On zero water discharge solutions in the process industry,Adv.Environ.Res.8(2003)151–171.

    [28]A.Alva-Argáez,A.C.Kokossis,R.Smith,Wastewater minimization of industrial systems using an integrated approach,Comput.Chem.Eng.22(1998)s741–s744.

    [29]R.Karuppiah,I.E.Grossmann,Global optimization for the synthesis of integrated water systems in chemical processes,Comput.Chem.Eng.30(2006)650–673.

    [30]E.Ahmetovic,I.E.Grossmann,Global superstructure optimization for the design of integrated process water networks,AICHE J.57(2011)434–457.

    [31]D.C.Faria,M.J.Bagajewicz,On the appropriate modeling of process plant water systems,AICHE J.56(2010)668–689.

    [32]J.P.Teles,P.M.Castro,H.A.Matos,Global optimization of water networks design using multiparametric disaggregation,Comput.Chem.Eng.40(2012)132–147.

    [33]M.Gunaratnam,A.Alva-Argáez,A.Kokossis,J.K.Kim,R.Smith,Automated design of total water systems,Ind.Eng.Chem.Res.44(2005)588–599.

    [34]N.Hu,X.Feng,C.Deng,Optimal design of multiple-contaminant regeneration reuse water networks with process decomposition,Chem.Eng.J.173(2011)80–91.

    [35]P.Iancu,V.Plesu,V.Lavric,Regeneration of internal streams as an effective tool for wastewater network optimization,Comput.Chem.Eng.33(2009)731–742.

    [36]X.Feng,J.Bai,X.S.Zheng,On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems,Chem.Eng.Sci.62(2007)2127–2138.

    [37]S.Relvas,H.A.Matos,M.C.Fernandes,P.Castro,C.Nunes,AquoMin:a software tool for mass-exchange networks targeting and design,Comput.Chem.Eng.32(2008)1085–1105.

    [38]G.Poplewski,J.M.Jezowski,A.Jezowska,Water network design with stochastic optimization approach,Chem.Eng.Res.Des.89(2011)2085–2101.

    [39]J.K.Kim,System analysis of total water systems for water minimization,Chem.Eng.J.193-194(2012)304–317.

    [40]C.S.Khor,B.Chachuat,N.Shah,A superstructure optimization approach for water network synthesis with membrane separation-based regenerators,Comput.Chem.Eng.42(2012)48–63.

    [41]Z.Y.Liu,Y.M.Li,Z.H.Liu,Y.J.Wang,A simple method for design of water-using networks with multiple contaminants involving regeneration reuse,AICHE J.55(2009)1628–1633.

    [42]Z.Y.Liu,Y.Yang,L.Z.Wan,X.Wan,K.H.Hou,A heuristic design procedure for waterusing networks with multiple contaminants,AICHE J.55(2009)374–381.

    [43]C.H.Pan,J.Shi,Z.Y.Liu,An iterative method for design of water-using networks with regeneration recycling,AICHE J.58(2012)456–465.

    [44]D.L.Xu,Y.Yang,Z.Y.Liu,Predicting target values of the water-using networks involving regeneration recycling,Chem.Eng.Sci.104(2013)525–539.

    国产亚洲av嫩草精品影院| 成人精品一区二区免费| 国产精品永久免费网站| 高清在线国产一区| 日韩大尺度精品在线看网址| 免费在线观看日本一区| 人人妻人人看人人澡| 一本综合久久免费| 亚洲国产精品合色在线| 国产99白浆流出| 久久婷婷人人爽人人干人人爱| 搡老妇女老女人老熟妇| 亚洲免费av在线视频| 精品第一国产精品| 欧美日韩黄片免| 国产精品久久久久久精品电影| 少妇裸体淫交视频免费看高清 | 亚洲成av人片在线播放无| 一区二区三区高清视频在线| 国产精品九九99| 成年人黄色毛片网站| 亚洲欧洲精品一区二区精品久久久| 国产午夜精品论理片| 日韩欧美国产一区二区入口| 亚洲熟妇熟女久久| 午夜精品在线福利| 国产av麻豆久久久久久久| 一级黄色大片毛片| 丰满人妻一区二区三区视频av | 黄色女人牲交| 亚洲精品久久国产高清桃花| 男女那种视频在线观看| 亚洲成人久久性| 欧美黑人欧美精品刺激| 免费在线观看黄色视频的| 久久久精品大字幕| 男人舔女人的私密视频| 国产精品av久久久久免费| 无人区码免费观看不卡| 国产熟女xx| 97碰自拍视频| 国产亚洲精品久久久久5区| xxxwww97欧美| 欧美激情久久久久久爽电影| 日韩欧美一区二区三区在线观看| 午夜免费激情av| 欧美大码av| 国产精品免费视频内射| 亚洲精品色激情综合| 高清毛片免费观看视频网站| 99精品在免费线老司机午夜| 婷婷精品国产亚洲av在线| 视频区欧美日本亚洲| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| 午夜免费成人在线视频| 久久中文字幕一级| 亚洲av电影不卡..在线观看| 午夜激情av网站| 男人舔女人下体高潮全视频| 十八禁人妻一区二区| 欧美大码av| 夜夜看夜夜爽夜夜摸| 日韩欧美三级三区| 热99re8久久精品国产| 一区二区三区国产精品乱码| 免费看a级黄色片| 舔av片在线| 欧美色欧美亚洲另类二区| 日韩欧美在线乱码| 久久亚洲真实| 国内久久婷婷六月综合欲色啪| 国产精品99久久99久久久不卡| 亚洲国产看品久久| 欧美日韩乱码在线| 级片在线观看| 国内少妇人妻偷人精品xxx网站 | x7x7x7水蜜桃| 亚洲最大成人中文| 国内揄拍国产精品人妻在线| 欧美乱妇无乱码| 日韩欧美在线二视频| 国产精品一区二区精品视频观看| 天堂动漫精品| 欧美人与性动交α欧美精品济南到| 精品国内亚洲2022精品成人| 18禁观看日本| 丝袜美腿诱惑在线| 国产久久久一区二区三区| 国产精品免费视频内射| 久久精品国产清高在天天线| 国产成人aa在线观看| 亚洲国产欧美网| 神马国产精品三级电影在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产亚洲av香蕉五月| 亚洲五月天丁香| 国产aⅴ精品一区二区三区波| 亚洲中文字幕日韩| 久久久久久国产a免费观看| 国产成人av教育| 国产亚洲精品av在线| 男女午夜视频在线观看| 18美女黄网站色大片免费观看| 最近最新中文字幕大全电影3| 一区二区三区激情视频| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 超碰成人久久| 免费电影在线观看免费观看| 国产熟女午夜一区二区三区| 在线观看舔阴道视频| 丁香欧美五月| 国产精华一区二区三区| 国内精品久久久久精免费| 日本免费一区二区三区高清不卡| 欧美日韩乱码在线| 久久伊人香网站| 妹子高潮喷水视频| 久久中文字幕人妻熟女| 国产人伦9x9x在线观看| 97碰自拍视频| 亚洲狠狠婷婷综合久久图片| tocl精华| 欧美成人免费av一区二区三区| 又爽又黄无遮挡网站| 美女扒开内裤让男人捅视频| 在线国产一区二区在线| 日本黄大片高清| 国产免费av片在线观看野外av| 欧美日韩乱码在线| 成人av在线播放网站| 国内久久婷婷六月综合欲色啪| 搞女人的毛片| 欧美+亚洲+日韩+国产| 深夜精品福利| 欧美黑人巨大hd| 欧美黄色淫秽网站| 好看av亚洲va欧美ⅴa在| 国产真人三级小视频在线观看| 国模一区二区三区四区视频 | 成人特级黄色片久久久久久久| 老汉色av国产亚洲站长工具| 婷婷丁香在线五月| 三级国产精品欧美在线观看 | xxxwww97欧美| 中文亚洲av片在线观看爽| 哪里可以看免费的av片| 首页视频小说图片口味搜索| 亚洲电影在线观看av| 久久精品影院6| 欧美色欧美亚洲另类二区| 又黄又爽又免费观看的视频| 久久精品影院6| 亚洲免费av在线视频| 欧美精品亚洲一区二区| 亚洲无线在线观看| 老司机福利观看| 小说图片视频综合网站| 亚洲人成77777在线视频| 精品日产1卡2卡| 在线观看免费视频日本深夜| 久久中文字幕人妻熟女| xxx96com| www日本黄色视频网| 又大又爽又粗| netflix在线观看网站| 国内揄拍国产精品人妻在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区三区四区免费观看 | 日本一二三区视频观看| 国产伦一二天堂av在线观看| 亚洲精品色激情综合| 日本撒尿小便嘘嘘汇集6| 手机成人av网站| 国产高清视频在线观看网站| 欧美成人免费av一区二区三区| 一二三四在线观看免费中文在| 国产主播在线观看一区二区| 精品久久久久久久末码| 欧美极品一区二区三区四区| 久久精品91蜜桃| or卡值多少钱| 制服人妻中文乱码| 美女免费视频网站| 禁无遮挡网站| 天天一区二区日本电影三级| 免费高清视频大片| 校园春色视频在线观看| 我的老师免费观看完整版| 国产三级黄色录像| 熟女少妇亚洲综合色aaa.| 久久久久久免费高清国产稀缺| 亚洲av电影在线进入| 国产精品久久电影中文字幕| 午夜免费成人在线视频| 欧美乱妇无乱码| 久久久久免费精品人妻一区二区| 88av欧美| 国产激情久久老熟女| 亚洲成人久久性| 两个人视频免费观看高清| 久久久久久久久免费视频了| 男人舔女人下体高潮全视频| 亚洲人成伊人成综合网2020| 日本黄大片高清| 国产亚洲精品久久久久5区| 天天添夜夜摸| 观看免费一级毛片| 日韩 欧美 亚洲 中文字幕| 欧美成狂野欧美在线观看| 亚洲午夜理论影院| 波多野结衣高清作品| 精品无人区乱码1区二区| 色老头精品视频在线观看| 一二三四社区在线视频社区8| 国产v大片淫在线免费观看| 999久久久精品免费观看国产| 91成年电影在线观看| 精品久久久久久成人av| 日韩欧美 国产精品| 亚洲七黄色美女视频| 淫妇啪啪啪对白视频| 欧美av亚洲av综合av国产av| 久久精品国产亚洲av高清一级| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩国产亚洲二区| 一a级毛片在线观看| a级毛片在线看网站| 成人精品一区二区免费| 欧美黑人欧美精品刺激| 校园春色视频在线观看| 精品久久久久久,| 亚洲成av人片免费观看| 国产精品乱码一区二三区的特点| 久久精品综合一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一区av在线观看| 俺也久久电影网| 久久精品亚洲精品国产色婷小说| 亚洲国产欧美人成| 亚洲av成人精品一区久久| 亚洲成人中文字幕在线播放| 成人av在线播放网站| 亚洲欧美精品综合一区二区三区| 男女之事视频高清在线观看| 精品高清国产在线一区| 五月玫瑰六月丁香| 黄色丝袜av网址大全| 亚洲美女黄片视频| 非洲黑人性xxxx精品又粗又长| av福利片在线观看| 亚洲av熟女| 波多野结衣巨乳人妻| 国产精品久久久人人做人人爽| 桃色一区二区三区在线观看| 日韩精品青青久久久久久| 99riav亚洲国产免费| 免费在线观看视频国产中文字幕亚洲| 久久久国产精品麻豆| 最近最新中文字幕大全电影3| 97人妻精品一区二区三区麻豆| 一级作爱视频免费观看| 欧美三级亚洲精品| 麻豆av在线久日| 国产精品亚洲美女久久久| АⅤ资源中文在线天堂| 亚洲在线自拍视频| 国产精品免费一区二区三区在线| 国内久久婷婷六月综合欲色啪| 亚洲乱码一区二区免费版| 亚洲五月婷婷丁香| 人人妻人人看人人澡| 久久国产乱子伦精品免费另类| 亚洲熟妇熟女久久| 国产精品av久久久久免费| 91麻豆av在线| 在线观看66精品国产| 亚洲男人天堂网一区| 欧美日韩一级在线毛片| 色综合婷婷激情| 亚洲成人中文字幕在线播放| av超薄肉色丝袜交足视频| 欧美久久黑人一区二区| 每晚都被弄得嗷嗷叫到高潮| videosex国产| 欧美中文日本在线观看视频| 国产精品国产高清国产av| 国产私拍福利视频在线观看| 后天国语完整版免费观看| 日韩欧美在线乱码| 国产av一区二区精品久久| 99久久国产精品久久久| 男人舔女人的私密视频| 可以在线观看的亚洲视频| 一边摸一边做爽爽视频免费| 夜夜爽天天搞| 亚洲午夜精品一区,二区,三区| 久久中文字幕人妻熟女| 好看av亚洲va欧美ⅴa在| av有码第一页| 成人欧美大片| 久久香蕉国产精品| 免费在线观看日本一区| АⅤ资源中文在线天堂| 国产探花在线观看一区二区| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久| 美女大奶头视频| 中文字幕精品亚洲无线码一区| 在线观看www视频免费| 亚洲国产欧美一区二区综合| 国产精品国产高清国产av| 香蕉丝袜av| 波多野结衣巨乳人妻| 天堂√8在线中文| 欧美大码av| 男女做爰动态图高潮gif福利片| 久久精品国产99精品国产亚洲性色| 欧美+亚洲+日韩+国产| 最近在线观看免费完整版| 亚洲成人免费电影在线观看| 男插女下体视频免费在线播放| 白带黄色成豆腐渣| 大型av网站在线播放| 欧美乱色亚洲激情| 日韩欧美免费精品| 熟妇人妻久久中文字幕3abv| 一夜夜www| 国产成+人综合+亚洲专区| 久久久久久大精品| 亚洲成av人片在线播放无| 亚洲av日韩精品久久久久久密| 精品国内亚洲2022精品成人| 深夜精品福利| 日韩大尺度精品在线看网址| 变态另类丝袜制服| 久久热在线av| 亚洲精品色激情综合| 午夜久久久久精精品| 亚洲美女视频黄频| 亚洲国产中文字幕在线视频| 国产主播在线观看一区二区| 高清在线国产一区| 久久中文看片网| 中文字幕最新亚洲高清| 免费在线观看完整版高清| 国产又黄又爽又无遮挡在线| 18禁国产床啪视频网站| 两个人看的免费小视频| 美女高潮喷水抽搐中文字幕| 夜夜躁狠狠躁天天躁| 亚洲精品色激情综合| 两个人看的免费小视频| 长腿黑丝高跟| 成人欧美大片| 一个人免费在线观看的高清视频| 女人爽到高潮嗷嗷叫在线视频| 淫秽高清视频在线观看| 欧美日本视频| 久久人妻福利社区极品人妻图片| 搞女人的毛片| 色播亚洲综合网| www日本在线高清视频| 51午夜福利影视在线观看| 女人爽到高潮嗷嗷叫在线视频| 成在线人永久免费视频| 国产免费男女视频| 久久久久久久精品吃奶| 久热爱精品视频在线9| 老鸭窝网址在线观看| 欧美精品亚洲一区二区| 十八禁人妻一区二区| 中文亚洲av片在线观看爽| 久久久久九九精品影院| 国产99白浆流出| 制服诱惑二区| 久久精品人妻少妇| 99久久精品国产亚洲精品| 亚洲精品一区av在线观看| av片东京热男人的天堂| 欧美在线黄色| 日本在线视频免费播放| 亚洲av美国av| 日日摸夜夜添夜夜添小说| 国产午夜精品久久久久久| 精品一区二区三区av网在线观看| 1024香蕉在线观看| 怎么达到女性高潮| 久久久久久大精品| 国产免费男女视频| 色播亚洲综合网| 一二三四在线观看免费中文在| 欧美成人一区二区免费高清观看 | 国产在线观看jvid| 熟女少妇亚洲综合色aaa.| 久久精品夜夜夜夜夜久久蜜豆 | 成人三级黄色视频| 美女扒开内裤让男人捅视频| 宅男免费午夜| 国产探花在线观看一区二区| 国产一区二区三区在线臀色熟女| 欧美 亚洲 国产 日韩一| 国产伦人伦偷精品视频| 日本熟妇午夜| 国模一区二区三区四区视频 | 国产精品一区二区三区四区久久| 精品一区二区三区av网在线观看| 国产三级黄色录像| 成人永久免费在线观看视频| 欧美zozozo另类| 一二三四在线观看免费中文在| 桃红色精品国产亚洲av| 999久久久国产精品视频| x7x7x7水蜜桃| 中文字幕人成人乱码亚洲影| 亚洲第一电影网av| 长腿黑丝高跟| 在线观看舔阴道视频| 国产伦人伦偷精品视频| 国产精品免费视频内射| 亚洲欧美日韩高清专用| 日韩欧美国产一区二区入口| 91麻豆av在线| 免费电影在线观看免费观看| 黄色毛片三级朝国网站| 国内毛片毛片毛片毛片毛片| 成人国产综合亚洲| 桃红色精品国产亚洲av| 久久精品人妻少妇| 亚洲欧美精品综合久久99| 亚洲片人在线观看| 国产精品一区二区免费欧美| 国产一区二区在线av高清观看| 久久久久久久久中文| 在线观看美女被高潮喷水网站 | 性色av乱码一区二区三区2| 手机成人av网站| 十八禁人妻一区二区| 日韩欧美 国产精品| 日本撒尿小便嘘嘘汇集6| 精华霜和精华液先用哪个| 成人18禁在线播放| 99精品欧美一区二区三区四区| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 亚洲最大成人中文| 怎么达到女性高潮| 亚洲精品粉嫩美女一区| 国产亚洲精品一区二区www| а√天堂www在线а√下载| 欧美高清成人免费视频www| 亚洲精品粉嫩美女一区| 黑人欧美特级aaaaaa片| 亚洲美女视频黄频| 女人被狂操c到高潮| 日韩精品青青久久久久久| 午夜精品在线福利| 黑人巨大精品欧美一区二区mp4| 69av精品久久久久久| 欧美日韩国产亚洲二区| 露出奶头的视频| 丁香六月欧美| 天堂√8在线中文| 淫妇啪啪啪对白视频| 国产精品一及| 日本三级黄在线观看| 国产又色又爽无遮挡免费看| 日本撒尿小便嘘嘘汇集6| 成人国产一区最新在线观看| 可以在线观看的亚洲视频| 老司机靠b影院| 嫁个100分男人电影在线观看| 国产黄片美女视频| 69av精品久久久久久| 天天一区二区日本电影三级| 国产伦人伦偷精品视频| 久热爱精品视频在线9| 亚洲一卡2卡3卡4卡5卡精品中文| 在线视频色国产色| 久久人妻av系列| 91成年电影在线观看| 亚洲一区中文字幕在线| 真人一进一出gif抽搐免费| 99国产极品粉嫩在线观看| 精品午夜福利视频在线观看一区| 亚洲激情在线av| 99国产精品99久久久久| 欧美zozozo另类| 不卡一级毛片| 少妇的丰满在线观看| 他把我摸到了高潮在线观看| 男男h啪啪无遮挡| 男女之事视频高清在线观看| 亚洲电影在线观看av| aaaaa片日本免费| 亚洲国产看品久久| 脱女人内裤的视频| 欧美日韩乱码在线| 动漫黄色视频在线观看| 亚洲成a人片在线一区二区| 两个人免费观看高清视频| 夜夜躁狠狠躁天天躁| 黄色视频不卡| 在线十欧美十亚洲十日本专区| 午夜福利视频1000在线观看| 欧美日本亚洲视频在线播放| 欧美大码av| 露出奶头的视频| 国产黄片美女视频| 一进一出抽搐动态| 国产精品香港三级国产av潘金莲| 中文字幕久久专区| 亚洲av熟女| 黄色 视频免费看| 久久久国产成人精品二区| 18禁国产床啪视频网站| 欧美日本视频| 亚洲aⅴ乱码一区二区在线播放 | 俄罗斯特黄特色一大片| 欧美中文综合在线视频| 国产高清激情床上av| 丰满人妻熟妇乱又伦精品不卡| 一a级毛片在线观看| 欧美成人一区二区免费高清观看 | 中出人妻视频一区二区| 国产97色在线日韩免费| 无遮挡黄片免费观看| 日韩欧美国产在线观看| 国产主播在线观看一区二区| 麻豆一二三区av精品| 欧美在线一区亚洲| 老熟妇仑乱视频hdxx| 特大巨黑吊av在线直播| 亚洲熟妇熟女久久| 手机成人av网站| 亚洲成av人片免费观看| 精品电影一区二区在线| 别揉我奶头~嗯~啊~动态视频| 亚洲专区中文字幕在线| av片东京热男人的天堂| 日韩欧美三级三区| 免费在线观看视频国产中文字幕亚洲| 亚洲色图 男人天堂 中文字幕| 99国产极品粉嫩在线观看| 天堂影院成人在线观看| 国产精品av久久久久免费| 国产精品久久久久久久电影 | 最近最新免费中文字幕在线| 亚洲av成人不卡在线观看播放网| www.精华液| 亚洲精品美女久久av网站| 国产成人精品久久二区二区免费| 俄罗斯特黄特色一大片| 亚洲最大成人中文| 欧美成人性av电影在线观看| 日韩国内少妇激情av| 亚洲av熟女| 日韩精品中文字幕看吧| 欧美成人性av电影在线观看| 国产午夜精品论理片| 日韩欧美免费精品| 老司机深夜福利视频在线观看| 久久久久久久午夜电影| 男男h啪啪无遮挡| 久久中文字幕人妻熟女| 99国产精品一区二区三区| 人成视频在线观看免费观看| 小说图片视频综合网站| 后天国语完整版免费观看| 大型黄色视频在线免费观看| 99久久精品国产亚洲精品| 欧美av亚洲av综合av国产av| www.精华液| 88av欧美| 国产成人精品久久二区二区免费| 在线观看美女被高潮喷水网站 | 亚洲一区中文字幕在线| 亚洲精品久久国产高清桃花| 人妻夜夜爽99麻豆av| 很黄的视频免费| 亚洲真实伦在线观看| 久久久久国产一级毛片高清牌| 1024香蕉在线观看| 免费在线观看视频国产中文字幕亚洲| 欧美人与性动交α欧美精品济南到| 亚洲片人在线观看| 韩国av一区二区三区四区| 黄片大片在线免费观看| 99re在线观看精品视频| 国产成人精品久久二区二区免费| 男插女下体视频免费在线播放| 搡老岳熟女国产| 天堂av国产一区二区熟女人妻 | 亚洲一区二区三区不卡视频| 亚洲欧美日韩高清专用| 草草在线视频免费看| netflix在线观看网站| 午夜精品在线福利| 国产主播在线观看一区二区| 中文资源天堂在线| 麻豆国产av国片精品| 黄色女人牲交| 熟妇人妻久久中文字幕3abv| 成人av在线播放网站| 丁香欧美五月| 国产aⅴ精品一区二区三区波| 亚洲av日韩精品久久久久久密| 亚洲成人免费电影在线观看| 精品日产1卡2卡| 天堂动漫精品| 亚洲一区二区三区不卡视频| 国模一区二区三区四区视频 | 狠狠狠狠99中文字幕| 日韩欧美国产一区二区入口|